Single Spin Asymmetries in Inclusive DIS and the ETQS Matrix Element

(A. Metz, Temple University, Philadelphia)

1. Introduction

- 2. Two photons coupling to the same quark
- 3. Two photons coupling to different quarks in collaboration with: Pitonyak, Schäfer, Schlegel, Vogelsang, Zhou
 - Analytical results
 - Relation between $q\gamma q$ -correlator and qgq-correlator
 - Numerical results and discussion
- 4. Summary

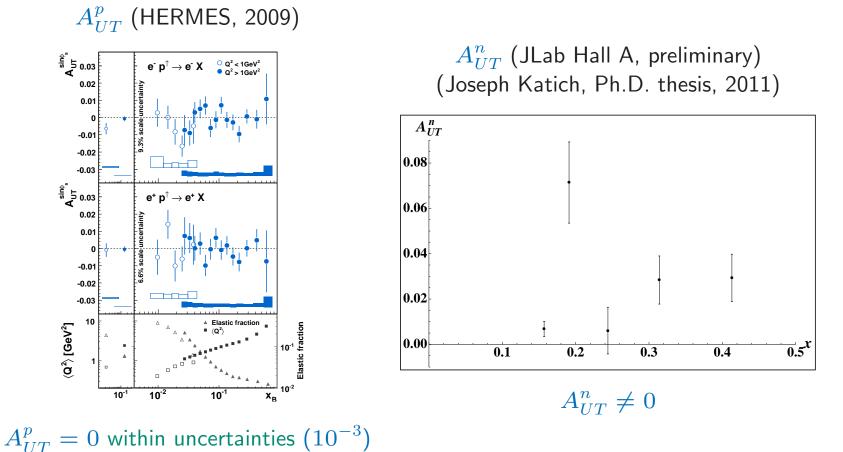
Preliminaries

- DIS: $\ell(k) + N(P) \rightarrow \ell'(k') + X$
- Single spin asymmetry (SSA) can exist due to correlation

$$\varepsilon_{\mu\nu\rho\sigma}S^{\mu}P^{\nu}k^{\rho}k^{\prime\sigma}\sim\vec{S}\cdot(\vec{k}\times\vec{k}^{\prime})$$

- kinematics similar to, e.g., $p + p \rightarrow h + X$
- S spin vector of nucleon, or initial/final state lepton
- Definition of transverse SSA:

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

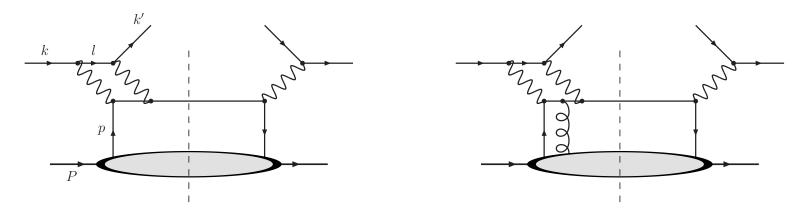

- $A_{UT} = 0$ for one-photon exchange (Christ, Lee, 1966)
 - consider multi-photon exchange
 - $A_{UT} \sim \alpha_{em}$ (small)

Data

• Early data: CEA (1968), SLAC (1969)

– not in DIS region, $A_{UT}^p = 0$ within uncertainties

• Recent data:



- can one (qualitatively) understand these data?

Photons coupling to the same quark

(Metz, Schlegel, Goeke, 2006 / Afanasev, Strikman, Weiss, 2007)

• Feynman diagrams

• Polarized initial state lepton

$$k'^{0} \frac{d\sigma_{pol}}{d^{3}\vec{k'}} = \frac{4\alpha_{em}^{3}}{Q^{8}} m_{\ell} x y^{2} \varepsilon^{SPkk'} \sum_{q} e_{q}^{3} x f_{1}^{q}(x)$$

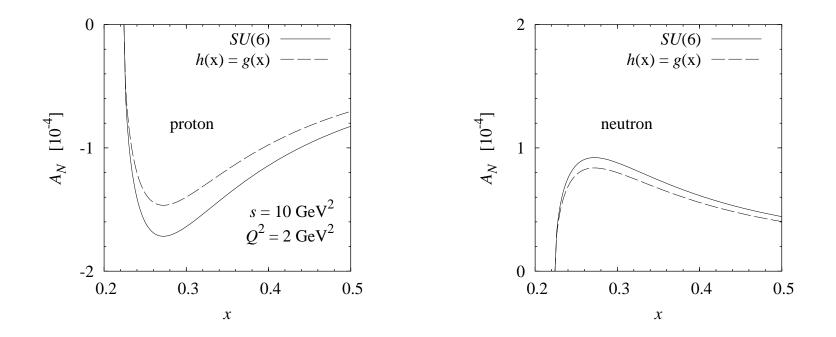
- essential element: imaginary part of lepton-quark box-graph (Barut, Fronsdal, 1960)
- general behavior of SSA:

$$A_{UT}^{\ell} \sim \alpha_{em} \frac{m_{\ell}}{Q} \rightarrow \text{small}$$

• Polarized target

$$k^{\prime 0} \frac{d\sigma_{pol}}{d^{3}\vec{k}^{\prime}} = \frac{4\alpha_{em}^{3}}{Q^{8}} M x^{2} y(1-y) \varepsilon^{SPkk^{\prime}} \sum_{q} e_{q}^{3}$$

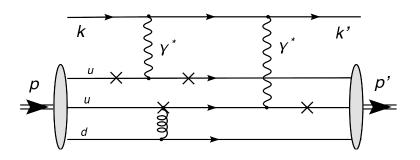
$$\times \left[\left(xg_{T}^{q}(x) - g_{1T}^{(1)q}(x) - \frac{m_{q}}{M} h_{1}^{q}(x) \right) \left(\ln \frac{Q^{2}}{\lambda^{2}} + H_{1}(y) \right) + \frac{m_{q}}{M} h_{1}^{q}(x) H_{2}(y) \right]$$


- contributions: (1) collinear twist-3; (2) transv. quark momentum; (3) quark mass

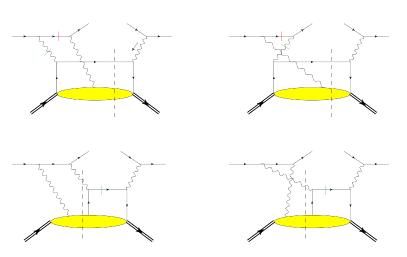
- calculation is em. gauge invariant, but uncancelled IR-divergence: λ is photon mass
- transversity contribution first published by Afanasev, Strikman, Weiss (2007)
 - \rightarrow they use transversity projector containing m_q
 - \rightarrow calculation becomes identical to that for lepton SSA
 - \rightarrow transversity result IR-finite
- inclusion of quark-gluon-quark correlator can cure problem (work in progress)

$$xg_{T}^{q}(x) - g_{1T}^{(1)q}(x) - \frac{m_{q}}{M}h_{1}^{q}(x) = x\tilde{g}_{T}^{q}(x)$$
 (EOM-relation)

 \rightarrow final result $\sim x \tilde{g}_T$, plus quark mass term \rightarrow small?


• Estimate of transversity contribution for A_{UT} (Afanasev, Strikman, Weiss, 2007)

- they use constituent quark mass $M_q=M/3$
- asymmetries very small
- proton: compatible with data
- neutron: not compatible with data; also sign opposite to data


Photons coupling to different quarks

• Elastic scattering at large Q^2

2 photons coupling to different quarks dominate in 1/Q expansion
 (Borisyuk, Kobushkin, 2008 / Kivel, Vanderhaeghen, 2009)

• Deep-inelastic scattering at large $Q^2\,$

- express through $q\gamma q$ correlator
- soft photon pole contribution
- soft fermion pole contribution vanishes (see also Koike, Vogelsang, Yuan, 2007)
- leads to $A_{UT} \sim 1/Q$
- may dominate, in particular at larger x

3-parton correlators

• Quark-gluon-quark correlator

$$\int \frac{d\xi^- d\zeta^-}{4\pi} e^{ixP^+\xi^-} \langle P, S | \bar{\psi}^q(0) \gamma^+ F_{QCD}^{+i}(\zeta) \psi^q(\xi) | P, S \rangle = -\varepsilon_T^{ij} S_T^j T_F^q(x, x)$$

- first used by Efremov, Teryaev, 1984 / Qiu, Sterman, 1991 in order to explain SSAs \rightarrow ETQS matrix element
- relation to Sivers function (Boer, Mulders Pijlman, 2003)

$$g \, T_F(x,x) = - \int d^2 ec{k}_T \, rac{ec{k}_T^2}{M} f_{1T}^{\perp}(x,ec{k}_T^2) \Big|_{SIDIS}$$

- T_F depends on definition of covariant derivative, and on sign of g; T_F has mass dimension; in literature different definitions for same symbol T_F
- Quark-photon-quark correlator

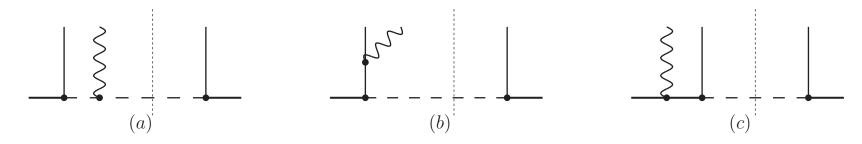
$$\int \frac{d\xi^- d\zeta^-}{2(2\pi)^2} e^{ixP^+\xi^-} \langle P, S | \bar{\psi}^q(0) \gamma^+ eF_{QED}^{+i}(\zeta) \psi^q(\xi) | P, S \rangle = -M\varepsilon_T^{ij}S_T^j F_{FT}^q(x, x)$$

Analytical results

• Unpolarized cross section

$$k'^{0}\frac{d\sigma_{unp}}{d^{3}\vec{k'}} = \frac{2\alpha_{em}^{2} y}{Q^{4}} \frac{\hat{s}^{2} + \hat{t}^{2}}{\hat{u}^{2}} \sum_{q} e_{q}^{2} x f_{1}^{q}(x)$$

Polarized cross section


$$k'^{0} \frac{d\sigma_{pol}}{d^{3}\vec{k'}} = \frac{8\pi\alpha_{em}^{2} xy^{2} M}{Q^{8}} \frac{\hat{s}^{2} + \hat{t}^{2}}{\hat{u}^{2}} \left(2 + \frac{\hat{u}}{\hat{t}}\right) \varepsilon^{SPkk'} \sum_{q} e_{q}^{2} x \tilde{F}_{FT}^{q}(x, x)$$

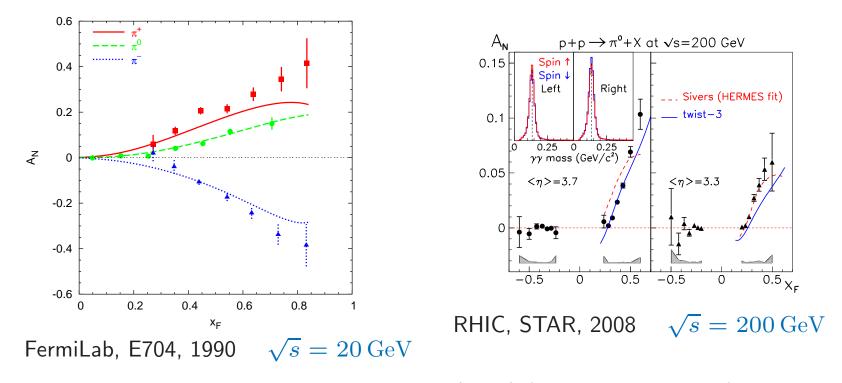
with $\tilde{F}_{FT}(x, x) = F_{FT}(x, x) - x \frac{d}{dx} F_{FT}(x, x)$

- calculation in Feynman gauge and in light-cone gauge
- can be compared to $qq' \rightarrow q'q$ channel calculation in Kouvaris, Qiu, Vogelsang, Yuan (2006) \rightarrow full agreement
- derivative term dominates at large x: $F_{FT} \sim \ldots (1-x)^{ ilde{eta}}$
- Asymmetry

$$A_{UT} = -\frac{2\pi M}{Q} \frac{2-y}{\sqrt{1-y}} \frac{\sum_{q} e_{q}^{2} x \tilde{F}_{FT}^{q}(x,x)}{\sum_{q} e_{q}^{2} x f_{1}^{q}(x)}$$

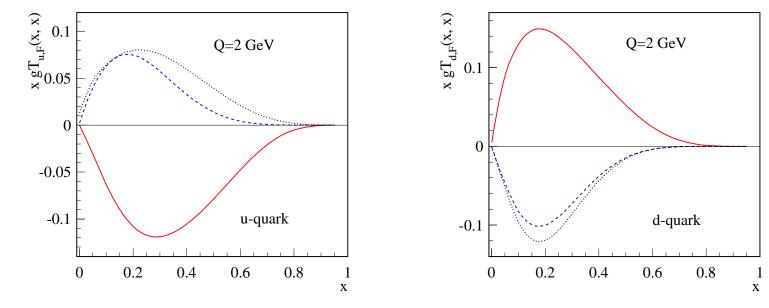
Relation between F_{FT} and T_F

- Focus on region of larger x (neglect antiquarks, gluons)
- Consider $F^q_{FT}(x,x)$ in diquark model


- diagram (b) vanishes (see also Kang, Qiu, Zhang, 2010); diagram (c) vanishes
- no assumption about type of diquark and nucleon-quark-diquark vertex
- one can relate QED correlator F_{FT} to QCD correlator T_F
- Quantitative relation between F_{FT}^q and T_F^q (determined by charge of diquark)

$$F_{FT}^{u/p} = -\frac{\alpha_{em}}{6\pi C_F \alpha_s M} (g T_F^{u/p}) \qquad F_{FT}^{d/p} = -\frac{2 \alpha_{em}}{3\pi C_F \alpha_s M} (g T_F^{d/p})$$
$$F_{FT}^{u/n} = \frac{\alpha_{em}}{3\pi C_F \alpha_s M} (g T_F^{d/p}) \qquad F_{FT}^{d/n} = -\frac{\alpha_{em}}{6\pi C_F \alpha_s M} (g T_F^{u/p})$$

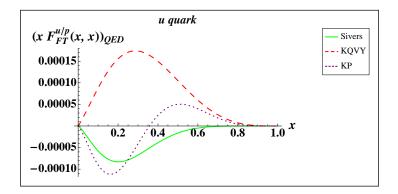
 exactly same relations in light-front quark model (acknowledge discussion with Lorcé and Pasquini)

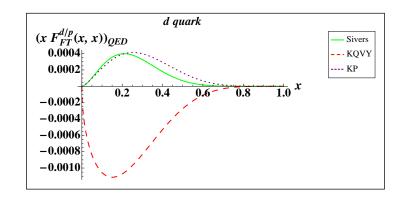

Input for T_F

- T_F from HERMES and COMPASS data on $\ell N^{\uparrow} \rightarrow \ell' h X$
 - use relation between f_{1T}^{\perp} and T_F
 - extraction by Anselmino et al. (2008)
 - same general conclusions for other extractions
- T_F from FNAL and RHIC data on $p^{\uparrow}p
 ightarrow hX$
 - sample data

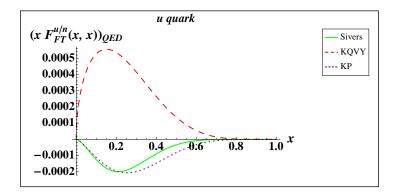
- extraction by Kouvaris, Qiu, Vogelsang, Yuan (2006) (FIT I: no antiquarks)

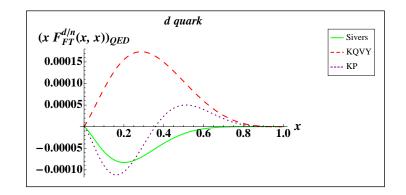
- ansatz for each flavor: $T_F(x,x) = N \, x^lpha \, (1-x)^eta \, f_1(x)$
- in order to describe large x_F behavior one needs: $\beta < 1$ $\rightarrow A_N$ diverges for $x_F \rightarrow 1$ due to derivative term
- sign mismatch (Kang, Qiu, Vogelsang, Yuan, 2011)

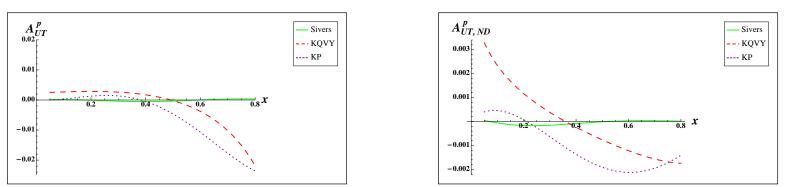


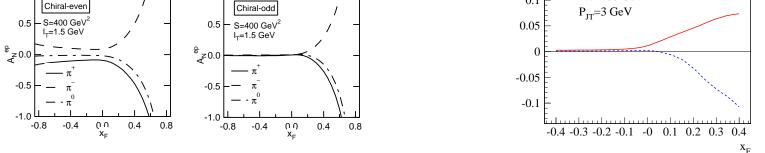

 \rightarrow resolution ?

- T_F from combined fit of data on $\ell N^{\uparrow} \rightarrow \ell' h X$ and $p^{\uparrow} p \rightarrow h X$ (Kang, Prokudin, 2012)
 - use relation between f_{1T}^{\perp} and T_F
 - do not include FNAL data
 - allow for node in x (and k_T) in f_{1T}^{\perp}

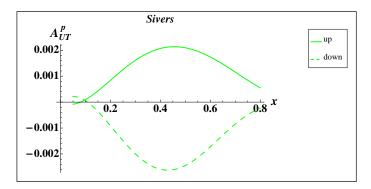

Numerical results for F_{FT}

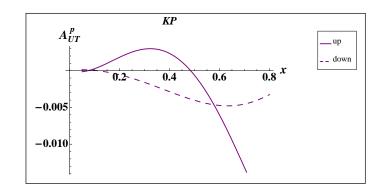

• Proton


• Neutron

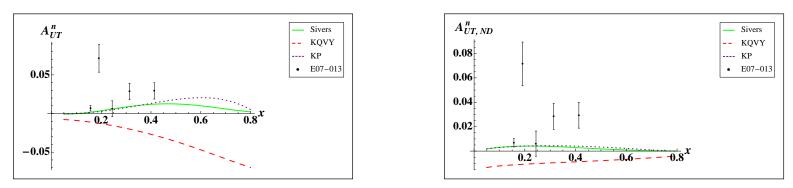

Numerical results for asymmetries

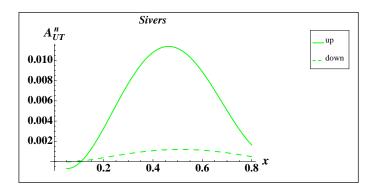
• Proton:
$$\langle Q^2 \rangle = 2.4 \, {\rm GeV}^2 \qquad \langle y \rangle = 0.5$$

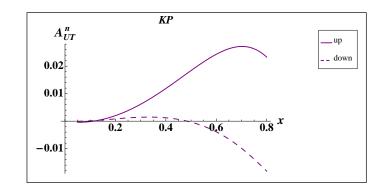

- Sivers function input in perfect agreement with data
- KQVY apparently too large at large x; even diverges for $x \to 1$ \rightarrow similar observation for $\ell p^{\uparrow} \rightarrow hX$ and $\ell p^{\uparrow} \rightarrow jetX$


 $\ell p^{\uparrow} \to \pi X \text{ (Koike, 2002)} \qquad \qquad \ell p^{\uparrow} \to jet X \text{ (Kang, Metz, Qiu, Zhou, 2011)}$

 \rightarrow side-remark: data on $\ell p^{\uparrow} \rightarrow h X$ from HERMES, COMPASS would be useful !


- KP apparently too large at large x; does not diverge for $x \to 1$ (caveat: use x-related value for Q rather than $\langle Q \rangle$)
- individual flavor contributions


- \rightarrow Sivers: individual contributions small, plus cancellation
- \rightarrow KP: due to node in Sivers function no cancellation at larger x
- Note: discussion about proton does not depend on sign of A_{UT}


• Neutron: $\langle Q^2
angle = 2.1 \, {
m GeV}^2 \qquad \langle y
angle = 0.66$

- Sivers function input in reasonable agreement with preliminary data (sign, order of magnitude)
 - \rightarrow wrong sign if f_{1T} had node in k_T
 - \rightarrow this finding agrees with recent work by Kang, Prokudin, 2012
- data may change somewhat; sign and order of magnitude not affected (J.P. Chen, private communication)
- KQVY has the wrong sign
 - ightarrow indication that SSAs in $p^{\uparrow}p
 ightarrow hX$ not primarily caused by Sivers effect
 - ightarrow sign mismatch boils down to puzzle about origin of SSAs in $p^{\uparrow}p
 ightarrow hX$
 - \rightarrow Collins effect, etc. ?
 - \rightarrow effects are too nice and too large to be left unexplained
 - ightarrow crucial new insight might come from $p^{\uparrow}p
 ightarrow jet X$

- KP in reasonable agreement with preliminary data (sign, order of magnitude)
- individual flavor contributions

- $ightarrow A_{UT}^n$ largely dominated by $f_{1T}^{\perp d/p}$
- \rightarrow difference in $f_{1T}^{\perp u/p}$ between Sivers and KP only matters at rather large x

Summary

- Transverse SSAs in inclusive DIS can exist when going beyond one-photon exchange
- Nice recent data on target SSAs A_{UT}^p and A_{UT}^n
- Two photons coupling to same quark
 - complete result for lepton SSA A_{UT}^ℓ
 - result for target SSA incomplete (work in progress)
- Two photons coupling to different quarks
 - does not affect result for lepton SSA
 - may dominate target SSA
 - calculation in twist-3 collinear factorization
 - result depends on $q\gamma q$ -correlator F_{FT}
 - F_{FT} can be related to T_F and f_{1T}^{\perp} (model-dependent)
 - best description of data if T_F taken from SIDIS Sivers function
- Node of f_{1T}^{\perp} in k_T would not work; also node in x not preferred
- Indication that SSAs in $p^{\uparrow}p
 ightarrow hX$ not primarily caused by Sivers effect
- Indication that Sivers effect indeed due to rescattering of active partons through gauge boson exchange (ultimate test expected from measurement of Sivers SSA in Drell-Yan)