

# Large-x structure functions and OAM

Wally Melnitchouk



#### **Outline**

- $\blacksquare$  Why large-x quarks are important
  - $\rightarrow$  valence quarks, relation with high-t form factors
- $\blacksquare$   $x \rightarrow 1$  behavior from perturbative QCD
  - $\rightarrow$   $L_z = 0$  analysis; suppression of helicity-flip
- Role of OAM
  - → log enhancement of helicity-flip amplitudes
- Phenomenological implications
  - $\rightarrow$  CJ (CTEQ-JLab) large-x global analysis
  - $\rightarrow$  challenges for empirical  $x \rightarrow 1$  analysis

Why large *x*?

- Most direct connection between quark distributions and models of nucleon structure (*e.g.* leading Fock state of wfn) is via *valence* quarks
  - $\rightarrow$  most cleanly revealed at x > 0.4



- Ideal testing ground for nonperturbative & perturbative models of the nucleon
  - $\rightarrow$  e.g. ratio of d to u PDFs sensitive to spin-flavor dynamics

#### SU(6) proton wave function

$$p^{\uparrow} = -\frac{1}{3} d^{\uparrow}(uu)_1 - \frac{\sqrt{2}}{3} d^{\downarrow}(uu)_1 \\ + \frac{\sqrt{2}}{6} u^{\uparrow}(ud)_1 - \frac{1}{3} u^{\downarrow}(ud)_1 + \frac{1}{\sqrt{2}} u^{\uparrow}(ud)_0 \\ \text{interacting quark spin spectator "diquark"}$$

Ideal testing ground for nonperturbative & perturbative models of the nucleon

 $\rightarrow$  e.g. ratio of d to u PDFs sensitive to spin-flavor dynamics

• 
$$d/u \rightarrow 1/2$$
 SU(6) symmetry

• 
$$d/u \rightarrow 0$$
  $S = 0$   $qq$  dominance

• 
$$d/u \rightarrow 1/5$$
  $S_z = 0$   $qq$  dominance

• 
$$d/u \to \frac{4\mu_n^2/\mu_p^2 - 1}{4 - \mu_n^2/\mu_p^2}$$

local quark-hadron duality\*  $(\mu_{p,n} \text{ magnetic moments})$ 

see e.g. WM, Ent, Keppel Phys. Rep. **406**, 127 (2005) \*structure function at  $x \to 1$  given by elastic form factor at  $Q^2 \to \infty$ 

- Ideal testing ground for nonperturbative & perturbative models of the nucleon
  - $\rightarrow$  e.g. ratio  $\Delta q/q$  even more sensitive

• 
$$\Delta u/u \to 2/3$$
 SU(6) symmetry  $\Delta d/d \to -1/3$ 

• 
$$\Delta u/u \to 1$$
  $S=0$   $qq$  dominance  $\Delta d/d \to -1/3$ 

• 
$$\Delta u/u \to 1$$
  $S_z = 0$   $qq$  dominance  $\Delta d/d \to 1$   $\underline{or}$  local duality

#### Inclusive-exclusive connection

#### Drell-Yan-West relation

$$G_M(Q^2) \sim \left(\frac{1}{Q^2}\right)^n \iff F_2(x) \sim (1-x)^{2n-1}$$

- Drell & Yan: field-theoretical model of strongly interacting  $N, \overline{N} \& \pi$  "partons" in infinite momentum frame
- West: PRL 24, 1206 (1970)



covariant model with single scalar quark, assuming amplitude for proton  $\rightarrow$  quark + spectator behaves as  $f(p_i^2, p_{\rm spec}^2) \sim \left(\frac{1}{n^2}\right)^n g(p_{\rm spec}^2), \quad p_i^2 \rightarrow \infty$ 

$$\rightarrow$$
 for several flavors, in general  $\sum_{i} e_i^2 \neq \left(\sum_{i} e_i\right)^2$ 

→ how does duality arise?

Close, Isgur, PLB **509**, 81 (2001)

In QCD, "exceptional"  $x \rightarrow 1$  configurations of proton wave function generated from "typical" wave function (for which  $x_i \sim 1/3$ ) by exchange of  $\geq 2$  hard gluons, with mass  $k^2 \sim -\langle k_{\perp}^2 \rangle/(1-x)$ 



Farrar, Jackson, PRL 35, 1416 (1975)

- Since  $|k^2|$  is large, coupling at q-g vertex is small
  - → use lowest-order perturbation theory!
- Assume wave function vanishes sufficiently fast as  $|k^2| \to \infty$  and unperturbed wave function dominated by 3-quark Fock component with  $SU(2) \times SU(3)$  symmetry

- If spectator "diquark" spins are anti-aligned (helicity of struck quark = helicity of proton)
  - can exchange <u>transverse</u>
    <u>or longitudinal</u> gluon



- If spectator "diquark" spins are aligned (helicity of struck quark ≠ helicity of proton)
  - → can exchange *only longitudinal* gluon

Coupling of (large- $k^2$ ) longitudinal gluon to (small- $p^2$ ) quark is suppressed by  $(p^2/k^2)^{1/2} \sim (1-x)^{1/2}$  w.r.t. transverse

$$\rightarrow q^{\downarrow} \sim (1-x)^2 q^{\uparrow} \sim (1-x)^5$$

- Phenomenological consequences of  $S_z = 0$  qq dominance\*
  - $\rightarrow$  assuming unperturbed SU(6) wave function,

$$F_2^n/F_2^p \rightarrow 3/7$$

→ dominance of helicity-1/2 photoproduction cross section

$$\sigma_{1/2} \gg \sigma_{3/2}$$

 $\rightarrow$  for all quark flavors q,

$$\Delta q/q \rightarrow 1$$

and therefore all polarization asymmetries  $A_1 o 1$ 

→ for pion, expect

$$F_2^{\pi} \sim (1-x)^2$$

\* valid in Abelian & non-Abelian theories

# Role of orbital angular momentum

- Above results assume quarks in lowest Fock state are in relative s-wave
  - $\rightarrow$  higher Fock states and nonzero quark OAM will in general introduce additional suppression in (1-x)
- BUT nonzero OAM can provide <u>logarithmic enhancement</u> of <u>helicity-flip</u> amplitudes!
  - quark OAM modifies asymptotic behavior of nucleon's Pauli form factor

$$F_2(Q^2) \sim \log^2(Q^2/\Lambda^2) rac{1}{Q^6}$$
 Belitsky, Ji, Yuan PRL 91, 092003 (2003)

 $\longrightarrow$  consistent with surprising  $Q^2$  dependence of proton's  $G_E/G_M$  form factor ratio

# Role of orbital angular momentum

- For  $L_z$  = 1 Fock state, expand hard scattering amplitude in powers of  $k_{\perp}$  ("collinear expansion")
  - $\rightarrow$  logarithmic singularities arise when integrating over longitudinal momentum fractions  $x_i$  of soft quarks



 $\rightarrow$  leads to additional  $\log^2(1-x)$  enhancement of  $q^{\downarrow}$ 

$$q^{\downarrow} \sim (1-x)^5 \log^2(1-x)$$

Avakian, Brodsky, Deur, Yuan, PRL 99, 082001 (2007)

(similar contributions to positive helicity  $q^{\uparrow}$  are power-suppressed)

# Role of orbital angular momentum

- $k_{\perp}$ -odd transverse momentum dependent (TMD) distributions (vanish after  $k_{\perp}$  integration)
  - $\longrightarrow$  arise from interference between  $L_z = 0$  and  $L_z = 1$  states
- *T*-even TMDs
  - $\longrightarrow$   $g_{1T}$  (longitudinally polarized q in a transversely polarized N)  $h_{1L}$  (transversely polarized q in a longitudinally polarized N)
- $\blacksquare$  T-odd TMDs
  - $\rightarrow f_{1T}^{\perp}$  (unpolarized q in a transversely polarized N "Sivers")  $h_1^{\perp}$  (transversely polarized q in an unpolarized N - "Boer-Mulders")
- Each behaves in  $x \rightarrow 1$  limit as

TMD 
$$\sim (1-x)^4$$

Brodsky, Yuan PRD **74**, 094018 (2006)

 Power counting rule constraints used in exploratory fit to limited set of inclusive DIS spin structure function data

$$q^{\uparrow} = x^{\alpha} \left[ A(1-x)^3 + B(1-x)^4 \right]$$
 $q^{\downarrow} = x^{\alpha} \left[ C(1-x)^5 + D(1-x)^6 \right]$ 
Brodsky, Burkardt, Schmidt NPB 441, 197 (1995)

 Power counting rule constraints used in exploratory fit to limited set of inclusive DIS spin structure function data

$$q^{\uparrow} = x^{\alpha} \left[ A(1-x)^3 + B(1-x)^4 \right]$$

$$q^{\downarrow} = x^{\alpha} \left[ C(1-x)^5 + D(1-x)^6 + C'(1-x)^5 \log^2(1-x) \right]$$

$$q^{\downarrow} = x^{\alpha} \left[ C(1-x)^5 + D(1-x)^6 + C'(1-x)^5 \log^2(1-x) \right]$$

$$LSS'98$$

$$LSS'98$$

$$LSS'98$$

$$ABDY'07$$

$$ABDY'07$$

$$ABDY'07$$

$$CLAS$$

- Determining  $x \rightarrow 1$  behavior experimentally is problematic
  - $\rightarrow$  simple  $x^{\alpha}(1-x)^{\beta}$  parametrizations inadequate for describing high-precision data, and global fits typically require more complicated x dependence, e.g.

$$q \sim x^{\alpha}(1-x)^{\beta} (1+\gamma\sqrt{x}+\eta x)$$

 $\longrightarrow$  recent global fits of spin-dependent PDFs find (at  $Q^2 \sim 5 \text{ GeV}^2$ )

$$eta pprox 3.3 \ (\Delta u_V), \ 3.9 \ (\Delta d_V)$$
 de Florian et al. PRD 80, 034030 (2009)

but with  $\gamma, \eta \sim \mathcal{O}(10-100)$ 

■ Challenge to perform constrained global fit to all DIS, SIDIS &  $\vec{p}\,\vec{p}$  scattering data

- Determining  $x \rightarrow 1$  behavior experimentally is problematic
  - $\rightarrow$  simple  $x^{\alpha}(1-x)^{\beta}$  parametrizations inadequate for describing high-precision data, and global fits typically require more complicated x dependence, e.g.

$$q \sim x^{\alpha}(1-x)^{\beta} (1+\gamma\sqrt{x}+\eta x)$$

 $\longrightarrow$  recent global fits of spin-dependent PDFs find (at  $Q^2 \sim 5 \text{ GeV}^2$ )

$$eta pprox 3.3 (\Delta u_V), \ 4.1 (\Delta d_V)$$
 Leader, Sidorov, Stamenov PRD 82, 114018 (2010)

but with  $\gamma, \eta \sim \mathcal{O}(10-100)$ 

Challenge to perform constrained global fit to all DIS, SIDIS &  $\vec{p}\,\vec{p}$  scattering data

- Determining  $x \rightarrow 1$  behavior experimentally is problematic
  - $\rightarrow$  simple  $x^{\alpha}(1-x)^{\beta}$  parametrizations inadequate for describing high-precision data, and global fits typically require more complicated x dependence, e.g.

$$q \sim x^{\alpha} (1-x)^{\beta} (1+\gamma\sqrt{x}+\eta x)$$

 $\rightarrow$  recent global fits of spin-dependent PDFs find (at  $Q^2 \sim 5 \text{ GeV}^2$ )

$$eta pprox 3.0 (\Delta u_V), \ 4.1 (\Delta d_V)$$
 Bluemlein, Boettcher NPB 841, 205 (2010)

but with  $\gamma, \eta \sim \mathcal{O}(10-100)$ 

Challenge to perform constrained global fit to all DIS, SIDIS &  $\vec{p}\,\vec{p}$  scattering data

- Challenges for large-*x* PDF analysis
  - $\longrightarrow$  at fixed  $Q^2$ , increasing x corresponds to decreasing W
    - eventually run into nucleon *resonance* region as  $x \rightarrow 1$
    - impose cuts (usual solution) or utilize quark-hadron duality (theoretical bias)
  - $\rightarrow$  subleading  $1/Q^2$  corrections (target mass, higher twists)
  - → nuclear corrections in extraction of *neutron* information from nuclear (deuterium, <sup>3</sup>He) data
  - → dependence on choice of PDF parametrization
- New CTEQ-JLab ("CJ") global PDF analysis\* (unpolarized) dedicated to describing large-x region

<sup>\*</sup>CJ collaboration: A. Accardi, J. Owens, WM (theory) + E. Christy, C. Keppel, P. Monaghan, L. Zhu (expt.)



cut0:  $Q^2 > 4 \text{ GeV}^2$ ,  $W^2 > 12.25 \text{ GeV}^2$ 

cut1:  $Q^2 > 3 \text{ GeV}^2$ ,  $W^2 > 8 \text{ GeV}^2$ 

cut2:  $Q^2 > 2 \text{ GeV}^2$ ,  $W^2 > 4 \text{ GeV}^2$ 

cut3:  $Q^2 > m_c^2$ ,  $W^2 > 3 \text{ GeV}^2$ 

factor 2 increase in DIS data from  $cut0 \rightarrow cut3$ 

- Systematically reduce  $Q^2 \& W$  cuts
- Fit includes TMCs, HT term, nuclear corrections





Accardi et al. PRD 81, 034016 (2010)

→ larger database with weaker cuts leads to significantly *reduced errors*, esp. at large *x* 



- $\rightarrow$  large nuclear correction uncertainties at x > 0.5
- $\rightarrow$   $x \rightarrow 1$  limiting value depends on deuteron model



dramatic increase in d PDF in  $x \to 1$  limit with more flexible parametrization  $d \to d + a x^b u$  (allows for finite, nonzero d/u in x = 1 limit)

#### Outlook

- Nuclear correction uncertainties expected to be resolved with new experiments at JLab-12 GeV uniquely sensitive to d quarks (up to  $x \sim 0.85$ )
  - "spectator" protons tagged in SIDIS from deuterium  $e \ d \rightarrow e \ p_{\rm spec} \ X$  ("BoNuS")
  - ightharpoonup DIS from  ${}^3{\rm He}$ -tritium mirror nuclei  $e\ {}^3{\rm He}({}^3{\rm H}) \to e\ X$  ("MARATHON")
  - ightharpoonup PVDIS from protons  $\vec{e}_L(\vec{e}_R) \ p 
    ightharpoonup e \ X$  ("SOLID")
- Constraints from W production in pp collisions at high (lepton &W boson) rapidities
  - → CDF & D0 at Fermilab, LHCb at CERN

### W boson asymmetries

lacktriangle Large-x PDF uncertainties affect observables at large

rapidity y, with

$$y = \frac{1}{2} \ln \left( \frac{E + p_z}{E - p_z} \right) \longrightarrow x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}$$

## e.g. $W^{\pm}$ asymmetry





Brady, Accardi, WM, Owens arXiv:1110:5398 [hep-ph]

#### Outlook

- New JLab-12 GeV precisions measurements of  $A_1^n \& A_1^p$  hope to constrain  $\Delta d/d$  up to  $x \sim 0.8$ 
  - new (non-inclusive DIS) experiments to reduce nuclear dependence
- Parametrization dependence of  $x \rightarrow 1$  limit may be eliminated through e.g. "neural network" PDFs
  - → thus far applied mainly to unpolarized PDFs
- New global analysis of *spin-dependent* PDFs dedicated to large-x, moderate- $Q^2$  region
  - → JLab Angular Momentum ("JAM") collaboration\*
  - → initial focus on helicity PDFs; later expand scope to TMDs

<sup>\*</sup> JAM collaboration: P. Jimenez-Delgado, A. Accardi, WM (theory) + JLab Halls A, B, C (expt.)

#### Outlook

#### ■ Large-*x* PDFs from lattice?

 $\rightarrow$  need many moments to reconstruct x dependence



#### Need new ideas

→ e.g. compute Compton scattering tensor
 <u>directly</u> by coupling to fictitious heavy quark
 (remove all-to-all propagators, and operator mixing)

Detmold, Lin PRD **73**, 014501 (2006)

# The End