INT Seattle, February 6th, 2012

Global Analysis of Helicity PDFs present status & future avenues

Marco Stratmann

NATIONAL LABORATORY

marco@bnl.gov

outline

ANATOMY OF A GLOBAL QCD ANALYSIS BRIEF OUTLINE

INTERLUDE: FRAGMENTATION

QUICK OVERVIEW

LONGITUDINAL SPIN STRUCTURE CURRENT STATUS, LATEST DEVELOPMENTS, OAM

FUTURE AVENUES RHIC & OPPORTUNITIES AT AN EIC

ANATOMY OF A GLOBAL QCD ANALYSIS

how to determine PDFs (and FFs) from data? **information on nucleon (spin) structure available from**

task: extract reliable PDFs (or FFs) not just compare some curves to data

- all processes tied together: universality of pdfs & Q^2 evolution
- **E** each reaction provides insights into *different* aspects and kinematics
- need at least NLO for quantitative analyses; PDFs are not observables!
- information on PDFs "hidden" inside complicated (multi-)convolutions

a **"global QCD analysis"** is required

prerequisite: a reliable theoretical framework

factorization …

- … separates physics happening at different time/distance scales
- ... introduces unphysical scales $\mu_{f,r}$ (leads to powerful RGE like DGLAP)
- ... requires presence of a hard scale (like Q in DIS or p_T in pp collisions)
- … is an approximation corrections are power suppressed
- … leads to a successful quantitative description of many hard scattering proc's

outline of a global QCD analysis

start: choose fact. scheme (MS,…) & pert. order (NLO, …), select data sets, cuts, …

flexible functional form to parametrize PDFs $f(x, \mu_0) = Nx^{\alpha}(1-x)^{\beta}[1 + \kappa\sqrt{x} + \gamma x]$ at some initial scale μ_0 (of order 1 GeV) obtain PDFs at any $x, \mu > \mu_0$ relevant for comparing with data by solving evolution eqs.

compute DIS, pp, … cross sections at NLO judge goodness of current fit

$$
\chi^2 = \sum_i \frac{(T_i - E_i)^2}{\delta E_i^2}
$$

optimum set of parameters $\{\alpha_{\mathsf{i}}\text{, } \beta_{\mathsf{i}}\text{, } ...\}$

recent achievement: also **quantify PDF uncertainties** and properly propagate them to any observable of interest

HELICITY PDFS (I) BASICS & DSSV GLOBAL ANALYSIS

things that shook the World in Dec. 1987

- Dec 1st: construction of Channel tunnel initiated
- Dec 1st: NASA awards contracts to build Space Station Freedom
- Dec 8th: first Intifada begins in Gaza strip
- Dec 8th: INF treaty signed in Washington, D.C.
- Dec 9th: Windows 2 released
- Dec 18th: Perl created by Larry Wall
- Dec 24^{th} : Japanese band BOØWY declares breakup

12:04:54 At

Fast

... meanwhile in Physics

The total cross section for the production of heavy quarks in hadronic collisions

> P. Nason and S. Dawson Brookhaven National Laboratory Upton, LI, New York 11973

R. K. Ellis Fermi National Accelerator Laboratory P. O. Box 500, Batavia, Illinois 60510

December 23, 1987

Abstract

We present the results of a full calculation of the QCD $O(\alpha_S^3)$ radiative corrections to the total cross section for the production of a heavy quark pair. We find large contributions for parton sub-energies near threshold and well above threshold. The implications for the production of top and bottom quarks at collider energies are discussed.

NPB303 (1988) 607 1218 citations

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

on the very same day ...

CERN-EP/87-230 December 23rd, 1987

A MEASUREMENT OF THE SPIN ASYMMETRY AND DETERMINATION OF THE STRUCTURE FUNCTION 8, IN DEEP INSLASTIC MUON-PROTON SCATTERING

The European Muon Collaboration

ABSTRACT

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (.01 $\lt x \lt 0.7$). The spin dependent structure function $g(x)$ for the proton has been determined and its integral over x found to be $0.114 \pm 0.012 \pm 0.026$, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of s_1 for the neutron. These values for the integrals of s_1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.

PLB206 (1988) 364 1533 citations

tremendous exp. efforts in the past 25+ years

SLAC E142, E143, E154, E155

CERN

EMC, SMC, **COMPASS**

JLab Hall A, CLAS

BNL

PHENIX, STAR

pp collisions at 200 & 500 GeV

^{11\$}

helicity parton densities
$$
\frac{|p_+ + \sum_{i=1}^{p_+} x_i|^2 - |p_+ + \sum_{i=1}^{p_-} x_i|^2}{\sum_{i=1}^{p_-} x_i}
$$

\ndefined as matrix elements of bi-local operators on the light-cone, e.g.:
\n
$$
\Delta q(x) = \frac{1}{4\pi} \int dy^{-} e^{iy^{-}x} P^+ \langle P, S | \overline{\Psi}_q(0, y^-, \vec{0}) \gamma^+ \gamma_5 \mathcal{F} \Psi_q(0) | P, S \rangle
$$

\nFourier transform such that quark and x⁺ = 0 and x⁻y
\ncarries x P^{*}
\nwe need a "gauge link" for a gauge invariant definition:
\n
$$
\mathcal{F} = \mathcal{P} \exp \left(-ig \int_0^{y^-} dz^{-} A_a^+(0, z^-, \vec{0}) T_a \right)
$$

\n("irrelevant" here, but plays a major role for transverse polarization)
\n
$$
\Delta g(x) = \frac{1}{4\pi x P^+} \int dy^{-} e^{iy^{-}x} P^+ \langle P, S | F_a^{+j}(0, y^-, \vec{0}) \mathcal{F} \mathcal{F}_{+j}(0) | P, S \rangle
$$

\ncompicates connection with S_g
\n(local operator only in A⁻¹O gauge)
\n(local operator only in A⁻¹O gauge)
\n
$$
\Delta g(x) = \frac{1}{4\pi x P^+} \int dy^{-} e^{iy^{-}x} P^+ \langle P, S | F_a^{+j}(0, y^-, \vec{0}) \mathcal{F} \mathcal{F}_{+j}(0) | P, S \rangle
$$

DSSV analysis - overview

DSSV: de Florian, Sassot, MS, Vogelsang; PRL101 (2008) 072001; PRD80 (2009) 034030

1st global QCD analysis of polarized PDFs; consistently performed at NLO

flexible functional form $x \Delta f_j(x, 1 \text{ GeV}) = N_j x^{\alpha_j} (1-x)^{\beta_j} \left[1 + \kappa_j \sqrt{x} + \gamma_j x\right]$ possible nodes

assumptions on parameter space avoided as much as possible fit respects, however, constraints on 1st moments $\frac{\Delta u_{\rm tot} - \Delta d_{\rm tot} = (F + D)[1 + \varepsilon_{\rm SU(2)}]}{\Delta u_{\rm tot} + \Delta d_{\rm tot} - 2\Delta s_{\rm tot} = (3F - D)[1 + D]$ small

excellent description of world data

estimates of PDF uncertainties with Lagrange multipliers & Hessian method

other recent fits: LSS (Leader, Sidorov, Stamenov); BB (Blumlein, Bottcher);

NNPDF (Neural Network PDF Collaboration, R.D. Ball et al.)

results will be shown along the way

emerging picture from DSSV analysis in 2008/09

a closer look: valence quark PDFs

1st hints at non-trivial sea polarizations

indications for an SU(2) breaking of light polarized u,d sea

 $\begin{array}{l} \Delta \bar{u}>0\ \Delta \bar{d}<0 \end{array}$

- similar size than in unpol. case
- **E** driven by SIDIS h^{\pm} , π^{\pm} data
- still large uncertainties

nany models give comparable results

large-N_c, chiral quark models, meson cloud, Pauli blocking, ...

Thomas, Signal, Cao; Holtmann, Speth, Fassler; Diakonov, Polyakov, Weiss; Schafer, Fries; Kumano; Wakamatsu; Gluck, Reya; Bourrely, Soffer, …

strangeness conundrum

striking result, but relies on

- **E** kaon fragmentation **Q: how reliable ?** more data available soon (BELLE, COMPASS, HERMES)
- unpolarized PDFs **Q: how well do we know s(x) ?** HERMES result for s(x) does not agree well with CTEQ
- SU(3) breaking uncertainties **Q: sizable ?**

needs further studies exp. & theory !

 aside: Δs also small in lattice computations Bali, Collins, ...

Lipkin; Zhu, Puglia, Ramsey-Musolf; Savage, Walden; …

INTERLUDE: FRAGMENTATION

fragmentation functions: overview

crucial for pQCD interpretation (factorization) of all data with detected (identified) hadrons, e.g., SIDIS (HERMES, COMPASS), $pp \rightarrow \pi X$ (PHENIX, ALICE, ...)

observation: all FFs based only on e⁺e⁻ (LEP) data do a bad job here

some properties of Di h(z,μ) [very similar to PDFs]**:**

- non-perturbative but universal; pQCD predicts μ–dep.
- describe the collinear transition of a parton "i" into a massless hadron "h" carrying fractional momentum z quark/gluon

• bi-local operator: $D(z)\simeq \int dy^- e^{iP^+/zy^-}\text{Tr}\gamma^+\braket{0|\psi(y^-)(hX)\braket{hX}\overline{\psi}(0)\ket{0}}$ Collins, Soper '81, '83 !!!!!!!!!!! no inclusive final-state

no local OPE --> no lattice formulation

also: power corrections are much less developed and entwined with mass effects unlike for pdfs

DSS analysis: overview

D. de Florian, R. Sassot, MS PRD 75 (2007) 114010 **76 (2007) 074033**

goal: provide NLO (LO) sets for pions, kaons, protons, charged hadrons **From a global fit to eteth, ep, and pp data on 1-hadron production**

P requires a flexible functional form

$$
D_i^h(z, 1 \,\text{GeV}) = N_i z^{\alpha_i} (1-z)^{\beta_i} \left[1 + \gamma_i (1-z)^{\delta_i} \right]
$$

The try to avoid assumptions on paramater space if possible

SU(2), SU(3) breaking: $D_{d+\bar{d}}^{\pi^+} = ND_{u+\bar{u}}^{\pi^+}$ $D_s^{\pi^+} = D_{\bar{s}}^{\pi^+} = N'D_{\bar{u}}^{\pi^+}$

only normalization shifts can be fitted

but data do not discriminate between other unfavored FFs:

 $D_{\bar{u}}^{\pi^+} = D_{d}^{\pi^+}$ $D_{\overline{u}}^{K^+} = D_s^{K^+} = D_{\overline{d}}^{K^+} = D_{\overline{d}}^{K^+}$

I like in PDF fits we allow for

- relative normalizations/shifts of data sets
- cuts: z > 0.05 pions, z > 0.1 otherwise
- extra "TH errors": scale uncertainty (pp); flavor tag; bin size, …

good description of SIDIS multiplicities

other recent fits of NLO FFs

AKK08: Albino, Kniehl, Kramer || HKNS: Hirai, Kumano, Nagai, Sudoh

ete⁻ data only impose isospin sym. for pions Hessian method for uncertainties

 e+e- & pp data e+e impose isospin sym. for pions fit hadron masses large-z resummations mass corrections (ad hoc for pp) Hessian method for uncertainties

comparison of pion FFs

upcoming precision etet data from B factories

HELICITY PDFS (II) SOME RECENT DEVELOPMENTS

meanwhile, new data became available ...

- how well are we doing ?
- refit/new analysis necessary ?
- impact on uncertainties ?

- **DIS**: A_1 ^p from COMPASS arXiv:1001.4654
- •SIDIS: A_{1,d}π,K from COMPASS arXiv:0905.2828
- **SIDIS:** $A_{1,p}^{\pi,k}$ from COMPASS arXiv:1007.4061
	- **extended x coverage** w.r.t. HERMES

 \checkmark DSSV does a very good job: 15 points, χ^2 = 14.2

29\$

LSS Leader, Sidorov, Stamenov analysis arXiv:1010:0574

outcome very similar to DSSV analysis within uncertainties

BB Blumlein/Bottcher analysis

arXiv:1005:3113

NNPDF Neural Network PDF Collaboration analyses arXiv:1007:0351

- novel way to estimate PDF uncertainties • successfully applied to unpolarized PDFs • statistical approach based on large number of replicas -> clear way to "define" errors • "issues": over-learning (?); no central fit,
	- need average over 100-1000 replicas

a full polarized PDF analysis is work in progress

As revisited: impact of COMPASS data

current value for ΔΣ strongly depends on assumptions on low-x behavior of Δs

- but large negative 1st moment entirely driven by assumptions on SU(3) [F,D values]
- caveat: dependence on FFs

$$
R_{SF} \equiv \frac{\int D_{\bar{s}}^{K^{+}}(z)dz}{\int D_{u}^{K^{+}}(z)dz}
$$

Δs : can we blame it on the fragmentation fcts?

indeed, flavor decomposition strongly depends on fragmentation functions different FFs **- a** different results but wrong FFs **- and providing results** recently proposed as a "solution" to the "strange quark puzzle": Leader, Sidorov, Stamenov arXiv:1103.5979

find: only DSS FFs describe underlying unpol. cross sections in the relevant kinematics

of course, this does not guarantee that we extracted the right Δs: more data are needed

Δg : where are we now - what to expect

inclusive pions & jets remain to be the bread & butter probes

jet/hadron correlations essential to cover smaller x

straightforward to analyze in global fits

"soon" we expect to have:

- DSSV 2.0 global analysis based on new world data
- reduced uncertainties on Δg in current x range
- possibility of a node further scrutinized "evidence" may become statistically significant or not
- extend x-range towards somewhat lower x 500 GeV running & particle correlations

full 1st moment (proton spin sum) will have smaller but still significant uncertainties from unmeasured small x region

Δg - latest results from RHIC

we continuously make progress on Δg: interesting trends in preliminary run-9 data

Δg - possible impact of STAR run 9 data

 Δg - PHENIX run 9 data

still zero A_{LL} but compatible with STAR (PHENIX probes somewhat lower values of x)

comparison: DSSV vs. LSS'10 gluon

Leader, Sidorov, Stamenov

- LSS fit based on latest DIS/SIDIS data only
- resulting quark PDFs largely a carbon-copy of DSSV
- **striking**: also gluon very similar (node!) but w/o using any RHIC pp data

△g and the relevance of RHIC data

- RHIC pp data clearly needed (current DIS+SIDIS data alone do not really constrain Δg)
- new (SI)DIS data do not change much for Δg
- trend for positive Δq at large \times (as before)

Ag from fixed target experiments

HELICITY PDFS AND OAM

helicity sum rule revisited

the decomposition of the nucleon spin also depends on the resolution:

$$
S_z^p = \frac{1}{2} = \frac{1}{2}\Delta\Sigma(\mu^2) + \Delta g(\mu^2) + L_q(\mu^2) + L_g(\mu^2)
$$

where the flavor singlet $\Delta \Sigma$ sums up all quark spin contributions

$$
\Delta \Sigma(\mu^2) \equiv \int_0^1 [\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}](x, \mu^2)
$$

scale evolution of 1^{st} moments $\Delta \Sigma$ and Δg predicted by DGLAP:

$$
\text{at } \text{LO} \ \frac{d}{d \ln(\mu^2)} \left(\frac{\Delta \Sigma}{\Delta g}\right) = \frac{\alpha_s}{2\pi} \left(\begin{array}{cc} 0 & 0 \\ \frac{3}{2}C_F & \frac{1}{2}\beta_0 \end{array}\right) \left(\frac{\Delta \Sigma}{\Delta g}\right)
$$

• the quark spin contribution is scale independent at lowest order

• the gluon evolves logarithmically; find: $\alpha_s(\mu^2)\Delta g(\mu^2)\rightarrow {\rm const} \, {\rm as} \, \mu^2\rightarrow \infty$

helicity sum rule revisited

why $\Delta\Sigma(\mu^2)$ = const at LO ?

Kodaira, …

scale evolution of angular momentum

what about the scale dependence of orbital angular momentum?

total angular momentum conservation in parton-parton splittings necessarily implies presence of orbital angular momentum (OAM):

 $2N_c$

• used to derive evolution equations for OAM at LO

Ji, Tang, Hoodbhoy

• LO asymptotic behavior of $J_{q,q}$

fir

$$
J_q = L_q + \frac{1}{2} \Delta \Sigma \xrightarrow{\mu \to \infty} \frac{1}{2} \frac{3N_f}{16 + 3N_f}
$$

Find

$$
J_g = L_g + \Delta g \xrightarrow{\mu \to \infty} \frac{1}{2} \frac{16}{16 + 3N_f}
$$

share of nucleon spin between quarks and gluons same as for nucleon momentum

DSSV **best fit** has the property that proton spin is almost entirely OAM for all Q2

$$
\text{recall (at LO)} \quad \frac{d}{d \ln(\mu^2)} \left(\frac{\Delta \Sigma}{\Delta g}\right) = \frac{\alpha_s}{2\pi} \left(\begin{array}{cc} 0 & 0\\ \frac{3}{2}C_F & \frac{1}{2}\beta_0 \end{array}\right) \left(\frac{\Delta \Sigma}{\Delta g}\right)
$$

in general, Δg evolves logarithmically but there is a "static solution" (in LO)

FUTURE AVENUES RHIC & OPPORTUNITIES AT AN EIC

Δg - further improvements from RHIC?

important to measure A_{LL} precisely also at large p_T (where gg scattering is small)

- gg scattering -> sign of Δ g at large x
- expect rise a large p_T due to large $\Delta q/q$ at large x (as extracted from DIS)

current determinations of Δg from pions and jets is based on the **same** partonic hard scattering processes

• with sufficient luminosity we can probe Δq in other, *independent* channels

rare probes

- \checkmark much smaller number of subprocesses
- \checkmark photons sensitive to sign of Δg
- \checkmark different hard scattering dynamics

crucial in understanding spin-dep. QCD hard scattering test idea of factorization and universality

Δg from prompt photons ?

- only probe in pp which provides sensitivity to sign of Δg at small p_T (i.e. small x!)
- requires a significant integrated luminosity **(0.5 ÷ 1 fb-1)** to make an impact
- straightforward to include in global QCD analysis; NLO corrections known
- γ-jet correlations would allow for detailed mapping of x dependence

Ag from heavy flavors?

u, d quarks from W boson production

key measurement at RHIC

based on parity violation: W's couple only to one parton helicity

500 GeV program started in 2009 - 1st W bosons seen at RHIC!

PHENIX arXiv:1009.0505 **STAR** arXiv:1009.0326

• no impact on fits yet "proof of principle"

Δq 's - what do we expect to learn?

strong sensitivity to ∆*u*¯ [∆] ¯ limited sensitivity to *^d* can we flip u <-> d around?

running with polarized 3He (= neutron target) would be an option **53\$**

Δs from spin transfer to Λ baryons

idea: • study helicity transfer to Λ in $\vec{p}p \rightarrow \vec{\Lambda}X$ (preferably at forward η where x_1 is large)

- use self-analyzing decay of Λ to determine its polarization
- quark model: Λ spin predominantly carried by s --> **sensitivity to Δs**

s-dominance perhaps as naïve as proton spin in quark model

theory prerequisites: • reliable NLO sets of D_i^ and ΔD_i^ FFs

AKK: Albino et al.

DSV: de Florian, MS, Vogelsang

updates needed don't describe STAR data

DSV: de Florian, MS, Vogelsang sparse data; updates desirable **3 models for ΔDi considered**

• feed-down from hyperon weak decays; effect on polarization?

• compute helicity-transfer subprocesses at NLO difficult – many more processes than pion production; work in progress

the good news: "proof of principle" by STAR

best shot at Δs at RHIC needs also some theoretical work though

opportunities for spin physics studies at an EIC

so far, our knowledge on polarized (SI)DIS is based on fixed target experiments many "weak spots" & room for new "spin surprises":

small x region: crucial for all sum rules ("proton spin", "Bjorken", …) **unknown**

Filavor separation: SU(2), SU(3) breaking, strangeness largely unknown

- electroweak effects/structure fcts. **never measured**
- **full understanding of transverse spin phenomena still in early stages**
- issues with factorization for Sivers fct. **intriguing**
- role of orbital angular momentum **largely unknown**
- plus: spin phenomena in diffraction, photoproduction, hadronization, …

 repeat full HERA program in polarized high energy ep scattering with good particle ID & ability to measure exclusive processes

detailed 500+ pages write-up on EIC Science available **arXiv:1108.1713**

Δg at small x from QCD scaling violations

kinematic reach of an EIC

58

what can be achieved for Δg ?

how effective are scaling violations ? quantitative studies based on simulated data for eRHIC stage-1: 5 x (50, **100, 250**, 325) GeV Sassot, MS

expect to determine $\int^1\!dx\,\Delta g(x,Q^2)$ at about 10% level (more detailed studies under way) $dx \Delta g(x, Q^2)$ 0 kinematic reach down to $x = 10^{-4}$ essential to determine integral reliably

similar improvements expected for u.d.s sea quarks

key: precision SIDIS data

1st quantitative study with realistic exp. cuts

- very encouraging
- similar results for d and s quarks
- need to study also 0.0001-1 range
- need to translate profiles into errors on x-shape

electroweak effects - cont'd

also related by **isospin rotation** (no positron beam required) most promising at an EIC: charged current str. fcts. details: INT EIC report **CC:** $g_1^{W^+} = \left(\Delta u + \Delta \bar{d} + \Delta \bar{s} + \Delta c \right)$ $g_1^{W^+} = \left(\Delta\bar{u} + \Delta d + \Delta s + \Delta\bar{c}\right)$ $g_5^{W^+} = (\Delta \bar{u} - \Delta d - \Delta s + \Delta \bar{c})$ $g_5^{W^-} = (-\Delta u + \Delta \bar{d} + \Delta \bar{s} - \Delta c)$ require a positron beam not necessarily polarized

• NLO QCD corrections all available

de Florian, Sassot; MS, Vogelsang, Weber; van Neerven, Zijlstra; Moch, Vermaseren, Vogt

- can be easily put into global QCD analysis
- enough combinations for a flavor separation at $Q \approx M_W$ (no fragmentation) but kinematically limited to medium-to-large x region

novel Bj – type sum rules: MS, Vogelsang, Weber

details: PRD53 (1996) 138

e.g.
$$
g_5^{W^-,p} - g_5^{W^+,n} = \left(1 - \frac{2\alpha_s}{3\pi}\right)g_A
$$

- probes again Δq_3
- reach to small x limited extrapolation uncertainties?

charm contribution to pol. DIS: g_1^c

- so far safely ignored: \ll 1% to existing g_1 fixed-target data
- numerical relevance at an EIC depends strongly on size of Δg
- need massive Wilson coefficients (charm not massless for most of EIC kinematics) so far only known to LO (NLO is work in progress Kang, MS)

some expectations: (need to be studied in more detail)

aside: CC charm production probes strangeness PDF

summary & outlook

DSSV analysis of 2008 still in good shape

no official update imminent need to update DSS fragmentation functions first COMPASS SIDIS data nicely described new RHIC run9 data may prefer somewhat larger Δg

ready to include di-jet, W boson data, … at NLO as they become available

for the time being, flavor separation depends largely on SIDIS data important to further improve fragmentation functions; DSS global analysis efforts ongoing

to address outstanding questions access to small x is required

having an EIC in the future is essential (the sooner the better)

its c.m.s energy must be sufficiently large to reach $x \approx 10^{-4}$ we will need to control systematic uncertainties with unprecedented accuracy **65\$**