Exclusive Pseudoscalar Meson Electroproduction

Paul Stoler

Rensselaer Polytechnic Institute

The CLAS Collaboration

The landscape

vector mesons

t-slopes vs Q^2 and W

Stoler Seattle 2/15/12

JLab

Physics Motivation:

General Goals:

Assess and constrain QCD based models of the nucleon by means of quark flavor selectivities and spin and parity properties of mesons.

Assess the applicability of factorization: GPD/hard kernal handbag mechanism.

A specific goal:

Determine the role of non-leading terms in factorization Exploit the unique sensitivity to transversity GPDs

Modus Operandi

- Measure structure functions and asymmetries over as wide a kinematic range in Q^2, x_B, t as possible.
- Make continuous connection between low Q^2 region where hadron based models are applicable to higher Q^2 region where QCD based models appear to be applicable
- Guide the progress in theory with new data.

Recap P. Krolls, S. Luiti

$$\begin{split} \sigma \sim \left| \mathcal{M} \right|^2 \\ \mathcal{M} &\in \left\langle F \right\rangle = \int dx \mathcal{H}_{\mu'\lambda'\mu'\lambda'} F \qquad \left(F = \text{GPD} \right) \\ \mathcal{H}_{\mu'\lambda'\mu'\lambda'} &= \int d\mathbf{b} \, d\tau \, \hat{\Psi}(\tau, \mathbf{b}) \, \mathcal{F}_{\mu'\lambda'\mu'\lambda'} \, \alpha_S e^{-S(\tau, \mathbf{b}, Q^2)} \end{split}$$

Dominant GPDs

Longitudinal
$$\sigma_L \sim |\mathcal{M}_L|^2 \sim \langle \tilde{H} \rangle, \langle \tilde{E} \rangle$$

Transverse $\sigma_T \sim |\mathcal{M}_T|^2 \sim \langle H_T \rangle, \langle \bar{E}_T \rangle$
Interference $\sigma_{TT} \sim |\mathcal{M}_{TT}|^2 \sim \langle \bar{E}_T \rangle$
 $\sigma_{LT} \sim |\mathcal{M}_{LT}|^2 \sim \langle H_T \rangle, \langle \tilde{E} \rangle$

RPI

The Exclusive π and η Program (so-far)

CLAS6 Results:	CLAS12 Proposed:	CLAS12 Pending:
π^{0} $\sigma_{u} = \sigma_{T} + \varepsilon \sigma_{L}, \ \sigma_{TT}, \ \sigma_{LT}$ BSA $A_{BP} \sim \sigma'_{LT}$ π^{+} $\sigma_{u} = \sigma_{T} + \varepsilon \sigma_{L}, \ \sigma_{TT}, \ \sigma_{LT}$ BSA $A_{BP} \sim \sigma'_{LT}$ η $\sigma_{u} = \sigma_{T} + \varepsilon \sigma_{L}, \ \sigma_{TT}, \ \sigma_{LT}$ BSA $A_{BP} \sim \sigma'_{LT}$	π^{0} $\sigma_{u} = \sigma_{T} + \varepsilon \sigma_{L}, \sigma_{TT}, \sigma_{LT}$ $L/T \sigma_{T}, \sigma_{L}$ $BSA A_{BP} \sim \sigma'_{LT}$ η $\sigma_{u} = \sigma_{T} + \varepsilon \sigma_{L}, \sigma_{TT}, \sigma_{LT}$ $L/T \sigma_{T}, \sigma_{L}$ $BSA A_{BP} \sim \sigma'_{LT}$	π^{+} $\sigma_{u} = \sigma_{T} + \varepsilon \sigma_{L}, \sigma_{TT}, \sigma_{LT}$ BSA $A_{BP} \sim \sigma'_{LT}$ η, π^{0}, π^{+} Trans TSA, Long TSA
Hall A Data: $\pi^0 \sigma_u = \sigma_T + \varepsilon \sigma_L, \sigma_{TT}, \sigma_{LT}$ Hall C data: π^+ Hermes Data: π^+ Trans. Tgt. Asymm. Hall C Proposed: $\pi^0, \pi^+ \sigma_T / \sigma_T$		

CLAS 6 Experiments π^0 , η , π^+ - structure functions and BSA

RPI

JLab

$Cos\phi$ dependence $\rightarrow \sigma_T + \varepsilon\sigma_L, \sigma_{TT}, \sigma_{LT}$

Structure Functions

Curves: JM Laget, Regge

Structure Functions

RPI

Stoler Seattle 2/15/12

JLab

J. M. Laget, Phys. Lett. B 695, 199 (2011)

JLab

RPI

Stoler Seattle 2/15/12

Transverse Amplitudes

Nucleon helicity non-flip.

$$M_{0+++}^{U} = \sqrt{\pi \alpha_{e} \frac{\mu_{\pi}^{2}}{Q^{4}} \frac{t'}{8m^{2}} \left\langle \bar{E}_{T} \right\rangle_{3}} \quad l = 1$$

Nucleon helicity flip.

$$M_{0-++}^{U} = \sqrt{(1-\xi^2)\frac{\pi\alpha}{2}} \frac{\mu_{\pi}^2}{Q^4} \left\langle H_T \right\rangle_3 \quad l = 0$$

$$\frac{d\sigma_{TT}}{dt} = \frac{1}{2\kappa} \left| M_{0+++}^{U} \right|^{2} = \frac{4\pi\alpha_{e}}{8\kappa} \frac{\mu_{\pi}^{2}}{Q^{4}} \frac{t'}{8m^{2}} \left| \left\langle \bar{E}_{T} \right\rangle_{3} \right|^{2}$$

$$\frac{d\sigma_{T}}{dt} = \frac{1}{2\kappa} \left| M_{0-++}^{U} \right|^{2} - \frac{1}{\kappa} \left| M_{0+++}^{U} \right|^{2} = \frac{4\pi\alpha_{e}}{2\kappa} \frac{\mu_{\pi}}{Q^{4}} \left[(1-\xi^{2}) \left| \left\langle H_{T} \right\rangle_{3} \right|^{2} - \frac{t'}{8m^{2}} \left| \left\langle \bar{E}_{T} \right\rangle_{3} \right|^{2} \right]$$

$$l = 0 \qquad l = 1$$

G-K Increase G-K: Increase H_T by ~10% Dereade \overline{E}_T by ~10%

JLab

η Beam Spin Asymmetry

metry et al)

JLab

Backward π electroproduction - TDAs

J.P. Lansberg, B. Pire and L. Szymanowski

Stoler Seattle 2/15/12

JLab

RPI

$\eta \, electroproduction - CLAS6$

t slopes

JLab

$\eta \, electroproduction - CLAS6$

Ratio η/π^0

Stoler Seattle 2/15/12

JLab

η and π^0 Beam Spin Asymmetry

 η (B. Zhao et al.) π^{0} (R. Di Masi et al.)

J. M. Laget, Regge

S.V. Goloskokov, P. Kroll

RPI

Simulations for CLAS12

JLab

MC simulate π^0

 $\sigma = A(1 + B\cos 2\phi + C\cos \phi)$

B=0.05, C=0.2

B,C~10%

Stoler Seattle 2/15/12

Single Spin Beam Asymmetry

 $A = A \sin \phi / (1 + B \cos 2\phi + C \cos \phi)$

 $-t=0.5 \text{ GeV}^2/c^2 x_B=0.5$

Note difference in Q² and vertical scale

Stoler Seattle 2/15/12

PR12-11-102: Map σ_L and σ_T in π^o production

- GPD studies with pions require understanding relative contributions of $\sigma_{\rm L}$ and $\sigma_{\rm T}$
 - In the limit where GPDs can be studied, $\sigma_L \sim Q^{-6}$, $\sigma_T \sim Q^{-8}$
- Is the relative contribution of σ_L in π° production significant?
 - 12 GeV: Opportunity to compare to separated σ_L and σ_T in π^+ production (E12-07-105)
 - Constrain the size of non-pole contributions
 - $\circ~$ If smaller than anticipated may extract F_{π} to higher Q^2

PR12-11-102: Separated σ_L , σ_T for studies of scaling in neutral systems and relative importance of pole and non-pole contributions

PR12-11-102: z-dependence of $R=\sigma_L/\sigma_T$

• Need to know z- and Q²- dependencies of $R = \sigma_L / \sigma_T$ for π^o in addition to π^+, π^- for proper analysis of TMD measurements and corresponding angular asymmetries

PR12-11-102: precision $R=\sigma_L/\sigma_T$ data in transition from semi-inclusive deep inelastic scattering to exclusive scattering ³¹

PR12-11-102: π° L/T facility in Hall C

- New PbWO₄ calorimeter facility provides π° detection in Hall C
 - Initially for PR12-11-102
- Also provides opportunities to extend separations program for DVCS
 - PR12-11-102 provides initial separation for DVCS
 - Extensions to a broader kinematic range anticipated

MRI proposal submitted Jan 2012: CUA (Tanja Horn), ODU (Charles Hyde), FIU (Joerg Reinhold, Pete Markowitz)