Single Spin Asymmetries in Inclusive DISand the ETQS Matrix Element

(A. Metz, Temple University, Philadelphia)

1. Introduction

- 2. Two photons coupling to the same quark
- 3. Two photons coupling to different quarksin collaboration with: Pitonyak, Schäfer, Schlegel, Vogelsang, Zhou
	- Analytical results
	- $\bullet\,$ Relation between $q\gamma q$ -correlator and qgq -correlator
	- Numerical results and discussion
- 4. Summary

Preliminaries

- DIS: $\ell(k) + N(P) \rightarrow \ell'(k') + X$
- Single spin asymmetry (SSA) can exist due to correlation

$$
\varepsilon_{\mu\nu\rho\sigma} S^{\mu} P^{\nu} k^{\rho} k^{\prime\sigma} \sim \vec{S} \cdot (\vec{k} \times \vec{k}^{\prime})
$$

- kinematics similar to, e.g., $p + p \rightarrow h + X$
- $\,S$ spin vector of nucleon, or initial/final state lepton
- Definition of transverse SSA:

$$
A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}
$$

- \bullet $A_{UT}=0$ for one-photon exchange (Christ, Lee, 1966)
	- consider multi-photon exchange
	- $A_{UT} \sim \alpha_{em}$ (small)

Data

• Early data: CEA (1968), SLAC (1969)

 $-$ not in DIS region, $A_{UT}^p = 0$ within uncertainties

 \bullet Recent data:

– can one (qualitatively) understand these data ?

Photons coupling to the same quark

(Metz, Schlegel, Goeke, ²⁰⁰⁶ / Afanasev, Strikman, Weiss, 2007)

• Feynman diagrams

• Polarized initial state lepton

$$
k'^0\frac{d\sigma_{pol}}{d^3\vec{k}'}=\frac{4\alpha_{em}^3}{Q^8}\,m_\ell\,xy^2\,\varepsilon^{SPkk'}\,\sum_q e_q^3\,xf_1^q(x)
$$

- –essential element: imaginary part of lepton-quark box-graph (Barut, Fronsdal, 1960)
- genera^l behavior of SSA:

$$
A_{UT}^{\ell} \sim \alpha_{em} \frac{m_{\ell}}{Q} \rightarrow \text{ small}
$$

• Polarized target

$$
k'^{0} \frac{d\sigma_{pol}}{d^{3}\vec{k}'} = \frac{4\alpha_{em}^{3}}{Q^{8}} M x^{2} y (1 - y) \varepsilon^{SPkk'} \sum_{q} e_{q}^{3}
$$

$$
\times \left[\left(x g_{T}^{q}(x) - g_{1T}^{(1)q}(x) - \frac{m_{q}}{M} h_{1}^{q}(x) \right) \left(\ln \frac{Q^{2}}{\lambda^{2}} + H_{1}(y) \right) + \frac{m_{q}}{M} h_{1}^{q}(x) H_{2}(y) \right]
$$

– contributions: (1) collinear twist-3; (2) transv. quark momentum; (3) quark mass

- $-$ calculation is em. gauge invariant, but uncancelled IR-divergence: λ is photon mass
- transversity contribution first published by Afanasev, Strikman, Weiss (2007)
	- \rightarrow they use transversity projector containing m_q
 \rightarrow calculation becomes identical to that for lent
	- \rightarrow calculation becomes identical to that for lepton SSA
 \rightarrow transversity result IP finite
	- \rightarrow transversity result IR-finite
- inclusion of quark-gluon-quark correlator can cure problem (work in progress)

$$
xg_T^q(x) - g_{1T}^{(1)q}(x) - \frac{m_q}{M}h_1^q(x) = x\tilde{g}_T^q(x)
$$
 (EOM-relation)

 \rightarrow final result $\sim x\tilde{g}_T$, plus quark mass term \rightarrow small ?

 $\bullet~$ Estimate of transversity contribution for A_{UT} (Afanasev, Strikman, Weiss, 2007)

- $-$ they use constituent quark mass $M_q = M/3$
- –asymmetries very small
- –proton: compatible with data
- –neutron: not compatible with data; also sign opposite to data

Photons coupling to different quarks

 $\bullet~$ Elastic scattering at large Q^2

– ² photons coupling to different quarks dominate in $1/Q$ expansion
(Beriamle Kehneblin, 2009 (Borisyuk, Kobushkin, 2008 $\sqrt{ }$ Kivel, Vanderhaeghen, 2009)

 \bullet Deep-inelastic scattering at large Q^2

- express through $q \gamma q$ correlator
- soft photon pole contribution
- soft fermion pole contribution vanishes (see also Koike, Vogelsang, Yuan, 2007)
- − leads to $A_{UT} \sim 1/Q$
- $\hspace{0.1mm}-\hspace{0.1mm}$ may dominate, in particular at larger x

3-parton correlators

• Quark-gluon-quark correlator

$$
\int \frac{d\xi^- d\zeta^-}{4\pi} e^{ixP^+\xi^-} \langle P, S | \bar{\psi}^q(0) \gamma^+ F_{QCD}^{+i}(\zeta) \psi^q(\xi) | P, S \rangle = -\varepsilon_T^{ij} S_T^j T_F^q(x, x)
$$

- $-$ first used by Efremov, Teryaev, 1984 $\mathrm{/}$ Qiu, Sterman, 1991 in order to explain SSAs \rightarrow ETQS matrix element
- relation to Sivers function (Boer, Mulders Pijlman, 2003)

$$
g T_F(x, x) = - \int d^2 \vec{k}_T \frac{\vec{k}_T^2}{M} f_{1T}^{\perp}(x, \vec{k}_T^2) \Big|_{SIDIS}
$$

- $\, T_{F}$ depends on definition of covariant derivative, and on sign of g ; T_F has mass dimension; in literature different definitions for same symbol T_F
- Quark-photon-quark correlator

$$
\int \frac{d\xi^- d\zeta^-}{2(2\pi)^2} e^{ixP^+ \xi^-} \langle P, S | \bar{\psi}^q(0) \gamma^+ e F_{QED}^{+i}(\zeta) \psi^q(\xi) | P, S \rangle = -M \varepsilon_T^{ij} S_T^j F_{FT}^q(x, x)
$$

Analytical results

• Unpolarized cross section

$$
k'^0 \frac{d \sigma_{unp}}{d^3 \vec{k}'} = \frac{2 \alpha_{em}^2 y}{Q^4} \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2} \sum_q e_q^2 x f_1^q(x)
$$

• Polarized cross section

$$
k^{\prime 0} \frac{d\sigma_{pol}}{d^3 \vec{k}'} = \frac{8\pi \alpha_{em}^2 xy^2 M}{Q^8} \frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2} \left(2 + \frac{\hat{u}}{\hat{t}}\right) \varepsilon^{SPkk'} \sum_{q} e_q^2 x \tilde{F}_{FT}^q(x, x)
$$

with $\tilde{F}_{FT}(x, x) = F_{FT}(x, x) - x \frac{d}{dx} F_{FT}(x, x)$

- calculation in Feynman gauge and in light-cone gauge
- $-$ can be compared to $qq' \rightarrow q'q$ channel calculation in
Kouvaris, Qiu, Vogelsang, Yuan (2006) \rightarrow full agreem Kouvaris, Qiu, Vogelsang, Yuan (2006) → full agreement
.
- derivative term dominates at large $x\colon\quad F_{FT}\sim\ldots\left(1-x\right)^{\tilde{\beta}}$
- Asymmetry

$$
A_{UT} = -\frac{2\pi M}{Q} \frac{2-y}{\sqrt{1-y}} \frac{\sum_{q} e_q^2 x \tilde{F}_{FT}^q(x,x)}{\sum_{q} e_q^2 x f_1^q(x)}
$$

Relation between F_{FT} and T_F

- $\bullet\,$ Focus on region of larger x (neglect antiquarks, gluons)
- Consider $F_{FT}^q(x,x)$ in diquark model

- diagram (b) vanishes (see also Kang, Qiu, Zhang, 2010); diagram (c) vanishes
- no assumption about type of diquark and nucleon-quark-diquark vertex
- one can relate QED correlator F_{FT} to QCD correlator T_F
- \bullet Quantitative relation between F^q_{FT} and T^q_{F} (determined by charge of diquark)

$$
F_{FT}^{u/p} = -\frac{\alpha_{em}}{6\pi C_F \alpha_s M} (g T_F^{u/p}) \qquad F_{FT}^{d/p} = -\frac{2 \alpha_{em}}{3\pi C_F \alpha_s M} (g T_F^{d/p})
$$

$$
F_{FT}^{u/n} = \frac{\alpha_{em}}{3\pi C_F \alpha_s M} (g T_F^{d/p}) \qquad F_{FT}^{d/n} = -\frac{\alpha_{em}}{6\pi C_F \alpha_s M} (g T_F^{u/p})
$$

– exactly same relations in light-front quark model (acknowledge discussion with Lorcé and Pasquini)

Input for T_F

- T_F from HERMES and COMPASS data on $\ell N^{\uparrow} \to \ell^{\prime} h X$
	- $-$ use relation between f_{1T}^\perp and T_F
	- extraction by Anselmino et al. (2008)
	- same genera^l conclusions for other extractions
- T_F from FNAL and RHIC data on $p^{\uparrow}p \to hX$
– sample data
	- sample data

extraction by Kouvaris, Qiu, Vogelsang, Yuan (2006) (FIT I: no antiquarks)

- ansatz for each flavor: $T_F(x, x) = N x^{\alpha} (1-x)^{\beta} f_1(x)$
- in order to describe large x_F behavior one needs: $\beta < 1$ \rightarrow A_N diverges for $x_F \rightarrow 1$ due to derivative term
- sign mismatch (Kang, Qiu, Vogelsang, Yuan, 2011)

 \rightarrow resolution ?

- T_F from combined fit of data on $\ell N^{\uparrow} \to \ell' h X$ and $p^{\uparrow} p \to h X$
(Kang Prokudin 2012) (Kang, Prokudin, 2012)
	- $-$ use relation between f_{1T}^\perp and T_F
	- do not include FNAL data
	- allow for node in x (and k_T) in f_{1T}^{\perp}

Numerical results for F_{FT}

• Proton

\bullet Neutron

Numerical results for asymmetries

• Proton:
$$
\langle Q^2 \rangle = 2.4 \,\text{GeV}^2 \qquad \langle y \rangle = 0.5
$$

– Sivers function input in perfect agreement with data

 -1.0

-1.0

-0.8

 -0.4 0.0 0.4 0.8 ^xF

-0.8

 $-$ KQVY apparently too large at large $x;$ even diverges for $x\to1$ \rightarrow similar observation for $\ell p^{\uparrow} \rightarrow hX$ and $\ell p^{\uparrow} \rightarrow jetX$

> -0.4 0.0 0.4 0.8 ^xF

 $\ell p^{\uparrow} \rightarrow \pi X$ (Koike, 2002) $\qquad \quad \ell p^{\uparrow} \rightarrow jet X$ (Kang, Metz, Qiu, Zhou, 2011) -0.5e
0.0عے ً 0.51.0Chiral-oddS=400 GeV 2 l_T=1.5 GeV π+ππ-0.50.0ع
20.0 0.51.0 $_{\Gamma}$ Chiral-evenS=400 GeVl_T=1.5 GeV 2π+ππ-0.1-0.05 Ω 0.05 $0.1 \frac{E}{E}$ A_{UT} \sqrt{s} =100 GeV $P_{TT}=3$ GeV

-0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4

 x_F

 \rightarrow side-remark: data on $\ell p^{\uparrow} \rightarrow hX$ from HERMES, COMPASS would be useful!

- KP apparently too large at large x ; does not diverge for $x \to 1$
(cayeat: use x related value for Ω rather than $\langle \Omega \rangle$) (caveat: use x -related value for Q rather than $\langle Q \rangle$)
- –individual flavor contributions

- \rightarrow Sivers: individual contributions small, plus cancellation
- \rightarrow KP: due to node in Sivers function no cancellation at larger x
- $\,$ Note: discussion about proton does not depend on sign of A_{UT}

• Neutron: $\langle Q^2 \rangle = 2.1 \, \text{GeV}^2 \qquad \langle y \rangle = 0.66$

- Sivers function input in reasonable agreement with preliminary data (sign, order of magnitude)
	- \rightarrow wrong sign if f_{1T} had node in k_T

	whis finding agrees with recent we
	- \rightarrow this finding agrees with recent work by Kang, Prokudin, 2012
- data may change somewhat; sign and order of magnitude not affected (J.P. Chen, private communication)
- KQVY has the wrong sign
	- \longrightarrow \rightarrow indication that SSAs in $p^{\uparrow}p \rightarrow hX$ not primarily caused by Sivers effect
 \rightarrow sign mismatch boils down to puzzle about erigin of SSAs in $p^{\uparrow}p \rightarrow hX$
	- \longrightarrow \rightarrow sign mismatch boils down to puzzle about origin of SSAs in $p^{\uparrow}p \rightarrow hX$
 \rightarrow Collins offect, ats 2
	- \rightarrow Collins effect, etc. ?
	- \rightarrow effects are too nice and too large to be left unexplained
 \rightarrow studial new insight might some from $n^{\uparrow}n \rightarrow \phi \phi^* Y$
	- \longrightarrow \rightarrow crucial new insight might come from $p^{\uparrow}p \rightarrow jetX$
- KP in reasonable agreement with preliminary data (sign, order of magnitude)
- individual flavor contributions

- \longrightarrow → A_{UT}^n largely dominated by $f_{1T}^{\perp d/p}$
- \longrightarrow \rightarrow difference in $f_{1T}^{\perp u/p}$ between Sivers and KP only matters at rather large x

Summary

- Transverse SSAs in inclusive DIS can exist when going beyond one-photon exchange
- \bullet Nice recent data on target SSAs A_{UT}^p and A_{UT}^n
- Two photons coupling to same quark
	- complete result for lepton SSA A^{ℓ}_{UT}
	- result for target SSA incomplete (work in progress)
- Two photons coupling to different quarks
	- does not affect result for lepton SSA
	- may dominate target SSA
	- calculation in twist-3 collinear factorization
	- result depends on $q \gamma q$ -correlator F_{FT}
	- $\,F_{FT}$ can be related to T_{F} and f_{1T}^{\perp} (model-dependent)
	- $-$ best description of data if T_F taken from SIDIS Sivers function
- Node of f_{1T}^{\perp} in k_T would not work; also node in x not preferred
- •• Indication that SSAs in $p^{\uparrow}p \to hX$ not primarily caused by Sivers effect
- \bullet Indication that Sivers effect indeed due to rescattering of active partons through gauge boson exchange (ultimate test expected from measurement of Sivers SSA in Drell-Yan)