



### Marc Vanderhaeghen Johannes Gutenberg Universität, Mainz

INT Workshop "Orbital Angular Momentum in QCD" Seattle, February 6 - 17, 2012



### ➡ Vector meson production in the GPD framework

- $\implies$  Modeling the GPD E and its connection to  $J_q$
- ➡ Observables
- $\implies$  N ->  $\triangle$  DVCS

## Vector meson production in the GPD framework



Factorization theorem shown for longitudinal photon hard scattering amplitude

Collins, Frankfurt, Strikman (1997)



Vector meson : accesses unpolarized GPDs H and E
 PseudoScalar meson : accesses polarized GPDs H and E

Hard electroproduction of vector mesons ( $\rho^{0,\pm}$ ,  $\omega$ ,  $\phi$ )

amplitude for longitudinally polarized vector meson

$$\mathcal{M}_{V_{L}}^{L} = -ie \frac{4}{9} \frac{1}{Q} \left[ \int_{0}^{1} dz \frac{\Phi_{V_{L}}(z)}{z} \right] \frac{1}{2} \left( 4\pi \alpha_{s} \right) \\ \times \left\{ A_{V_{L}N} \bar{N}(p') \gamma \cdot n N(p) + B_{V_{L}N} \bar{N}(p') i\sigma^{\kappa\lambda} \frac{n_{\kappa} \Delta_{\lambda}}{2 m_{N}} N(p) \right\}$$

 $\Rightarrow$  leading (1 gluon exchange) amplitude depends on  $a_s$  goes as 1/Q

 $\Rightarrow \text{ dependence on meson distribution amplitude } \Phi_V$   $\Phi_{V_L}(z) = f_V \, 6 \, z \, (1-z)$ with  $f_{\rho} = 0.216 \text{ GeV}, \ f_{\omega} = 0.195 \text{ GeV}, \ \text{from } V \to e^+ e^-$ 

Mankiewicz, Piller, Weigl (1998) Vdh, Guichon, Guidal (1998)

## Flavor decomposition of GPDs H and E

$$\begin{array}{llll}
\boldsymbol{\rho}^{\pm} & A_{\rho_{L}^{\pm} n} & = & -\int_{-1}^{1} dx \quad \left(H^{u} - H^{d}\right) \quad \left\{\frac{e_{u}}{x - \xi + i\epsilon} + \frac{e_{d}}{x + \xi - i\epsilon}\right\} \\
& B_{\rho_{L}^{\pm} n} & = & -\int_{-1}^{1} dx \quad \left(E^{u} - E^{d}\right) \quad \left\{\frac{e_{u}}{x - \xi + i\epsilon} + \frac{e_{d}}{x + \xi - i\epsilon}\right\}
\end{array}$$

ω

$$A_{\omega_L p} = \int_{-1}^{1} dx \frac{1}{\sqrt{2}} \left( e_u \ H^u + e_d \ H^d \right) \left\{ \frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right\}$$
$$B_{\omega_L p} = \int_{-1}^{1} dx \frac{1}{\sqrt{2}} \left( e_u \ E^u + e_d \ E^d \right) \left\{ \frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right\}$$

## Modeling the GPD E and its connection to J<sub>q</sub>

### GPDs : t dependence (small -t)

$$\implies F_1^q(t) = \int_{-1}^1 dx \, H^q(x,\xi,t) \qquad F_2^q(t) = \int_{-1}^1 dx \, E^q(x,\xi,t)$$

evaluate for  $\xi = 0$  : model  $H^q(x, 0, t)$  and  $E^q(x, 0, t)$   $\implies$  small -t (-t < 1 GeV<sup>2</sup>) : Regge model Goeke, Polyakov, Vdh (2001)  $\bullet$  t = 0 :  $H^q(x, 0, 0) + H^q(-x, 0, 0) = q_v(x) \sim \frac{1}{x^{\alpha(0)}}$   $\alpha(0) \simeq 0.5$   $\bullet$  t  $\neq$  0 :  $H^q(x, 0, t) + H^q(-x, 0, t) \sim \frac{1}{x^{\alpha(t)}}$   $\alpha(t) = \alpha(0) + \alpha' t$ Regge trajectory  $\alpha' \simeq 0.9 \text{ GeV}^{-2}$ 

$$\Rightarrow \qquad F_1^q(t) = \int_0^1 dx \, q_v(x) \frac{1}{x^{\alpha'_1 t}} \qquad F_2^q(t) = \int_0^1 dx \, \kappa_q \, q_v(x) \frac{1}{x^{\alpha'_2 t}}$$
regge slopes :  $\alpha'_1$ ,  $\alpha'_2$  determined from rms radii valence model for E

### proton & neutron charge radii



### GPDs : t dependence (large -t)

modified Regge parametrization: Guidal, Polyakov, Radyushkin, Vdh (2005)

$$H^{q}(x,0,t) = q_{v}(x) x^{-\alpha'_{1}(1-x)t}$$
  

$$E^{q}(x,0,t) = \frac{\kappa_{q}}{N_{q}} (1-x)^{\eta_{q}} q_{v}(x) x^{-\alpha'_{2}(1-x)t}$$

→ Input : forward parton distributions at  $\mu^2$  = 1 GeV<sup>2</sup> (MRST2002 NNLO)

 $\implies \text{Drell-Yan-West relation} : \exp(-a't) \rightarrow \exp(-a'(1-x)t) \qquad \text{Burkardt} (2001)$ 

#### parameters :

**regge slopes**:  $\alpha'_1$ ,  $\alpha'_2$  determined from rms radii  $\eta_u$ ,  $\eta_d$  determined from F<sub>2</sub> / F<sub>1</sub> at large -t

future constraints : moments from lattice QCD

### connection large Q<sup>2</sup> of FF <-> large x of GPD

$$I = \int_0^1 dx (1-x)^{\nu} e^{\alpha' Q^2 (1-x) \ln x} = \int_0^1 dx e^{\nu \ln(1-x) + \alpha' Q^2 (1-x) \ln x}$$
$$= \int_0^1 dx e^{f(x,Q^2)}$$

at large Q<sup>2</sup> : integral dominated by maximum of f(x,Q<sup>2</sup>), remainder region is exp. suppressed (method of steepest descent) f(x,Q<sup>2</sup>) reaches maximum for :  $x = x_0 \simeq 1 - \frac{\nu}{\alpha' Q^2}$ 

"Drell-Yan-West" relation for PDF/GPD :

at large  $Q^2$ : I is dominated by its behavior around  $x \rightarrow 1$ 

$$I \simeq e^{f(x_0, Q^2)} \left(\frac{2}{f''(x_0, Q^2)}\right)^{1/2} \frac{\sqrt{\pi}}{2} \sim \left(\frac{1}{\alpha' Q^2}\right)^{(\nu+1)/2}$$

### Nucleon electromagnetic form factors



modified Regge GPD parameterization
3-parameter fit {
 1 : Regge slope -> proton Dirac (Pauli) radius
 2, 3 : large x behavior of GPD E<sup>u</sup>, E<sup>d</sup> -> large Q<sup>2</sup> behavior of F2p, F2n
 Guidal, Polyakov, Radyushkin, Vdh (2005)
 also Diehl, Feldmann, Jakob, Kroll (2005)

### neutron e.m. form factors



# Energy momentum form factors / spin of nucleon $G_{>\Delta}$

nucleon in external classical gravitational field  $P + \Delta/2 \implies G$  couples to energy-momentum tensor P - ∆/2  $(\mu,\nu)\equiv \frac{1}{2}(\mu\nu+\nu\mu)$  $\langle N | T^{\mu\nu}(0) | N \rangle$  $= \bar{N} \bigg\{ A(t) \gamma^{(\mu} P^{\nu)} + B(t) P^{(\mu} i \sigma^{\nu)\alpha} \frac{\Delta_{\alpha}}{2M} + C(t) \left( \Delta^{\mu} \Delta^{\nu} - \Delta^{2} g^{\mu\nu} \right) \frac{1}{M} \bigg\} N$  $\int_{-1}^{1} dx \, x \, H(x,\xi,t) = A(t) + 4 \, \xi^2 \, C(t)$ link to GPDs : X. Ji (1997)  $\int_{-1}^{1} dx \, x \, E(x,\xi,t) = B(t) - 4 \, \xi^2 \, C(t)$ SPIN "relation"  $\int_{-1}^{1} dx \, x \left\{ H^q(x,\xi,0) + E^q(x,\xi,0) \right\} = A(0) + B(0) = 2 J^q$ 



parametrizations for  ${\cal E}^{\,q}$  :  $E^{q}(x,0,0)=\kappa_{q}/N_{q}\,(1-x)^{\eta_{q}}\,q_{v}(x)$ 

| PROTON    | M₂ <sup>q</sup> | <b>2 J</b> q            | <b>2 J</b> q                          |
|-----------|-----------------|-------------------------|---------------------------------------|
|           |                 | GPD<br>valence<br>model | Lattice<br>(LHPC)<br><b>(4 GeV</b> 2) |
| u         | 0.37            | 0.58                    | ≈ 0.47                                |
| d         | 0.20            | -0.06                   | ≈ 0.00                                |
| S         | 0.04            | 0.04                    |                                       |
| u + d + s | 0.61            | 0.56                    |                                       |

GPD model ( $\mu^2 = 2 \text{ GeV}^2$ )

Goeke, Polyakov, Vdh (2001)

lattice : full QCD, no disconnected diagrams so far

## Observables

## Hard electroproduction of $\rho^0$ : cross sections







## Hard electroprod. of vector mesons : target normal spin asymmetry

$$\mathcal{A}_{V_L N} = -\frac{2 \left| \Delta_{\perp} \right|}{\pi} \times \frac{\operatorname{Im}(AB^*) / m_N}{|A|^2 (1 - \xi^2) - |B|^2 (\xi^2 + t/(4m_N^2)) - \operatorname{Re}(AB^*) 2\xi^2}$$

- $\Rightarrow A \rightarrow GPD H \qquad B \rightarrow GPD E$
- ⇒ linear dependence on GPD E ← unpolarized cross section
- ratio : less sensitive to NLO and higher twist effects

```
sensitivity to J<sup>u</sup> and J<sup>d</sup>
measure of TOTAL angular momentum contribution to proton spin
```

Goeke, Polyakov, Vdh (2001)

## Hard electroprod. of vector mesons : target normal spin asymmetry

target polarized normal to hadronic plane  $\gamma_L^* + \mathbf{p} \rightarrow \rho_L^0 + \mathbf{p}$  $\gamma_L^* + p \rightarrow \omega_L + p$ 0.05 **IRANSVERSE SPIN ASYMMETRY IRANSVERSE SPIN ASYMMETRY** 0.2  $J^d = 0$  $Q^2 = 5 GeV^2$  $J^d = 0$  $O^2 = 5 GeV^2$ 0  $-t = 0.5 \ GeV^2$  $-t = 0.5 \ GeV^2$ 0.1 -0.05 -0.1 0  $J^{u} = 0.1$ -0.15 -0.1  $J^{u} = 0.2$  $J^{u} = 0.1$ -0.2  $J^{\mu} = 0.3$ = 0.2 -0.2 -0.25  $f^{u} = 0.3$  $I^{\mu} = 0.4$ -0.3 -0.3  $J^{\mu} = 0.4$ -0.35 0.05 0.1 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.05 0.1 5 0.2 0.25 0.3 0.35 0.4 0.45 0.5 XB XB  $\omega_1$  sensitive to (2 J<sup>u</sup> - J<sup>d</sup>)  $\rho^{0}$  sensitive to (2 J<sup>u</sup> + J<sup>d</sup>)

## Hard electroprod. of vector mesons : target normal spin asymmetry

 $\gamma_L^{*} + p \quad \rho_L^+ + n$ 



 $p_{L}^{+}$  sensitive to (  $J^{u} - J^{d}$  )

### exclusive $\rho^0$ prod. with transverse target

$$A_{\rm UT} = - \frac{2\Delta \,({\rm Im}(AB^*))/\pi}{|A|^2(1-\xi^2) - |B|^2(\xi^2 + t/4m^2) - {\rm Re}(AB^*)2\xi^2}$$

$$\begin{array}{|c|c|c|c|} \hline \rho^0 & A \sim (2H^u + H^d) \\ & B \sim (2E^u + E^d) \end{array} \end{array}$$



Asymmetry depends linearly on the GPD E, which enters Ji's sum rule.

## $N \rightarrow \Delta$ DVCS



## $N \rightarrow \Delta$ magnetic dipole GPD and FF



### scaling behavior of N and N -> $\Delta$ FF

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

- + collinear quarks
- $F_1^{p} \sim 1/Q^4$
- $F_2 P / F_1 P \sim 1/Q^2$
- $G_{\rm M}^{*} \sim 1/{\rm Q}^4$
- GPD modified Regge GPD model

Guidal, Polyakov, Radyushkin, Vdh (2005)

## Challenges / outlook

- Physics of light vector meson production
   in the valence region : remains to be understood
   (u-quark dominance, meson exchanges, higher twist, ... ?)
   for gluons : large correction factors needed
- Transverse target spin asymmetry seems a promising observable to minimize higher order/ higher twist corrections

Linear dependence on GPD E  $(J_q)$ 

N -> △ DVCS : quark GPDs in excited state, test of dynamical relations ( large N<sub>c</sub> ) relation with GPD E<sub>q</sub>