

ERMES DD (VGG)

 0.5

Marc Vanderhaeghen Johannes Gutenberg Universität, Mainz

INT Workshop "Orbital Angular Momentum in QCD" Seattle, February 6 - 17, 2012

Vector meson production in the GPD framework

- **Modeling the GPD E and its connection to Jq** \implies
- **Observables** \implies Ï
- **N -> Δ DVCS**

Vector meson production in the GPD framework

Factorization theorem shown for longitudinal photon

hard scattering amplitude

Collins, Frankfurt, Strikman (1997)

Vector meson : accesses unpolarized GPDs H and E PseudoScalar meson : accesses polarized GPDs H and E $\frac{1}{2}$ and $\frac{1}{2}$ Hard electroproduction of vector mesons (ρ^{0,±} , ω , φ)

amplitude for longitudinally polarized vector meson

$$
\mathcal{M}_{V_L}^L = -ie\frac{4}{9}\frac{1}{Q}\left[\int_0^1 dz \frac{\Phi_{V_L}(z)}{z}\right] \frac{1}{2} (4\pi\alpha_s)
$$

$$
\times \left\{A_{V_L N} \bar{N}(p^{'}) \gamma \cdot n N(p) + B_{V_L N} \bar{N}(p^{'}) i\sigma^{\kappa\lambda} \frac{n_{\kappa} \Delta_{\lambda}}{2 m_N} N(p)\right\}
$$

 \implies leading (1 gluon exchange) amplitude depends on a_{s} goes as $1/Q$

dependence on meson distribution amplitude Φ_{V} $\Phi_{V_L}(z) = f_V 6 z (1 - z)$ with $f_{\rho} = 0.216 \text{ GeV}, f_{\omega} = 0.195 \text{ GeV}, \text{ from } V \rightarrow e^+e^-$

Mankiewicz, Piller, Weigl (1998) Vdh, Guichon, Guidal(1998)

Flavor decomposition of GPDs H and E

$$
\mathbf{O} \qquad \begin{array}{rcl} A_{\rho_L^0 p} & = & \int_{-1}^1 dx \frac{1}{\sqrt{2}} \left(e_u \ H^u - e_d \ H^d \right) \quad \left\{ \frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right\} \\ B_{\rho_L^0 p} & = & \int_{-1}^1 dx \frac{1}{\sqrt{2}} \left(e_u \ E^u - e_d \ E^d \right) \quad \left\{ \frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right\} \end{array}
$$

$$
\mathbf{Q}^{\pm} \qquad\n\begin{array}{rcl}\nA_{\rho_L^+ n} & = & -\int_{-1}^1 dx \quad (H^u - H^d) \\
B_{\rho_L^+ n} & = & -\int_{-1}^1 dx \quad (E^u - E^d) \\
\end{array}\n\begin{array}{rcl}\n\left\{\frac{e_u}{x - \xi + i\epsilon} + \frac{e_d}{x + \xi - i\epsilon}\right\} \\
\left\{\frac{e_u}{x - \xi + i\epsilon} + \frac{e_d}{x + \xi - i\epsilon}\right\}\n\end{array}
$$

ω

$$
A_{\omega_L p} = \int_{-1}^{1} dx \frac{1}{\sqrt{2}} (e_u H^u + e_d H^d) \left\{ \frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right\}
$$

$$
B_{\omega_L p} = \int_{-1}^{1} dx \frac{1}{\sqrt{2}} (e_u E^u + e_d E^d) \left\{ \frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right\}
$$

Modeling the GPD E and its connection to J_q

GPDs : t dependence (small –t)

$$
\implies F_1^q(t) = \int_{-1}^1 dx \, H^q(x,\xi,t) \qquad F_2^q(t) = \int_{-1}^1 dx \, E^q(x,\xi,t)
$$

small –t (-t < 1 GeV2) : Regge model **Goeke, Polyakov, Vdh (2001)** evaluate for $\xi = 0$: model $H^q(x,0,t)$ and $E^q(x,0,t)$ \bullet **t = 0** : $H^q(x,0,0) + H^q(-x,0,0) = q_v(x) \sim \frac{1}{r^{\alpha(0)}}$ $\alpha(0) \simeq 0.5$ **○** † ≠ **0** : $H^q(x, 0, t) + H^q(-x, 0, t) \sim \frac{1}{x^{\alpha(t)}}$ $\alpha(t) = \alpha(0) + \alpha' t$ Regge trajectory $\alpha' \simeq 0.9 \text{ GeV}^{-2}$

$$
F_1^q(t) = \int_0^1 dx \, q_v(x) \frac{1}{x^{\alpha'_1 t}} \qquad F_2^q(t) = \int_0^1 dx \, \kappa_q \, q_v(x) \frac{1}{x^{\alpha'_2 t}}
$$

regge slopes: α'_1 , α'_2 determined from rms radii valence model
for E

proton & neutron charge radii

GPDs : t dependence (large –t)

modified Regge parametrization : **Guidal, Polyakov, Radyushkin, Vdh (2005)**

$$
H^{q}(x, 0, t) = q_{v}(x) x^{-\alpha'_{1}(1-x) t}
$$

\n
$$
E^{q}(x, 0, t) = \frac{\kappa_{q}}{N_{q}} (1-x)^{\eta_{q}} q_{v}(x) x^{-\alpha'_{2}(1-x) t}
$$

Input : forward parton distributions at $\mu^2 = 1$ GeV² (MRST2002 NNLO)

Drell-Yan-West relation: $exp(-a' t) \rightarrow exp(-a' (1 - x) t)$ Burkardt (2001)

parameters :

regge slopes: α_1', α_2' determined from rms radii η_u , η_d determined from F_2 / F_1 at large -t

future constraints : moments from lattice QCD

connection large Q^2 of FF <-> large x of GPD

$$
I = \int_0^1 dx (1-x)^\nu e^{\alpha' Q^2 (1-x) \ln x} = \int_0^1 dx e^{\nu \ln(1-x) + \alpha' Q^2 (1-x) \ln x}
$$

=
$$
\int_0^1 dx e^{f(x,Q^2)}
$$

at large Q^2 : integral dominated by maximum of $f(x,Q^2)$, remainder region is exp. suppressed (method of steepest descent) $f(x,Q^2)$ reaches maximum for : $x = x_0 \simeq 1 - \frac{\nu}{\alpha' Q^2}$

"Drell-Yan-West" relation for PDF/GPD :

at large \mathbb{Q}^2 : I is dominated by its behavior around $x \rightarrow 1$

$$
I \simeq e^{f(x_0, Q^2)} \left(\frac{2}{f''(x_0, Q^2)}\right)^{1/2} \frac{\sqrt{\pi}}{2} \sim \left(\frac{1}{\alpha' Q^2}\right)^{(\nu+1)/2}
$$

Nucleon electromagnetic form factors

PROTON NEUTRON $G_{M\,p}$ / $\mu_p\,G_D$ 1.2 1.1 G^D $\mathbf{1}$ $\overline{1}$ $G_{M\,n}^{\prime\,\mu_{n}}$ 0.9 0.8 0.8 0.6 0.7 0.4 0.6 $\mu_p\,G_{E\,p}\,/\,G_{M\,p}$ 0.07 0.75 0.06 GEp-III 0.5 $\overline{\omega}$ 0.05 0.25 0.04 0.03 -0.25
 -0.5 0.02 0.01 -0.75 Ω -1 10^{-1} \blacksquare 10 10 10 $\mathbf{1}$ Q^2 (GeV²) Q^2 (GeV²)

modified Regge GPD parameterization 1 : Regge slope -> proton Dirac (Pauli) radius 3-parameter fit $\left\{ \begin{matrix} 2, 3: \text{large } \times \text{ behavior of GPD E}^u, E^d \rightarrow \text{large } Q^2 \text{ behavior of F2p, F2n} \end{matrix} \right.$ **Guidal, Polyakov, Radyushkin, Vdh (2005) also Diehl, Feldmann, Jakob, Kroll (2005)**

neutron e.m. form factors

Energy momentum form factors / spin of nucleon $G_{\zeta}\Delta$

 nucleon in external classical gravitational field $P - \Delta/2$ \rightarrow P + $\Delta/2$ \rightarrow G couples to energy-momentum tensor $(\mu,\nu) \equiv \frac{1}{2}(\mu\nu + \nu\mu)$ $\langle N | T^{\mu\nu}(0) | N \rangle$ $= \bar{N} \bigg\{ A(t) \, \gamma^{(\mu} P^{\nu)} + B(t) \, P^{(\mu} i \sigma^{\nu) \alpha} \frac{\Delta_{\alpha}}{2\,M} + C(t) \, \left(\Delta^{\mu} \Delta^{\nu} - \Delta^{2} g^{\mu \nu} \right) \frac{1}{M} \bigg\} N$ $\int_{-1}^{1} dx \, x \, H(x,\xi,t) = A(t) + 4 \, \xi^2 \, C(t)$ link to GPDs : **X. Ji (1997)** $\int_{-1}^{1} dx \, x \, E(x,\xi,t) = B(t) - 4 \, \xi^2 \, C(t)$ SPIN "relation"

parametrizations for E^q : $E^q(x,0,0) = \kappa_q/N_q (1-x)^{\eta_q} q_v(x)$

GPD model (µ2 = 2 GeV2)

Goeke, Polyakov, Vdh (2001)

lattice : full QCD, no disconnected diagrams so far

Observables

Hard electroproduction of ρ^0 : cross sections

Hard electroprod. of vector mesons : target normal spin asymmetry

$$
\mathcal{A}_{V_L N} = -\frac{2|\Delta_{\perp}|}{\pi} \qquad \qquad \frac{\text{Im}(AB^*) / m_N}{|A|^2 (1 - \xi^2) - |B|^2 (\xi^2 + t/(4m_N^2)) - \text{Re}(AB^*) 2\xi^2}
$$

- $A \rightarrow GPD$ H $B \rightarrow GPD$ E
- linear dependence on GPD $E \longleftrightarrow$ unpolarized cross section
- ratio : less sensitive to NLO and higher twist effects

```
sensitivity to J^u and J^dmeasure of TOTAL angular momentum contribution to proton spin 
              Goeke, Polyakov, Vdh (2001)
```
Hard electroprod. of vector mesons : target normal spin asymmetry

target polarized normal to hadronic plane $y_L^* + p_\bullet \rho_L^0 + p$ $y_L^* + p \rightarrow \omega_L + p$ 0.05 TRANSVERSE SPIN ASYMMETRY TRANSVERSE SPIN ASYMMETRY $J^d=0$ 0.2 $Q^2 = 5 \ GeV^2$ $J^d=0$ $Q^2 = 5 \ GeV^2$ $\mathbf 0$ $-t = 0.5 \ GeV^2$ $-t = 0.5 \ GeV^2$ 0.1 -0.05 -0.1 Ω $J^u = 0.1$ -0.15 -0.1 $J^{\mu} = 0.2$ $J^{\mu} = 0.1$ -0.2 $J^{\mu} = 0.3$ -0.2 -0.25 $\equiv \pi$ -0.3 -0.3 $J^{\mu} = 0.4$ -0.35 0.1 0.15 0.2 0.25 0.3 0.35 0.05 0.1 0.1 0.05 0.4 0.45 0.5 5 0.2 0.25 0.3 0.35 0.4 0.45 0.5 X_B X_{R} ω_1 sensitive to (2 Ju - Jd) ρ^0 , sensitive to (2 J^u + J^d)

Hard electroprod. of vector mesons : target normal spin asymmetry

 γ_L^* + p ρ_L^+ + n

 $\rho^{\scriptscriptstyle +}{}_{\mathop{\rule{0pt}{0.5pt}\rule{0pt}{1.5pt}} }$ sensitive to ($\rm J^{\scriptscriptstyle u}$ - $\rm J^{\scriptscriptstyle d}$)

exclusive ρ**0 prod. with transverse target**

 2Δ (Im(AB*))/ π $|A|^2(1-\xi^2) - |B|^2(\xi^2+t/4m^2) - Re(AB^*)2\xi^2$ A_{UT} = -

$$
\boxed{\rho^0}
$$

$$
\begin{bmatrix} A \sim (2H^u + H^d) \\ B \sim (2E^u + E^d) \end{bmatrix}
$$

 Asymmetry depends linearly on the GPD E, which enters Ji'**s sum rule.**

N -> Δ DVCS

N ->Δ DVCS and GPDs* t = Δ2 Q2 >> low –t process : -t << Q2 x x + ξ ξ N Δ HM, HE, HC, H4 (x, ξ ,t) Jones-Scadron N -> Δ form factors

N -> Δ magnetic dipole GPD and FF

scaling behavior of N and N -> Δ FF

+ collinear quarks

 F_1 $\sim 1/Q^4$

 F_2 p / F_1 p ~ 1/Q²

 $G_{\mathsf{M}}^{\star} \, \sim \, 1 / \mathsf{Q}^4$

modified Regge GPD model GPD

Guidal, Polyakov, Radyushkin, Vdh (2005)

Challenges / outlook

- **Physics of light vector meson production in the valence region : remains to be understood (u-quark dominance, meson exchanges, higher twist, … ?) for gluons : large correction factors needed**
- **Transverse target spin asymmetry seems a promising observable to minimize higher order/ higher twist corrections**

Linear dependence on GPD E (J_a)

N -> Δ DVCS : quark GPDs in excited state, test of dynamical relations (large N_c) **relation with GPD Eq**