DVCS analysis status and perspectives

Dieter MüllerBNL/Ruhr -University Bochum University

 photon leptoproduction cross section small xB fits (H1 and ZEUS) \triangleright fixed target (HERMES, JLAB)+ small x_B fits *predictions and studies for future experiments*

in collaboration with K. KumeričkiE. Aschenauer and S. Fazio (EIC studies)

GPDs embed non non-perturbative perturbative physics

[DM et al (90/94) GPDs appear in various hard exclusive processes,

e.g., hard electroproduction of photons (DVCS)

[DM et. al (90/94) Radyushkin (96) Ji (96)]

 $\mathcal{F}(\xi, \mathcal{Q}^2$ $\mathcal{G}=\int_{-1}^{1}dx\; C(x,\xi,\alpha_s(\mu),\mathcal{Q}/\mu)F(x,\xi,t,\mu)+O(\frac{1}{\mathcal{Q}})$ $\mathcal{L}(\mathcal{Q}^2,t) = \int_{-1}^1 dx \; C(x,\xi,\alpha_s(\mu),\mathcal{Q}/\mu) F(x,\xi,t,\mu) + O(\tfrac{1}{\mathcal{Q}^2})$ $x\ C(x,\xi,\alpha_s(\mu),\mathcal{Q}/\mu)F(x,\xi,t,\mu)+$ $\overline{{\cal Q}^2}$

CFFCompton form factor

observable

hard scattering part

perturbation theory

(our conventions/microscope)

GPDG

universal (conventional)

higher twist

depends on approximation

access of CFFs from measurements:

three possible nucleon polarization + electron/positron beam + neglecting transversity allows to access imaginary and real part of

$$
\mathcal{F} \,=\, \{\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}\} \,\\ \mathcal{F}^3 \,=\, \{\mathcal{H}^3, \mathcal{E}^3, \widetilde{\mathcal{H}}^3, \widetilde{\mathcal{E}}^3\}
$$

twist-three offers access to quark-gluon-quark correlations transversity arises at NLO from gluons at twist-two or at LO as a twist-four effect

$$
\mathcal{F}_T~=~\mathcal{O}(\alpha_s,1/\mathcal{Q}^2) \qquad \qquad \Box
$$

 $\,$ relations among $\,$ harmonics and $\,$ GPDs are based on $\,$ $1/\mathcal{Q}\,$ $\,$ expansion: (all harmonics are expressed by twist-2 and -3 GPDs) **[Diehl et. al (97) Belitsky, DM, Kirchner (01)]**

$$
\begin{cases} c_1 \begin{cases} c_1 \end{cases}^{\mathcal{I}} \propto \frac{\Delta}{\mathcal{Q}} \operatorname{tw-2}(\text{GPDs}) + O(1/\mathcal{Q}^3), & c_0^{\mathcal{I}} \propto \frac{\Delta^2}{\mathcal{Q}^2} \operatorname{tw-2}(\text{GPDs}) + O(1/\mathcal{Q}^4), \\ s_2 \end{cases}
$$

$$
\begin{cases} c_2 \begin{cases} c_2 \end{cases}^{\mathcal{I}} \propto \frac{\Delta^2}{\mathcal{Q}^2} \operatorname{tw-3}(\text{GPDs}) + O(1/\mathcal{Q}^4), & \begin{cases} c_3 \end{cases}^{\mathcal{I}} \propto \frac{\Delta \alpha_s}{\mathcal{Q}} (\operatorname{tw-2})^{\mathrm{T}} + O(1/\mathcal{Q}^3), \\ s_3 \end{cases}
$$

$$
c_0^{\mathrm{CS}} \propto (\operatorname{tw-2})^2, \qquad \begin{cases} c_1 \end{cases}^{\mathrm{CS}} \propto \frac{\Delta}{\mathcal{Q}} (\operatorname{tw-2}) (\operatorname{tw-3}), \qquad \begin{cases} c_2 \end{cases}^{\mathrm{CS}} \propto \alpha_s (\operatorname{tw-2}) (\operatorname{tw-2})^{\mathrm{GT}}
$$

setting up the perturbative framework:

[Belitsky, DM (97); Mankiewiczet. (97);Ji,

 twist-two coefficient functions at *next-to-leading leading*order **Osborne (98); Pire et. al (11)]** evolution kernels at *next-to-leading leading*order **[Belitsky, DM, Freund (01)]** *next to next to leading* order in ^a specific conformal subtraction scheme **[KMP-K &** *next-to-next-to-leading* ^a *twist-three* including quark-gluon-quark correlation at LO partially, *twist-three* sector at *next-to-leading* order *twist three next to leading***[KMP-K & Schaefer 06] [Anikin,Teryaev, Pire (00); Belitsky DM (00); Kivel et. al] [Kivel Mankiewicz (03)]** 6 \checkmark 'target mass corrections' (not well understood) *twist-four* sector **[Braun, Manashov (11)] [Kivel, [Belitsky DM (01)]**

Can one `measure' GPDs?

• *CFF* given as *GPD* **convolution**:

$$
\mathcal{H}(\xi, t, \mathcal{Q}^2) \stackrel{\text{LO}}{=} \int_{-1}^1 dx \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) H(x, \eta = \xi, t, \mathcal{Q}^2)
$$

$$
\stackrel{\text{LO}}{=} i\pi H^-(x = \xi, \eta = \xi, t, \mathcal{Q}^2) + \text{PV} \int_0^1 dx \frac{2x}{\xi^2 - x^2} H^-(x, \eta = \xi, t, \mathcal{Q}^2)
$$

•*H(x,x,t,*Q*2)* viewed as **"spectral function"** (*s*-channel cut):

$$
H^-(x,x,t,Q^2)\equiv H(x,x,t,Q^2)-H(-x,x,t,Q^2)\stackrel{\mathrm{LO}}{=}\frac{1}{\pi}\Im\mathrm{m}\mathcal{F}(\xi=x,t,Q^2)
$$

• *CFFs* satisfy `**dispersion relations' (not the physical ones, threshold** *ξ0* **set to 0)** **[Frankfurt et al (97) Chen (97) Terayev (05) KMP-K (07) Diehl Ivanov (07)] Diehl,**

$$
\Re\theta \mathcal{F}(\xi, t, Q^2) = \frac{1}{\pi} \text{PV} \int_0^1 d\xi' \left(\frac{1}{\xi - \xi'} \mp \frac{1}{\xi + \xi'}\right) \Im\text{m}\mathcal{F}(\xi', t, Q^2) + \mathcal{C}(t, Q^2)
$$
\n[Terayev (05)]

 \bm{access} to the \bm{GPD} on the $\bm{cross\text{-}over}$ line η = x $\,$ (at LO)

Strategies to analyze DVCS data

(ad hoc) modeling: VGG code [**Goeke et al (01) et.** based on **Radyuskin s'** DDA] **(first decade)** BKM model [**Belitsky, Kirchner, DM (01)** based on RDDA] `aligned jet' model [**Freund, McDermott, Strikman (02)**] **Goloskokov/Kroll (05)** based on RDDA (pinned down by DVMP) `dual' model [**Polyakov,Shuvaev 02;Guzey,Teckentrup 06;Polyakov 07**] " -- " [**KMP-K (07)** in MBs-representation] polynomials **[Belitski et al. (98), Liuti et. al (07), Moutarde (09)]**

dynamical models: not applied **[Radyuskin et.al (02); Tiburzi et.al (04); Hwang DM (07)]…** (respecting Lorentz symmetry)

flexible models: any representation by including *unconstrained* degrees of freedom (for fits) **KMP-K (07/08)** for H1/ZEUS in MBs-integral-representation

Extracting CFFs from data: real and imaginary part

i. CFF extraction with formulae **[BMK (01), HALL-A (06)]** fits **[Guidal, Moutarde (08...)]** neural networks **[KMS (11) neural networks]** ii. `dis persion inte gral' fits **[KMP-K (08),KM (08...)]** p g **[(), (** iii. flexible GPD modeling **[KM (08...)]** vi. model comparisons **Goldstein et al. (11**) (no sea, giving up polynomiality) **Goloskokov/Kroll (07) model** based on RDDA

9

YES for small x and *we don`t use it* for fixed target kinematics

- reasonable well motivated hypotheses of GPDs (moment) must be known first
- \bullet many parameters – Is a least square fit an appropriate strategy?
- •some code writing is left

DVCS fits to H1 and ZEUS data

DVCS cross section measured at small

$$
x_{\rm Bj} \approx 2\xi = \frac{2\mathcal{Q}^2}{2W^2 + \mathcal{Q}^2}
$$

predicted by

$$
\frac{d\sigma}{dt}(W, t, \mathcal{Q}^2) \approx \frac{4\pi\alpha^2}{\mathcal{Q}^4} \frac{W^2\xi^2}{W^2 + \mathcal{Q}^2} \left[|\mathcal{H}|^2 - \frac{\Delta^2}{4M_p^2} |\mathcal{E}|^2 + \left| \widetilde{\mathcal{H}} \right|^2 \right] (\xi, t, \mathcal{Q}^2) \Big|_{\xi = \frac{\mathcal{Q}^2}{2W^2 + \mathcal{Q}^2}}
$$
\n
$$
\text{Suppressed contributions} \leq 0.05 \text{ and } \widehat{\mathcal{Q}} = \frac{\mathcal{Q}^2}{2W^2 + \mathcal{Q}^2}
$$

- LO data could not be described before **2008**
- NLO works with ad hoc GPD models **[Freund McDermott (02)] [Freund,** results strongly depend on employed PDF parameterization

effective functional form at small *x*:

PDFs:GPD GPDs: $q^{\rm sea}(\xi, {\cal Q}) = n({\cal Q}) \xi^{-\alpha({\cal Q})}$ $,\quad \alpha\gtrsim 1,\quad F^{\rm sea}(0)=1$ $\,H$ s e a $(\eta/x=1,\mathcal{Q})F$ s e a $\int_0^{\infty} (t) \xi^{\alpha^{\prime}(t,\mathcal{Q})} q^{\mathrm{sea}}$ (ξ, \mathcal{Q}) $\zeta = r(\eta/x=1,\mathcal{Q})F^{\rm sea}(t)\xi^{\alpha^{\prime}(t,\mathcal{Q})}q^{\rm sea}(\xi,\xi)$

$$
? \ \ E(\xi,\xi,t,\mathcal{Q}) \ \textit{skewness}
$$

- not seen in Regge phenomenology
- might be sizeable in instanton models
- reggeized spectator quark models
- pQCD suggests `pomeron' intercept
- however, *B* vanishes asymptotically
- so far *E* is "not seen" in DVCS

qualitative understanding of *E* is needed (not only forJi`s spin sum rule)

$$
B = \int_0^1 dx \, x E(x, \eta, t, \mathcal{Q})
$$

transverse target spin asymmetry is **sensitive to** *E and sizeable* **at EIC**

transverse distribution **reggeized LCWF model** pheno. **[Hwang,DM]** power 6 expon. 4 x Hsea $(x, \eta=x, t=0)$ $\overline{2}$ 0.001 0.01 0.1 $10[°]$ *x***KM10** HERMES (09) **KM10a KM10b models with** *Im***E***=0* -0.3 $\frac{1}{\Omega}$ 0.05 0.10 0.15

 X_{Bj}

good DVCS fits at LO, NLO, and NNLO with flexible GPD ansatz

- @LO the conformal ratio $r_{\rm con} = \frac{2}{\Gamma(2/2)\Gamma(2+\alpha)}$ is ruled out for sea quark GPD 2 O the conformal ratio $r_{\rm con} = \frac{2^{\alpha}\Gamma(3/2+\alpha)}{\Gamma(3/2)\Gamma(2+\alpha)}$ is ruled out for sea quark GP $\Gamma(3/2)\Gamma(2{+}\alpha)$
- a generically zero-skewness effect over a large *Q 2* lever arm
- scaling violation consistent with pQCD prediction
- this zero-skewness effect is non-trivial to realize in conformal space (SO(3) sibling poles are required)

Gluon skewness ratio from DVCS fits @ LO from DVCS @

conformal ratio

$$
r_{\rm con}^G = \frac{2^{1+\alpha} \Gamma(3/2 + \alpha)}{\Gamma(3/2)\Gamma(3+\alpha)} \approx 1
$$

- imposed in all popular models
- accessible due to evolution
- @LO the gluonic *^r*-ratio is smaller than the conformal one
- negative value is an artifact (still a to rigid model)
- gluonic r-ratio @LO from *ρ* electroproduction is 0.1…0.5
- qualitatively consistent with DVCS findings

• CFF *H* posses ``pomeron behavior'' *ξ-^α(Q) - ^α'(Q)t*

^α **increases with growing** *Q2*

- *'* **d i** *Q2 α***decreases growing**
- *t*-dependence: exponential shrinkage is disfavored *(α' [≈] 0)* dipole shrinkage is visible *(α' [≈] 0 15 at Q2=4 GeV2) 0.15*
- (normalized) profile functions

$$
\rho \propto \int \!\! d^2 \vec\Delta_\perp \,\, e^{i \vec b \cdot \vec\Delta_\perp} H(x,0,t=-\vec\Delta_\perp^2)
$$

• H1/ZEUS 98 [*^σ, dσ/dt*] +1x6 [BCA(*φ)*] <*<x>>* ≈*10-3*, *<|t|> ≤ 0.8* GeV*²* <<Q2>> [≈] 8 GeV*² data set for unpolarized proton target used for KM09/10 fits* • HERMES(02) 12+3 [BSA, *sin(φ)*] • HERMES(08) 12x2 [BCA, *cos(0 φ), cos(φ)*] *0.05 [≤] <x> [≤] 0.2*, *<|t|> ≤ 0.4* GeV*²* 12 x2 [*cos(2 φ*), *cos(3 φ)*] \leq \leq Q^2 >> ≈ 2.5 GeV² • HERMES(09,10) BSA and BCA data (included in KM10 fits) \bullet CLAS(07) 12x12 [BSA(*φ*)] *0.14* ≤ <x> ≤ *0.35*, <|*t*|> ≤ *0.3* GeV² $40x12$ [BSA(φ)] (large |t| or bad sta.) $\langle \langle Q^2 \rangle \rangle \approx 1.8$ GeV² \bullet HALL A(06) $\langle x \rangle = 0.36, \langle |t| \rangle \le 0.33 \text{ GeV}^2$ $3x24$ [$\sigma(\varphi)$] $\leq \langle Q^2 \rangle > \approx 1.8$ GeV² How to analyze *φ* dependence? • fit within assumed functional form **[CLAS(07)]** • likelihood fit with respect to dominant and higher harmonics **[HERMES]** • utilize Fourier transform (with or without additional weight) **[BMK(01)]**

equivalent results for CLAS data with small stat. errors

Dispersion relation fits to unpolarized DVCS

• model of GPD *H(x,x,t)* within DD motivated ansatz at Q²=2 GeV²

valence quarks

 $n = 1.0, \alpha(t) = 0.43 + 0.85t/\text{GeV}^2, \ \ p = 1$

flexible parameterization of subtraction constant
+ pion-pole contribution

+ pion-pole contribution
36 + 4 data points quality of *global fit* is good

$$
\mathcal{D}(t)=\frac{-C}{(1-t/M_c^2)^2}
$$

$$
\chi^2/\mathrm{d.o.f.}\approx 1^{20}
$$

Global GPD fit example: HERMES & JLAB

Neural Networks

- • kinematical values are represented by the input layer
- • propagated trough the network, where weights are set randomly
- •• random values for *ImH* and *ReH*
- •• calculation of χ^2
- • \bullet backwards propagation
- • adjusting weights so that error decreases
- •repeat procedure
- •taking next kinematical point

Monte Carlo procedure to propagate errors, i.e., generating a replica data set

avoiding over fitting (fitting to noise), dividing data set, taking a control example if error increases after decreasing – one stops

training epoch

A first use of neural network fits

(ideal) tool for error propagation and quantifying model uncertainties so far it is used to access real and imaginary part of ${\mathcal H}$ CFF

results are compatible to dispersion relation fits

KM09 versus CFF fits & large-x "model" fit

propagated errors + "theoretical" error estimate

GUIDALsame + longitudinal TSA

Moutarde H dominance hypothesis within a smeared polynomial expansion propagated errors + "theoretical" error estimate

- **KM** neural network within H dominance hypothesis green (blue) curves (KM09) without (with) HALL A data (ratios)
- reasonable agreement for HERMES and CLAS kinematics
- large *^x*-region and real part remains unsettled
- next step: NN within twist-two dominance hypothesis + `dispersion' integral

24

How reliable is the twist twist-two dominance? two

- each interference term harmonic contains twist-2, -3, and transversity (kinematical counting according to BMK + admixture effects **[BM (09,10)])**
- transversity (photon helicity flip by two units) might be neglected (so far not seen in data, kinematical suppressed by *t'/M2* or *t'/Q2*)
- dominant sin/cos(*φ*) harmonics of the interference term is contaminated by twist-three term from DVCS
- HALL A : twist-3 effects are hardly visible

not conclusive

- electron/positron beam is needed for a cleaner separation
- \bullet HERMES (09) data might indicate a ~4% overall DVCS twist-3 BSA effect a relative 20% uncertainty for a BSA measurement within electron beam
- HERMES (10) data indicate a zero overall DVCS twist-3 BSA effect

 $\overrightarrow{}$ *there might be a twist-three contamination on some 10% level*

Fourier spectra of HERMES (09) data (1996-2005)

KM10 fits to (unpolarized) DVCS

• a hybrid model: three effective SO(3) PWs for sea quarks/gluons dispersion relations for valence flexible pion pole contribution still *E* GPD is neglected (only D-term)

• framework

leading order, including evolution for sea quarks/ gluons twist-two dominance hypothesis within CFF convention **[] BM10**

- data selection (taking moments of azimuthal angle harmonics)
- i. neglecting,

ii. ii. forming ratios of moments, or iii.iii. original HALL-A data neglecting large *–t* BSA CLAS data

15 parameter fit, e.g., including all HALL-A data

175 data points *χ 2/d.o.f. =132/165*

```
M02S = 0.51 += 0.02SECS = 0.28 += 0.02SECG = -2.79 += 0.12THIS = -0.13 +- 0.01
THIG = 0.90 +- 0.05
  Mv = 4.00 + - 3.33 (edge)
  rv = 0.62 += 0.06bv = 0.40 += 0.67C = 8.78 + - 0.98
  MC = 0.97 += 0.11tMv = 0.88 + 0.24v = 7.76 +- 1.39
 \text{tbv} = 2.05 \text{ +} - 0.40rpi = 3.54 \leftarrow 1.77Mpi = 0.73 +- 0.37
                           28
```
• results are given as **xs.exe** on *http://calculon.phy.hr/gpd/*

• fits to HALL A harmonics are fine for unexpected large Ĥ or Ě contribution

- large Ĥ KM09 scenario is excluded from longitudinal TSA (HERMES, CLAS)
• large pion pole scenario might look reasonable (of **IGeleskekey and Krell (40)**)
- large pion pole scenario might look reasonable (cf. **[Goloskokov and Kroll (10)]**)

HALL A φ-dependence

 \bullet ϕ -dependence is described (if we fit to it)

DVCS perspectives

exi ti d t isting a a

including longitudinal and transversepolarized proton data

new data

HERMES(recoil detector data)

JLAB (longitudinal TSA, cross sections)

pl d anne

COMPASS II, JLAB 12

d propose

EIC

Predictions for Compass II

fixed target, polarized muon beam (~200 GeV)

cross sections (t-dependence), transverse polarized target (access to E GPD)

32

EIC potential for DVCS

to address angular momentum, 3D picture, (effective) nucleon wave function within the GPD framework new DVCS experiments with

large kinematical coverage, high luminosity, and dedicated detectors are needed to quantify CFFs and GPDs on the cross-over line (and outer region,

• disentangling CFFs at small(er) *^x* cross sections beam spin, target spin, and double spin flip experiments $BSA \propto$ $\int \propto y\left\{F_1(t)H(\xi,\xi,t,\mathcal{Q}^2)-\frac{t}{4M^2}F_2E(\xi,\xi,t,\mathcal{Q}^2)\right\}$ TSA_L $\mathcal{L}_L \propto \left\{F_1(t)\widetilde{H}(\xi,\xi,t,\mathcal{Q}^2) + \xi (F_1 + F_2)(t) H(\xi,\xi,t,\mathcal{Q}^2)\right\}$ $TSA_T \propto \frac{\sqrt{-t}}{4M^2}\left\{F_1(t)E(\xi,\xi,t,\mathcal{Q}^2)-F_2(t)H(\xi,\xi,t,\mathcal{Q}^2)\right\}$

• off neutron another possibility to access GPD E

- separation of twist-2 and twist-3 induced harmonics requires positron beam
- time-like region (a new field to study)
- off nuclei (has its own interest)

Impact of EIC data to extract GPD H

two simulations from S. Fazio for DVCS cross section ~ 650 data points *-t < ~0.8* GeV2 for ~ 10/fb1 GeV2 *< –t < 2* GeV2 for ~ 100/fb (cut: *–t < 1.5* GeV2 , *4* GeV 2 *< Q2* to ensure *–t < Q 2*)

mock data are re-generated with GeParD statistical errors rescaled

5% systematical errors added in quadrature, 3% Bethe-Heitler uncertainty

Single transverse target spin asymmetry

*also imaging of q***^w** *sea is possible* **[see Franck`s talk]**

37

GPDs are intricate and (thus) ^a promising tool

- \triangleright to reveal the transverse distribution of partons
- \triangleright to address the spin content of the nucleon
- providing a bridge to LCWFs modeling & non-perturbative methods (lattice)

hard exclusive leptoproduction

- DVCS is widely considered as a theoretical clean process
- it is elaborated in NLO and offers a new insight in QCD
- possesses a rich structure, allowing to access various CFFs/GPDs
- new experiments (high luminosity machines and dedicated detectors) are desired to quantify exclusive (and inclusive) QCD phenomena

technology

38software tools for global GPD fits have been developed for demonstration ? global QCD fits (inclusive + exclusive)