Mechanism of vector meson production at low \boldsymbol{W}

C. Weiss (JLab), INT Workshop "Orbital angular momentum," Seattle, 14-Feb-12

Phenomenological approach based on parton picture

Contains asymptotic pQCD mechanism but more general: finite-size/higher-twist effects non-perturbative interactions

Suggests experimental tests of reaction mechanism

• Small—size configurations

Example: Pion form factor

Model-independent analysis

Dynamical origin: pQCD interactions, QCD vacuum structure

• Vector meson production at high W ($\gtrsim 5\,\mathrm{GeV}$)

Tests of approach to small—size regime: $t\text{--slopes, }Q^2,W\text{--dependence, }\phi/\rho^0$ ratio HERA, HERMES, COMPASS, EIC

ullet Vector meson production at low W

Existing data: Kinematic dependences, comparison of channels Cornell, JLab 6 GeV

Speculation: $q\bar{q}$ pair knockout in ρ^0

Experimental tests JLab 12 GeV

Small-size configurations: Elastic form factors

• Parton picture $P \to \infty$, q_T transverse

Current cannot produce pairs

Wave function overlap representation $F(q^2) = \sum_{n} \int dx \ d^2k_T \ \psi_n^*(x, k_{T1}, ...) \psi_n(x, k_{T2}, ...)$

Configurations with different particle number and transverse size

Expect that large $|\boldsymbol{q}_T|$ "select" small sizes How to quantify it?

• Transverse density Soper 76, Miller 07

$$F(q^2) = \int \! d^2 b \; e^{i {m q}_T {m b}} \;
ho(b)$$
 2D Fourier

Cumulative charge/current of constituents at transverse position \boldsymbol{b}

• Empirical charge density in pion

Dispersion integral over timelike FF e^+e^- data

High density at $b \to 0$: Small-size configurations?

Small-size configurations: Pion

• Two sources of small–b density

$$x\sim 1/2$$
 size $\ll R$ small—size mostly $qar q$ $x o 1$ size $\sim R$ end—point multiparticle, soft gluons

Dynamical question!

 Density in center of pion mostly from small—size configurations

End-point contribution constrained by quark density in pion at $x \to 1$ Miller, Strikman, CW 10. πA Drell-Yan data. Soft-gluon resummation \to Talk Vogelsang

• Alt. picture: Rest frame

Photon reverses quark in pair with momenta back-to-back along reaction axis

Model—independent statement on small—size configurations!

Small-size configurations: Dynamical origin

Perturbative interactions

High-momentum component of wave function $k_T \sim R^{-1}$ wave function as source, $\int d^2k_T$

Responsible for leading $Q^2 \to \infty$ asymptotics of pion FF $_{\rm Efremov,\ Radyushkin\ 77+;\ Brodsky\ Lepage\ 80}$

• QCD vacuum structure

Strong non–perturbative gluon fields of size $\rho \sim 0.2\text{--}0.3~\mathrm{fm}$

Objective measure: Average quark virtuality $\langle \bar{\psi} \nabla^2 \psi \rangle / \langle \bar{\psi} \psi \rangle > (0.7 \, \text{GeV})^2$ Lattice: Teper 87, Doi 02, Chiu 03

Non-perturbative semi-hard component of WF Cf. short-range correlations in nuclei

Chiral anomaly? $\gamma^* \gamma \to \pi^0$ puzzle

Evidence for non-perturbative small—size configurations!

Exclusive meson production: High Q^2

Pseudoscalars π, η : Quark helicity/transversity structure \rightarrow Talks Kroll, Liuti

Meson produced in small—size configuration

 $Q^2\to\infty$: $q\bar{q}$ pointlike, pQCD interactions QCD factorization for σ_L : Collins, Frankfurt, Strikman 96

 $Q^2 \sim {\rm few} \ {\rm GeV}^2$: $q \bar q$ has small size, but non-perturbative interactions possible Recent progress: Sudakov suppression. Goloskokov, Kroll 08/10

Nucleon structure in GPDs: Quark/gluon form factors, universal, process−independent ↔ DVCS, other processes, lattice QCD

Meson selects flavor/spin component

$$\begin{array}{ll} \phi, J/\psi & \text{ gluons} \\ \rho^+ & \text{ quarks } \ u-d \\ \rho^0, \omega & \text{ quarks } 2u\pm d \ + \ \text{ gluons} \end{array}$$

Two–stage analysis

Verify approach to small—size regime: Kinematic dependences, comparison of channels Quantitative questions: Effective sizes? Dominant amplitudes?

Extract nucleon structure information: Transverse parton distributions, $q\bar{q}$ correlations, . . .

High W: Approach to small-size regime I

ullet Simplifications at high W

Gluon exchange dominant in ρ^0 , similar to $\phi, J/\psi$

Coherence length $\gg 1\,\mathrm{fm}$: Dipole picture in nucleon rest frame

Im A ≫ Re A: DGLAP region of GPD

Test approach to small-size regime!

• Universality of t-slopes at high Q^2

 Δ_T^2 slope measures transverse size of interaction region = size of target and meson configurations

Decreases at large Q^2 , becomes universal: Approach to small—size regime Contradicts Regge factorization!

Seen in HERA data!

High W: Approach to small-size regime II

• Hardening of W-dependence with Q^2

 $W{\rm -}{\rm dependence}$ becomes steeper with increasing Q^2

Rate of growth reveals effective scale in gluon GPD $Q_{\rm eff}^2\approx \pi^2/\langle r_{\rm q\bar q}^2\rangle\ll Q^2$

Contradicts Regge factorization "Effective" trajectory

High W: Approach to small-size regime III

• Ratio ϕ/ρ^0 constant at high Q^2

Same spatial size of configurations, only difference in quark charges

Consistent with SU(3) value 2/9

Low W: Reaction mechanism

ullet Mechanism of hard exclusive vector meson production more complex at low W

Quark exchange important in ρ^0, ω ; cf. ρ^+, K^*

Re/Im could be large: ERBL region of GPDs?

Large skewness ξ : GPDs not simply related to forward limit

Potentially quark helicity—flip amplitudes, SCHC violation

Present GPD models challenged

 ϕ overall well described with gluon GPD Hints of non-uniform W dependence near threshold. Other exchange mechanism? s-channel hyperon resonances?

Missing strength in ρ^0 — origin?

Need experimental information
 JLab 6 and 12 GeV

Approach to small-size regime?

Type of exchanges/GPDs? Essential to reduce complexity!

Low W: Quark vs. gluon exchange

CLAS 09 Fradi et al. Black ρ^+ , Red ρ^0 Blue ω Green ϕ

Scattering from quark

Knockout of $q\overline{q}$ pair

• Comparison $\rho^+ \leftrightarrow \rho^0 \leftrightarrow \phi$

 ρ^0 comparable to ρ^+ : Quark exchange!

Ratios consistent with u-quark dominance $\rho^0:\omega:\rho^+\sim 1:1:2$

• Scattering from valence quark or knockout of $q\bar{q}$ pair?

GPDs contain both DGLAP and ERBL regions

 $\sigma \sim W^{-4}$ at $W < 4 \, {\rm GeV}$ Cf. spin–0 meson exchange in soft regime

Hard regime: Knockout of spin-0 $q\bar{q}$ pair? Guidal, Morrow: Modified D-term in GPD

Low W: $q\bar{q}$ knockout in ρ

• Speculation: ρ^0 and ρ^+ at $W < 4\,\mathrm{GeV}$ dominated by $q\bar{q}$ knockout

Chiral symmetry breaking prodces correlated small—size spin—0 $q\bar{q}$ pairs in nucleon Light—cone formulation: Schweitzer, Strikman, CW; in progress

Measured ρ^+/ρ^0 ratio consistent with exchange of $q\bar{q}$ with pion quantum numbers Isospin symmetry and $\rho\to\gamma\pi$ decay widths

 ρ production may involve chirally odd GPDs and distribution amplitudes

Cf. pseudoscalar production \rightarrow Talks Kroll, Liuti

Challenge to implement quantitative model

 Rest frame picture: Reversal of quark in pair aligned along reaction axis

Analogy with short-range NN correlations in nuclei

Allows for modeling of non-perturbative interactions

Low W: Approach to small-size regime

• Q^2 -dependence of t-slopes

 $t_{
m min}$ large, varies with Q^2

If actual t-dependence of amplitude is non-exponential, changing t_{\min} will change effective slope in $t-t_{\min}$

Need to separate kinematic decrease of slope from actual "squeezing" of $q\bar{q}$ configurations

Extensive tests with JLab 12 GeV

L/T ratio from SCHC, ϕ -dependent response functions

Change of W-dependence with t: Higher |t| enhances scattering from valence quarks, suppresses $q\bar{q}$ knockout

Summary

 Small—size configurations key concept in phenomenology of hard exclusive processes

More primary than specific interaction models

Encompasses non-perturbative interactions, e.g. chiral symmetry-breaking forces in QCD vacuum

Substantial probability of SSC's in pion from model-independent analysis

Can be probed in other experiments: Nuclear transparency, $\pi + A \rightarrow 2\,\mathrm{jets}$

ullet Mechanism of exclusive vector meson production well understood at high W

Model-independent tests of approach to small-size regime

Successful phenomenology based on gluon GPDs

ullet Challenge to understand reaction mechanism at low W

 ϕ mostly from gluons — needs closer look near threshold

 $ho^0,
ho^+$ possibly dominated by q ar q knockout — needs to be quantified

Experimental data essential for deciding between possible scenarios