INT, Seattle, 6-17 February 2012 Orbital Angular Momentum in QCD

Interpretation & models of QCD energy-momentum tensor

Peter Schweitzer

University of Connecticut

based on works with: Manuel Mai (UConn, Heidelberg, Yale), Matt Neubelt (UConn graduating senior) forthcoming (2012) K. Goeke, M. V. Polyakov, A. Silva et al PRD75 (2007) 094021, PRC75 (2007) 055207, NPA794 (2007) 87 PS, Boffi, Colli, Radici PRD66 (2002) 114004, PRD 67 (2003) 114022

Overview:

- introduction: what do EMT and d_1 tell us about the nucleon?
- rely on insights from models (consistency of models!)
- chiral quark soliton, Skyrme, bag model
- stability and sign of D-term d_1
- lesson from *Q*-balls
- conclusions

1. Introduction How to learn about nucleon? $|N\rangle =$ strong interaction particle.

em:
$$\partial_{\mu} J_{em}^{\mu} = 0$$
 $\langle N' | J_{em}^{\mu} | N \rangle \longrightarrow Q, \mu, ...$
weak: PCAC $\langle N' | J_{weak}^{\mu} | N \rangle \longrightarrow g_A, g_p, ...$
gravity: $\partial_{\mu} T_{grav}^{\mu\nu} = 0$ $\langle N' | T_{grav}^{\mu\nu} | N \rangle \longrightarrow M, J, d_1, ...$
^{1st} global properties: $Q_{prot} = 1.602176487(40) \times 10^{-19}C$
 $\mu_{prot} = 2.792847356(23)\mu_N$
 $g_A = 1.2694(28)$
 $g_p = 8-12$
 $M = 933.272013(23) \text{ MeV}$
 $J = \frac{1}{2}$
 $d_1 = ???$
 2^{ad} partonic structure: can access from GPDs in hard exclusive reactions
... ... Müller et al, Ji, Radyushkin, Collins et al 1990s
... only way for EMT form factors

How do EMT form factors look like?

• insights from models, lattice QCD, χ PT (see below)

Highlight number 1:

• spin decomposition! Xiang-Dong Ji, PRL 78 (1997) 610 discussions in literature, at this workshop, ...

What is d_1 ?

- *last unknown* global nucleon characteristics (certainly not last. But interesting!)
- what's the physical meaning? M.V.Polyakov, PLB 555, 57 (2003)
- which value does it have? (models, lattice, χPT)

Recall definition of 'unpolarized GPDs'

(everything starts & ends with GPDs)

$$\int \frac{\mathrm{d}\lambda}{2\pi} e^{i\lambda x} \langle N(P') | \overline{\psi}_q(-\frac{\lambda n}{2}) n_\mu \gamma^\mu [-\frac{\lambda n}{2}, \frac{\lambda n}{2}] \psi_q(\frac{\lambda n}{2}) | N(P) \rangle$$

= $\overline{u}(p') n_\mu \gamma^\mu u(p) H^q(x, \xi, t) + \overline{u}(p') \frac{i\sigma^{\mu\nu} n_\mu \Delta_\nu}{2M_N} u(p) E^q(x, \xi, t)$

 $P_{av} = (P' + P)/2$ $\Delta = P' - P$ $t = \Delta^2$ $\xi = (n \cdot \Delta)/(n \cdot P_{av})$ n = light-like vector $k = xP_{av}$ analog gluon GPDs

(scale dependence not indicated)

Polynomiality — Lorentz invariance, time-reversal, hermiticity in QCD

Mellin moments of $H^q(x,\xi,t)$, $E^q(x,\xi,t) =$ polynomials in ξ^2

even N:

$$\int dx \, x^{N-1} \, H^q(x,\xi,t) = h_0^{q(N)}(t) + h_2^{q(N)}(t) \, \xi^2 + \ldots + h_N^{q(N)}(t) \, \xi^N$$

$$\int dx \, x^{N-1} \, E^q(x,\xi,t) = e_0^{q(N)}(t) + e_2^{q(N)}(t) \, \xi^2 + \ldots + e_N^{q(N)}(t) \, \xi^N$$

with $h_N^{q(N)}(t) = -e_N^{q(N)}(t)$ for spin $\frac{1}{2}$ particle

odd N: highest power is ξ^{N-1}

minimal requirement no. 1 for a consistent model

x-dependence of
$$H^{q}(x,\xi,t), E^{q}(x,\xi,t)$$

infinitely many form factors:
N = 1: $h_{0}^{f(1)}(t), e_{0}^{f(1)}(t)$
N = 2: $h_{0}^{f(2)}(t), h_{2}^{f(2)}(t), e_{0}^{f(2)}(t)$
N = 3: $h_{0}^{f(3)}(t), h_{2}^{f(3)}(t), e_{2}^{f(3)}(t), e_{0}^{f(3)}(t)$
N = 4: $h_{0}^{f(4)}(t), h_{2}^{f(4)}(t), h_{4}^{f(4)}(t), e_{2}^{f(4)}(t), e_{0}^{f(4)}(t)$
N = 5: $h_{0}^{f(5)}(t), h_{2}^{f(5)}(t), h_{4}^{f(5)}(t), e_{4}^{f(5)}(t), e_{2}^{f(5)}(t), e_{0}^{f(5)}(t)$
N = 6: $h_{0}^{f(6)}(t), h_{2}^{f(6)}(t), h_{4}^{f(6)}(t), h_{6}^{f(6)}(t), e_{4}^{f(6)}(t), e_{2}^{f(6)}(t), e_{0}^{f(6)}(t)$

 $h_N^{f(N)}(t)$ (N = 2, 4, 6, ...) Mellin moments of D-term (Polyakov, Weiss 1999)

$$N = 1$$
: electromagnetic form factors Hofstadter et al, 1950s ...
 $\sum_{q} e^{q} \int dx \ H^{q}(x,\xi,t) = F_{1}(t) \qquad \sum_{q} e^{q} \int dx \ E^{q}(x,\xi,t) = F_{2}(t)$ what did we learn?

e.g. $G_E(t) = F_1(t) + \frac{t}{4M_N^2} F_2(t) = \int d^3 r \rho_E(r) e^{i\vec{q}\cdot\vec{r}}$ $(t = -\vec{q}^2, \text{ "textbook interpretation"})$

 $G_E^p(t) \simeq 1/(1 - t/m_{dip}^2)^2$, $m_{dip} = 0.84 \, {
m GeV}$, $G_E^n(0) = 0$

pion cloud:

spontaneous breaking of chiral symmetry

continued interest: JLab Hall A $G_E^n(t)$, Hall C Q-weak e.g. precise data at low t constrain physics at TeV scale (Young, Carlini, Thomas, Roche, PRL99 (2007) 122003)

Problem: <u>3D-charge distributions</u> (Miller, PRC 80 (2009) 045210) "text book" but rel. corrections

Solution: 2D-impact parameter space GPDs at $\xi = 0$ exact! momentum transfer \perp light-cone: $t = \Delta^2 = -\vec{\Delta}_{\perp}^2$ $H^{q}(x,b_{\perp}) = \int d^{2} \Delta_{\perp} e^{i \vec{\Delta}_{\perp} \vec{b}_{\perp}} H^{q}(x,0,-\vec{\Delta}_{\perp}^{2})$ k = xP $b_{\perp} = \text{impact parameter}$ b_{\perp} Matthias Burkardt, 2000 exact interpretation: N(P)probability $\longrightarrow \int \mathrm{d}x \, \mathrm{GPD}(x, b_{\perp}) = \rho_E(b_{\perp})$

$$G_E(t) = \int d^2 b_\perp \; oldsymbol{
ho}_E(b_\perp) \; e^{iec{\Delta}_\perp \, ec{b}_\perp}$$
 (Miller, Weiss, ... and later this week)

$$N = 2: \text{ energy-momentum tensor form factors}$$

$$\sum_{q} \int dx \ x \ H^{q}(x,\xi,t) = +M_{2}^{Q}(t) + \frac{4}{5} d_{1}^{Q}(t) \ \xi^{2}$$

$$\sum_{q} \int dx \ x \ E^{q}(x,\xi,t) = 2J^{Q}(t) - M_{2}^{Q}(t) - \frac{4}{5} d_{1}^{Q}(t) \ \xi^{2} \qquad \text{gluons analog}$$

we know:

 $M_2^Q(0) \approx 0.5$ at few GeV²: quarks carry half of nucleon momentum we would like to know ("highlight"):

how do quarks + gluons share nucleon spin? We need:

$$\sum_{q} \int dx \ x \ (H^{q} + E^{q})(x,\xi,t) = 2J^{Q}(t) \quad \text{and} \quad \lim_{t \to 0} J^{Q}(t) = J^{Q}(0) \quad \text{Ji, 1997}$$

other open questions:

What's the t-dependence of $M_2(t)$, J(t)? What is $d_1(t)$ good for?

$N = 3, 4, 5, \ldots$ further form factors

of what? Of operators $\bar{\psi}\gamma_{\mu_1}D_{\mu_2}D_{\mu_2}\dots D_{\mu_N}\psi$

scale dependent quantities

each contains information on a different aspect of nucleon

N = 1, 2 special

related to conserved (in QCD) currents global properties $Q,\,\mu,M_N,\,J,\,d_{1_\kappa}$

the "last" unknown

2. Energy momentum tensor $T^{\mu\nu}$

 $T^{\mu
u}$ fundamental object in field theory. In QCD $T^{Q,G}_{\mu
u}$ both gauge invariant

$$\langle P' | \mathbf{T}^{Q,G}_{\mu\nu\nu} | P \rangle = \bar{u}(P') \Big[M_2^{Q,G}(t) \frac{P_{\mu}P_{\nu}}{M_N} \\ + J^{Q,G}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M_N} \\ + d_1^{Q,G}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^2}{5M_N} \pm \bar{c}(t)g_{\mu\nu} \Big] u(p) \\ \underbrace{\qquad} \\ \mathcal{A}^{Q,G}(t) \frac{\gamma_{\mu}P_{\nu} + \gamma_{\nu}P_{\mu}}{2} \\ + B^{Q,G}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{4M_N} \\ + C^{Q,G}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^2}{M_N} \\ \Big]$$
 using Gordon identity equiv. decomposition:
$$M_2(t) = A(t) \\ 2J(t) = B(t) + A(t) \\ d_1(t) = 5C(t) \end{aligned}$$

identity

 $\bar{c}(t)$ because $\hat{T}^{Q,G}_{\mu\nu}$ not conserved separately, drops out from quark+gluon sum.

Properties of form factors

total $T_{\mu\nu} = T^Q_{\mu\nu} + T^G_{\mu\nu}$ conserved

$$M_{2}(t) = M_{2}^{Q}(t) + M_{2}^{G}(t),$$

$$J(t) = J^{Q}(t) + J^{G}(t),$$

$$d_{1}(t) = d_{1}^{Q}(t) + d_{1}^{G}(t) \text{ scale independent (like } F_{1}(t), F_{2}(t))$$

with

$$M_2^Q(0) + M_2^G(0) = 1$$
 quarks + gluons carry 100% of momentum

 $J^Q(0) + J^G(0) = \frac{1}{2}$ quarks + gluons make up the nucleon spin

$$d^Q_1(0) + d^G_1(0) \equiv d_1$$
 what is that?

what ever it is (see soon):

 $d_1(t)$ dictates asymptotics of unpolarized GPDs

(Goeke, Polyakov & Vanderhaeghen, Prog.Part.Nucl.Phys.47 (2001) 401)

What we (would like to) know

$$M^Q_2(0)=\int\!\mathrm{d}x\sum_q x H^q(x,0,0)\equiv\int\!\mathrm{d}x\sum_q x f^q_1(x)\sim 0.5$$
 at $\mu^2\sim$ few GeV²

half of momentum of (fast moving) nucleon carried by quarks, rest by gluons.

asymptotically
$$\mu \to \infty$$
 : $M_2^Q(0) = \frac{3n_f}{16+3n_f}$ and $M_2^G(0) = \frac{16}{16+3n_f}$ (Gross, Wilczek, 1974)

 $2J^Q(0) = \int dx \sum_q x(H^q + E^q)(x, 0, 0) =$ i.e. percentage of nucleon spin due to quarks?

asymptotically
$$\mu o \infty$$
 : $2J^Q(0) = rac{3n_f}{16+3n_f}$ and $2J^G(0) = rac{16}{16+3n_f}$ like M_2 (Ji, 1997)

Meaning of $d_1(t)$ (textbook interpretation ... Formulae nevertheless correct!!!) M.V.Polyakov, PLB 555, 57 (2003)

Go to Breit frame where $\vec{P}' = -\vec{P}$, i.e. E' = E and $\Delta^{\mu} = (0, \vec{\Delta})$.

Define static EMT: $T^Q_{\mu\nu}(\vec{r},\vec{s}) = \frac{1}{2E} \int \frac{\mathrm{d}^3 \vec{\Delta}}{(2\pi)^3} e^{i \vec{\Delta} \cdot \vec{r}} \langle P' | \hat{T}^Q_{\mu\nu} | P \rangle$

with $\vec{s} = \text{spin}$ vector of respective nucleon at rest.

Then (gluon analog):
$$J^Q(t) + \frac{2t}{3} J^{Q'}(t) = \int d^3 r \, e^{i \vec{r} \vec{\Delta}} \, \varepsilon^{ijk} \, s_i \, r_j \, T^Q_{0k}(\vec{r}, \vec{s})$$

$$d_1^Q(t) + \frac{4t}{3} d_1^{Q'}(t) + \frac{4t^2}{15} d_1^{Q''}(t) = -\frac{M_N}{2} \int d^3 r \, e^{i \, \vec{r} \, \vec{\Delta}} \left(r^i r^j - \frac{r^2}{3} \, \delta^{ij} \right) \, T_{ij}^Q(\vec{r})$$

$$M_2(t) - \frac{t}{4M_N^2} \left(\frac{M_2(t)}{2} - 2J(t) + \frac{4}{5} d_1(t) \right) = \frac{1}{M_N} \int d^3 r \, e^{i \, \vec{r} \, \vec{\Delta}} \, T_{00}(\vec{r}, \vec{s})$$

in last equation (which is quark+gluon) take $t \to 0$: $M_2(0) = \frac{1}{M_N} \int d^3r T_{00}(\vec{r}, \vec{s}) = 1$

with

$$\int d^3r T_{00}(\vec{r}) = M_N \quad \text{known}$$

$$J(0) = \int d^3 r \, \varepsilon^{ijk} \, s_i \, r_j \, T_{0k}(\vec{r}) = \frac{1}{2} \quad \text{known}$$

$$d_1(0) = -\frac{M_N}{2} \int d^3r \left(r^i r^j - \frac{r^2}{3} \delta^{ij} \right) T_{ij}(\vec{r}) \equiv \mathbf{d}_1 \quad \mathsf{New!}$$

for spin 0 or
$$rac{1}{2}$$
: $T_{ij}(ec{r})=oldsymbol{s}oldsymbol{(r)}igg(rac{r_ir_j}{r^2}-rac{1}{3}\delta_{ij}igg)+oldsymbol{p}(r)\,\delta_{ij}$

 $egin{aligned} p(r) & \text{distribution of $pressure$ inside hadron} \\ s(r) & \text{related to distribution of $shear forces} \end{aligned} \begin{aligned} & \longrightarrow & \text{``mechanical properties''} \\ \end{array}$

conservation of EMT

 $\partial^{\mu}T_{\mu\nu} = 0 \quad \Leftrightarrow \quad \nabla^{i}T_{ij}(\vec{r}) = 0 \quad \text{implies:} \quad \frac{2}{3}s'(r) + \frac{2}{r}s(r) + p'(r) = 0$

$$\rightarrow$$
 "stability condition" $\int_{0}^{\infty} dr r^2 p(r) = 0$

minimal requirement no. 2 for consistent model: stability condition

finally
$$d_1(t) = \frac{15 M_N}{2 t} \int d^3 r r^2 j_0(r \sqrt{-t}) p(r)$$

$$\rightarrow d_1$$
 vs. pressure: $d_1 = 5\pi M_N \int_0^\infty dr \ r^4 \ p(r)$

or
$$\longrightarrow d_1 = -\frac{1}{3} M_N \int d^3 r r^2 s(r)$$

What do we know about d_1 ?

• <u>pion:</u> $\frac{4}{5}d_1 = -M_2$ soft-pion theorems (M.V.Polyakov and C.Weiss, 1999)

• <u>nucleus</u> liquid drop model $d_1 < 0 \leftrightarrow$ "surface tension" (M.V.Polyakov, 2003) (explicit calculations V.Guzey, M.Siddikov, 2006)

<u>nucleon</u>

large N_c limit: $|d_1^u + d_1^d| = O(N_c^2) \gg |d_1^u - d_1^d| = O(N_c)$ chiral quark soliton model: $d_1^Q \approx -4$ (Petrov et al 1999, Kivel et al, high scale) χ PT (Chen, Ji 2001, Diehl Manashov, Schäfer 2005, Ando, Chen, Kao 2006, ...) lattice QCD at 2 GeV: $d_1^Q < 0$ (LHPC 2003, QCDSF 2004) chiral quark soliton model: $d_1 = -4.8$ (Goeke et al 2007, Wakamatsu) Skyrme model: $d_1 = -6.6$ (chiral limit, less with m_{π} Cebulla et al 2007) bag model: $d_1 = -1.4$ (Matt Neubelt, PS, New England APS Fall Meeting 2011) Q-balls: $d_1 < 0$ always (Manuel Mai, masters thesis 2009; Mai & PS forthcoming) **Observation:** d_1 seems always negative

Can we understand why?

Yes! (see models below)

When using models:

• minimal requirement no. 1: polynomiality (kinematics, Lorentz inv.)

$$\int \mathrm{d}x \; x^{N-1} \operatorname{GPD}(x,\xi,t) = a(t) \, \xi^0 + b(t) \, \xi^2 + c(t) \, \xi^4 \ldots + d(t) \, \xi^N \qquad \text{(even N)}$$

• minimal requirement no. 2: stability condition (dynamics!)

 $\int\limits_{0}^{\infty} \mathrm{d}r \; r^2 \, p(r) = 0$

3. Intuition on pressure, shear forces, d_1

"Liquid drop"

$$p(r) = p_0 \theta(R_d - r) - \frac{1}{3} p_0 R_d \delta(R_d - r)$$

$$s(r) = \gamma \delta(R_d - r)$$

$$\gamma = \frac{1}{2} p_0 R_d$$

$$= \text{surface tension (Kelvin, 1858)}$$

$$d_1 = -\frac{4}{3} \pi \gamma R_d^4$$

• $d_1^{
m nucleus} \propto A^{4/3}$ (since $R \propto A^{1/3}$, M.V.Polyakov, 2003)

- nuclei can be approximated as "liquid drops" (Guzey, Siddikov, 2006)
- nucleon is more diffuse, no edge. How does it look like?

3. Chiral quark-soliton model

Chiral action $S_{
m eff} = \int d^4x \, \overline{\Psi} (i \not\!\!\partial - M \, U^{\gamma_5} - m) \Psi$ with $U^{\gamma_5} = \exp(i \gamma_5 \tau^a \pi^a / f_\pi)$

- derived from instanton model of QCD vacuum Diakonov, Petrov 1984, ... ("instanton packing fraction" $\rho_{av}/R_{av} \sim \frac{1}{3}$ small, $\rho_{av} =$ instanton size, $R_{av} =$ instanton separation)
- M = 350 MeV, $\Lambda_{\text{cut}} \sim \rho_{\text{av}}^{-1} \sim 600 \text{ MeV}$, no adjustable parameters!
- integrate out quarks: $\mathcal{L}_{eff} = \frac{1}{4} f_{\pi}^2 \partial^{\mu} U \partial_{\mu} U^{\dagger} + Gasser-Leutwyler-terms + ...$ with all coefficients known.
- apply to the description of nucleon \rightarrow chiral quark soliton model Diakonov, Petrov, Pobylitsa 1988
- nucleon = soliton of chiral field U, in limit number of colors $N_c \rightarrow$ large Witten 1979

• interpolates: QCD
$$(q, \overline{q}, g) \longleftrightarrow$$
 model $(q, \overline{q}, \pi) \longleftrightarrow \chi$ PT (N, π)

Description of nucleon

Euclidean correlation function $\int \mathcal{D}\Psi^{\dagger} \int \mathcal{D}\Psi \int \mathcal{D}U J_N(T/2) J_N^{\dagger}(-T/2) e^{-S_{\text{eff}}} \sim e^{-M_N T} \text{ as } T \to \infty$

Solve in limit $N_c \rightarrow \text{large} \Rightarrow \text{minimize action/soliton energy } \delta M_N = 0$ yields 'self consistent' field $U_s = \exp(i\tau^a e_r^a P_s(r))$

$$\rightarrow M_N = N_c \sum_{\text{occupied}} (E_n - E_{n,0})_{\text{reg}}$$

 $H\phi_n = E_n \phi_n, \ H = -i\gamma^0 \gamma^k \partial_k + \gamma^0 M U^{\gamma_5} + \gamma^0 m$ $E_{n,0}$ eigenvalues of H_0 (*H* with $U^{\gamma_5} \to 1$)

Features:

- Field theory!
- theoretically consistent
- phenomenologically successful
- applications $\langle N' | \overline{\Psi}(0) \Gamma \Psi(z) | N \rangle = A \sum_{n} \overline{\phi}_{n}(0) \Gamma \phi_{n}(z) + \dots$

Applications of the model

- 'static properties' (baryon mass splittings, \ldots) $\sqrt{}$
- form factors (em, axial) up to $|t| \sim O(1 \, {
 m GeV}^2) \sqrt{}$
- $f_1^a(x)$, $g_1^a(x)$, $h_1^a(x)$ at $\mu \sim \rho_{av}^{-1} \sim 0.6 \text{ GeV}$ satisfy sum rules, positivity, inequalities!
- GPDs ('discovery of D-term') satisfy all requirements including polynomiality!!!
- EMT form factors same from $T_{\mu\nu}$ and GPDs! \checkmark

accuracy (10-30)% (higher orders in $1/N_c$, instanton vacuum) catches properties of nucleon due to chiral physics

Example:

 $f_1^{\overline{q}}(x)$ at $Q = 7.35 \,\mathrm{GeV}$

 $g_1^q(x)$ at low scale vs. GRSV

disconnected diagrams included!

(DPPPW, Wakamatsu et al) satisfactory!√ Many more examples.

Form factors of $T_{\mu\nu}$ in model

in model $T^Q_{\mu\nu}$ is total $T_{\mu\nu}$ (gluons suppressed in instanton vacuum) given by $\hat{T}_{\mu\nu} = \frac{1}{4} \bar{\psi}(x) \left(i\gamma^{\mu} \overrightarrow{\partial}^{\nu} + i\gamma^{\nu} \overrightarrow{\partial}^{\mu} - i\gamma^{\mu} \overleftarrow{\partial}^{\nu} - i\gamma^{\nu} \overleftarrow{\partial}^{\mu} \right) \psi(x)$ $\langle p' | \hat{T}_{\mu\nu}(0) | p \rangle = \int d^3 \mathbf{x} d^3 \mathbf{y} \ e^{i\mathbf{p}'\mathbf{y} - i\mathbf{p}\mathbf{x}} \int \mathcal{D}\psi \ \mathcal{D}\bar{\psi} \ \mathcal{D}U \ J_{N'}(-\frac{T}{2}, \mathbf{y}) \ T^{\text{eff}}_{\mu\nu}(0) J^{\dagger}_{N}(\frac{T}{2}, \mathbf{x}) \ e^{iS_{\text{eff}}}$

results refer to $|t| = \mathcal{O}(N_c^0) < M_N^2 = \mathcal{O}(N_c^2)$

$$M_{2}(t) - \frac{t}{5M_{N}^{2}}d_{1}(t) = \frac{1}{M_{N}} \int d^{3}r \ \rho_{E}(r) \ j_{0}(r\sqrt{-t})$$
$$d_{1}(t) = \frac{15M_{N}}{2} \int d^{3}r \ \rho(r) \ \frac{j_{0}(r\sqrt{-t})}{t}$$
$$J(t) = 3 \int d^{3}r \ \rho_{J}(r) \ \frac{j_{1}(r\sqrt{-t})}{r\sqrt{-t}}$$

 $ar{c}(t) = 0$ quark $T_{\mu
u}$ conserved by itself in model $\sqrt{}$

with the "densities" ...

with the "densities" defined as:

$$\rho_{E}(r) = N_{c} \sum_{n,\text{occ}} E_{n} \phi_{n}^{\dagger}(\vec{r}) \phi_{n}(\vec{r})|_{\text{reg}} \equiv T_{00}(r) \text{ energy density}$$

$$p(r) = \frac{N_{c}}{3} \sum_{n,\text{occ}} \phi_{n}^{\dagger}(\vec{r}) (\gamma^{0}\vec{\gamma}\,\hat{\vec{p}}) \phi_{n}(\vec{r})|_{\text{reg}} \equiv \text{ pressure}$$

$$\rho_{J}(r) = -\frac{N_{c}}{24I} \sum_{\substack{n,\text{occ}\\j,\text{non}}} \epsilon^{abc} r^{a} \phi_{j}^{\dagger}(\vec{r}) (2\hat{p}^{b} + (E_{n} + E_{j})\gamma^{0}\gamma^{b}) \phi_{n}(\vec{r}) \frac{\langle n|\tau^{c}|j\rangle}{E_{j} - E_{n}}|_{\text{reg}}$$

Now: test the consistency

"angular momentum density"

important (technical) remark:

analytical manipulations in terms of evaluated quark wave-functions,

i.e. no operator identities

but equations of motion $\Leftrightarrow \delta M_N = 0$ collective many-body phenomenon

Consistency

I
$$M_N = \int d^3 r T_{00}(r) \iff M_2(0) = 1 \checkmark$$

II
$$J(0)=\int\!{
m d}^3{
m r}\,
ho_J(r)=\,\ldots\,=rac{1}{2}\sqrt{}$$
 (decomposition, evolution $ightarrow$ Thomas, Wakamatsu)

$$\prod_{\substack{n \\ 0}}^{\infty} dr \ r^2 p(r) \propto \sum_{\substack{n, \text{occ}}} \langle n | \left(\gamma^0 \vec{\gamma} \ \hat{\vec{p}} \right) | n \rangle \stackrel{\textbf{I}}{=} 0 \checkmark \quad \text{if e}$$

if evaluated at true minimum $U_s!$

IV same form factors from GPDs \checkmark

$$\bigvee \quad \int dx \sum_{q} x H^{q}(x,\xi,t) = M_{2}(t) + \frac{4}{5} d_{1}(t) \xi^{2} \checkmark$$

$$\bigvee \mathbf{I} \quad \int \mathrm{d}x \sum_q x (H^q + E^q)(x,\xi,t) = 2J(t) \quad \checkmark$$

Ossmann et al, PRD71, 034011 (2005)

Model is consistent. Let us see what it predicts.

• $\langle r_E^2 \rangle \equiv \frac{\int d^3 \mathbf{r} \ r^2 \rho_E(r)}{\int d^3 \mathbf{r} \ \rho_E(r)} = 0.7 \ \text{fm}^2 \ \text{similar to proton electric charge radius}$

- leading non-analytic term $\langle r_E^2 \rangle = \langle \stackrel{\circ}{r}_E^2 \rangle \frac{81 g_A^2}{64 \pi f_\pi^2 M_N} m_\pi +$ higher orders
- for $m_{\pi} \rightarrow 0$ nucleon 'grows' (range of pion cloud increases)
- reasonable & consistent picture

Compare: energy vs. baryon number density

in Skyrme model Cebulla et al

- baryon number density
 - = isoscalar charge density
- distributions similar at intermediate r
- significant differences at large r

 $ho_E(r) \propto rac{1}{r^6}$ VS. $ho_{el}(r) \propto rac{1}{r^9}$

different chiral physics!

Picture in model. And, in nature?

Angular momentum distribution

- $ho_J(r) \propto r^2$ at small r
- $\langle r_J^2 \rangle = 1.3 \text{ fm}^2$

2 times larger than $\langle r_E^2 \rangle$ or $\langle r_{em}^2 \rangle$

• in chiral limit: $ho_J(r)\sim rac{1}{r^4}$ at large r such that $\langle r_J^2
angle$ diverges

Pressure

- $p(0) = 0.23 \,\text{GeV/fm}^3 = 4 \cdot 10^{34} \,\text{N/m}^2$ ~ $(10-20) \times \text{(pressure in neutron star)}$
- $p(0) \times (typical hadronic area 1 \, fm^2)$ ~ $0.2 \, GeV/fm \sim \frac{1}{5} \times \{string tension\}$

• chiral limit:
$$p(r) \sim -\left(rac{3g_A}{8\pi f_\pi}
ight)^2 rac{1}{r^6}$$
 at large r

• consequence: derivative $d'_1(0) = -\frac{3 g_A^2 M_N}{32 \pi f_\pi^2 m_\pi} + \dots$ diverges in chiral limit

- $r < 0.57 \,\text{fm}$: $p(r) > 0 \Rightarrow$ repulsion \leftrightarrow quark core, Pauli principle
- $r > 0.57 \,\text{fm}$: $p(r) < 0 \Rightarrow \text{attraction} \leftrightarrow \text{pion cloud, binding forces}$

Compare to liquid drop

nucleon does not resemble much a liquid drop

```
the "edge" is very diffuse (of course)
```

concept more useful for nuclei

Energy

we learn:

- strong forces in nucleon really strong (even without glue)
- what we always knew (but now can quantify): nucleon stability due to subtle balance between repulsive quark core and attractive pion cloud!

Stability & sign of D-term

- $\int_{0}^{\infty} \mathrm{d}r \; r^2 p(r) = 0 \quad \checkmark$
- $\int_{0}^{\infty} dr r^4 p(r) < 0$, of course!

• $d_1 = \frac{5}{4}M_N \int d^3 \mathbf{r} \ r^2 p(r) < 0$ natural consequence of stability!

 d_1 negative, could be a theorem! Remains to be proven in general.

Results for form factors

vs. electromagnetic form factors, for example, $G_E^p(t)$ with $M_{dip} \approx 0.91 \, {\rm GeV}$

 \Rightarrow $M_2(t)$ similar to em form factors, J(t) and $d_1(t)$ different Instructive: need to extrapolate from data at t < 0 to get $J^Q(0)$!

4. MIT bag model

GPS & A(t), B(t), C(t) Ji, Melnitchouk, Song 1997

But how do the densities look like? Matt Neubelt, UConn graduating senior

$$M_N = \int d^3 x \, T_{00}(r) = \min_R \left(\frac{3\omega}{R} + \frac{4\pi}{3} \, R^3 B \right)$$

$$\frac{\partial M_N}{\partial R} = 0 \quad \Rightarrow \quad M_N = \frac{4\omega}{R} \quad \Rightarrow \quad \int_0^R \mathrm{d}r \ r^2 p(r) = 0$$

simple but fully consistent model!

 $d_1 = -1.4 < 0$ negative!

vs. chiral models: magnitude smaller How does it look like in cloudy bag model?

6. Q-balls S. Coleman, NPB262 (1985) 263, Lee, Wick, Friedberg, Sirlin 1970s

• Look for static solution ("solitons") in: $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$

static: $H = \int d^D x \left(\frac{1}{2}\nabla^i \phi \nabla^i \phi + V(\phi)\right)$

dilations
$$x \to \lambda x$$
: $M(\lambda) = \frac{1}{2} E_{surf} \lambda^{2-D} + U_{pot} \lambda^{-D}$

 $M'(\lambda) = 0$ possible only in D = 1 space dimension

 \rightarrow no static soliton solutions in $D \geq 2$ dimensions (Derrick's theorem)

• Coleman: consider $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi^* \partial^{\mu} \phi + \frac{1}{2} \partial^*_{\mu} \phi \partial^{\mu} \phi - V(|\phi|)$ with glogal continous symmetry $\phi(x) \to e^{i\omega t} \phi(r)$

conserved Noether charge $Q = \omega \int d^D x \ \phi(r)^2 = \omega I$

$$M = \int \mathrm{d}^D x \left(\frac{1}{2} \omega^2 \phi^2 + \frac{1}{2} \nabla^i \phi \nabla^i \phi + V(\phi) \right)$$

now dilations $x \to \lambda x$: $M(\lambda) = \lambda^3 \frac{Q^2}{2I} + \frac{1}{2} \lambda^{2-D} E_{surf} + \lambda^{-D} U_{pot}$

$$M'(\lambda) = \frac{3Q^2}{2I} \lambda^2 + E_{\text{surf}} \frac{(2-D)}{2\lambda^{D-1}} - U_{\text{pot}} \frac{D}{\lambda^{D+1}} = 0 \quad \text{possible in } D > 2$$

more precisely, if $\omega_{\min}^2 < \omega^2 < \omega_{\max}^2$, solitons may exist! $\omega_{\min}^2 = \min_{\phi} V(\phi)/\phi^2$, $\omega_{\max}^2 = V''(\phi)|_{\phi=0}$

Coleman: solitons do exist in limit $\omega \rightarrow \omega_{min}$, extended objects with constant density inside, and sharp edge: *Q*-balls

- what are Q-balls good for?
 can form in early universe (degrees of freedom, thermodynamics) (Coleman)
 exist in SUSY extensions of standard model (Kusenko & Shaposhnikov 1998)
 dark matter? baryon asymmetry in univers? neutron stars? (...)
- how can they help us?
 compute d₁, study stability, and learn

charge distribution

enegergy density

pressure

shear forces

• limits $\omega \rightarrow \omega_{\text{extreme}}$ under analytical control!

- and always $d_1 < 0$
- but *Q*-balls not always stable: stability $\Rightarrow d_1$ negative ($d_1 < 0$ necessary [not sufficient] condition for stability) Can d_1 be positive??? (Manuel Mai, masters thesis 2009; Mai & PS forthcoming)

7. Conclusions

- EMT form factors accessible via GPDs, promise fascinating new insights!
- energy density, strong forces (mechanical properties), rely on models minimal theoretical requirements: polynomiality & stability
- illustration in chiral quark soliton model: theoretically consistent (GPDs, polynomiality, stability, etc.)√ successful: chiral dynamics important for understanding nucleon√ (supporting results from Skyrme model)
- ullet interesting lesson: chiral models, bag model, liquid drop: sign of $d_1 < 0$
- relation: if stable \Rightarrow d_1 negative (not vice versa, lesson from Q-balls)
- unknown: rigorous field theoretical proof that $d_1 < 0$? Can it be positive? formulate in terms of 2D distributions? Lattice?? Experiment???

Thank you !!!

Support slide

What about m_{π} -dependence of EMT form factors? Focus on $d_1(t)$

QCDSF Göckeler, Horsley, Pleiter, Rakow, Schäfer, Schierholz and Schroers, PRL 92, 042002 (2004); Nucl.Phys.Proc.Suppl. 128, 203 (2004)

Observations:

- different *t*-ranges: in model $|t| \ll M_N^2$
- where overlap \Rightarrow agreement !
- chiral quark soliton model indicates \Rightarrow small *t*-behaviour different \Rightarrow *t*-extrapolation possibly underestimates $d_1^Q(0)$

$$d_1^{\,\,\prime}(t)ert_{t=0}\,\propto rac{1}{m_\pi}$$
 with $m_\pi o 0$