Quark and Glue Momenta and Angular Momenta in the Nucleon – Lattice Results

- Update of lattice calculations of <x>_{u-d},
 <x>_s /<x>_u (D.I.) ratio connected sea partons.
- Status of experimental and lattice results on quark spin and glue spin
- Quark (CI and DI) and glue momenta and angular momenta in a lattice calculation

χ **QCD** Collaboration:

M. Deka, T. Doi, B. Chakraborty, D. Mankame, S.J. Dong, T. Draper, M. Gong, H.W. Lin, K.F. Liu, N. Mathur, T. Streuer, Y. Yang

INT 2012

Lattice Calculation of g_A^3 and $\langle x \rangle_{u-d}$

Isovector g_A

These involve connected insertion calculations.

Hadron Structure with **Disconnected Insertion Calculation**

- Pion-Nucleon Sigma Term, Strangeness Content in N \bigcirc
- Quark Spin and Orbital Angular Momentum in Nucleon
- Sea Quark Contributions in <x>, and <x²>
- **Strangeness Electric and Magnetic Form Factors** \bigcirc
- Muon Anomalous M. M. (g-2) (light-by-light)
- **Neutron Electric Dipole Moment**

Strange Parton Moments

- Strange parton distribution is not well known H.L. Lai et al. (CTEQ), JHEP 0704:089 (2007)
- 0.018 < <x>_s < 0.040
- NuTeV measurement of $\sin^2 \theta_{W}$ is 3 σ above the standard model \longrightarrow strangeness asymmetry, i.e. $S(\chi) \neq \overline{S}(\chi)$?
- CTEQ: the sign of $dx x[s(x) \overline{s}(x)]$ is uncertain.
- Lattice can calculate $\langle x^2 \rangle_s = \int dx \ x^2 [s(x) \overline{s}(x)]$

 $\langle x \rangle_{s+\overline{s}}$ $\langle x \rangle_{u+\overline{u}}$ (DI)

2+1 Flavor Full QCD

Quenched

Implication on Fitting of PDF

 $\frac{\langle x \rangle_{s+\overline{s}}}{\langle x \rangle_{u+\overline{u}} (\text{DI})} = \begin{cases} 0.655(43) \text{ [quenched]} \\ 0.894 \text{ (47) [full QCD]} \end{cases}$

$$\frac{\langle x \rangle_{\overline{s}}}{\langle x \rangle_{(\overline{u}+\overline{d})/2}} \sim 0.4$$

Global PDF Fitting à la CTEQ

Is there a discrepancy?

•
$$W_{\mu\nu}(p,q) = -W_1(q^2,\nu)(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}) + W_2(q^2,\nu)(p_{\mu} - \frac{p \cdot q}{q^2}q_{\mu})(p_{\nu} - \frac{p \cdot q}{q^2}q_{\nu})$$

Large momentum frame

$$vW_{2}(q^{2},v) \xrightarrow[|\vec{p}| > |\vec{q}|]{} \to F_{2}(x,Q^{2}) = x\sum_{i} e_{i}^{2}(q_{i}(x,Q^{2}) + \overline{q}_{i}(x,Q^{2})), \ x = \frac{Q^{2}}{2M_{N}v}$$

 Parton degrees of freedom: valence, connected sea and disconnected sea

udS
$$u_V(x) + u_{CS}(x)$$
 $d_V(x) + d_{CS}(x)$ $\overline{u}_{CS}(x)$ $\overline{d}_{CS}(x)$ $u_{DS}(x) + \overline{u}_{DS}(x)$ $d_{DS}(x) + \overline{d}_{DS}(x)$

Physical Consequences

Is it necessary to separate out the CS from the DS?

1) Small x behavior

(Reggeon exchange, no pomeron exchange)

$$q_{DS}$$
, $\overline{q}_{DS} \sim_{x \to 0} x$

(Pomeron exchange)

one flavor trace ($\overline{u}_{CS} \neq \overline{d}_{CS}$)

K.F. Liu and S.J. Dong, PRL 72, 1790 (1994)

$$Sum = \frac{1}{3} + \frac{2}{3} \int_{0}^{1} dx \, (\overline{u}_{CS}(x) - \overline{d}_{CS}(x)),$$
$$= \frac{1}{3} + \frac{2}{3} \Big[n_{\overline{u}_{CS}} - n_{\overline{d}_{CS}} \Big] (1 + O(\alpha_s))$$

HERMES – Kaon production in DIS, PL B666, 446 (2008)

3) Fitting of experimental data

K.F. Liu, PRD (2000)

$$\overline{u} - \overline{d} \xrightarrow[x \to 0]{} x^{-1/2} \qquad \text{O.K}$$

But $\overline{u} + \overline{d} \propto \overline{s}$ is not adequate.

A better fit
$$\frac{\overline{u}(x) + d(x)}{2} = f \overline{s}(x) + c(x), \quad f \approx 1$$

where $c(x) \xrightarrow[x \to 0]{} x^{-1/2}$ like in $\overline{u}(x) - \overline{d}(x)$

4) Unlike DS, CS evolves the same way as the valence.

12

Connected Sea Partons

page 13

Gottfried Sum Rule Violation

$$\Rightarrow \int_{0}^{1} dx \ (\overline{d}_{CS}(x) - \overline{u}_{CS}(x)) > 0$$

$$\langle x \rangle_{u-d} (\text{lattice}) = \langle x \rangle_{u_{val} - d_{val}} + 2 \langle x \rangle_{\overline{u}_{CS} - \overline{d}_{CS}}$$

$$> \langle x \rangle_{u_{val} - d_{val}} (\text{expt})$$

$$\Rightarrow \langle x \rangle_{\overline{d}_{CS} - \overline{u}_{CS}} < 0$$

Results from Drell-Yan Experiment – E866/NuSea

c.f. $\langle x \rangle_{s-\bar{s}} = 0.0038 \rightarrow \text{No NuTeV}$ anomaly

 $Z_{
m pert}(\mu,a)\simeq 1.1$ $\mu=2{
m GeV}_{
m 16}$

Quark and Glue Momenta and Angular Momenta

- Quark and glue spin experiments
- Glue spin operator and gauge invariance
- Momentum and angular momentum sum rules
- Lattice calculation

Twenty years since the "spin crisis"

□ EMC experiment in 1988/1989 – "the plot":

$$g_1(x) = \frac{1}{2} \sum_{q} e_q^2 \left[\Delta q(x) + \Delta \bar{q}(x) \right] + \mathcal{O}(\alpha_s) + \mathcal{O}(1/Q)$$
$$\Delta q = \int_0^1 dx \Delta q(x) = \langle P, s_{\parallel} | \overline{\psi}_q(0) \gamma^+ \gamma_5 \psi_q(0) | P, s_{\parallel} \rangle$$

G "Spin crisis" or puzzle: $\Delta \Sigma = \sum_{q} \Delta q + \Delta \overline{q} = 0.245 \pm 0.05$

Summary Gluon Polarization

Presently all Analysis in LO only

Quark Orbital Angular Momentum (connected insertion)

Nucleon Spin

- Quark spin ΔΣ ~ 20 30% of proton spin (DIS, Lattice)
- Quark orbital angular momentum? (lattice calculation (LHPC,QCDSF) $\rightarrow \sim 0$)
- Glue spin ΔG/G small (COMPASS, STAR) ?
- Glue orbital angular momentum is small (Brodsky and Gardner) ?

Dark Spin ?

Hadron Structure with Quarks and Glue

 Quark and Glue Momentum and Angular Momentum in the Nucleon

Momenta and Angular Momenta of Quarks and Glue

Energy momentum tensor operators decomposed in quark and glue parts gauge invariantly --- Xiangdong Ji (1997)

$$T^{q}_{\mu\nu} = \frac{i}{4} \Big[\bar{\psi} \gamma_{\mu} \vec{D}_{\nu} \psi + (\mu \leftrightarrow \nu) \Big] \rightarrow \vec{J}_{q} = \int d^{3}x \Big[\frac{1}{2} \bar{\psi} \vec{\gamma} \gamma_{5} \psi + \vec{x} \times \bar{\psi} \gamma_{4} (-i\vec{D}) \psi \Big]$$
$$T^{g}_{\mu\nu} = E_{\mu\nu} \frac{1}{4} \delta_{\mu\nu} E^{2}_{\mu\nu} \qquad \Rightarrow \vec{J}_{\mu\nu} = \int d^{3}x \Big[\vec{x} \times (\vec{E} \times \vec{B}) \Big]$$

Nucleon form factors

 $\mu v = \mu \lambda^{\mu} \lambda v$

 $\left\langle p, s | T_{\mu\nu} | p's' \right\rangle = \overline{u}(p, s) [T_1(q^2)\gamma_\mu \overline{p}_\nu - T_2(q^2)\overline{p}_\mu \sigma_{\nu\alpha} q_\alpha / 2m$ -iT_3(q^2)(q_\mu q_\nu - \delta_{\mu\nu} q^2) / m + T_4(q^2) \delta_{\mu\nu} m / 2] u(p's')

 $Z_{q,g}T_1(0)_{q,g} \quad \text{[OPE]} \rightarrow \langle x \rangle_{q/g} (\mu, \overline{\text{MS}}), \quad Z_{q,g} \quad \frac{T_1(0) + T_2(0)}{2} \quad \rightarrow J_{q/g}(\mu, \overline{\text{MS}})$

Momentum and Angular Momentum

 $T_{1}(q^{2}) \text{ and } T_{2}(q^{2})$ **3** $-pt to 2-pt function ratios
<math display="block">G_{\mu\nu}^{3pt}(\vec{p},t_{2};\vec{q},t_{1}) = \sum_{\vec{x}_{1},\vec{x}_{2}} e^{-i\vec{p}\cdot\vec{x}_{2}+i\vec{q}\cdot\vec{x}_{1}} \left\langle 0|T[\chi_{N}(\vec{x}_{2},t_{2})T_{\mu\nu}\vec{\chi}_{N}(0)]\right\rangle;$ $Tr[\Gamma_{m}G_{\mu\nu}^{3pt}(\vec{p}=0,t_{2};\vec{q},t_{1})] = We^{-m(t_{2}-t_{1})}e^{-Et_{1}}[T_{1}(q^{2})+T_{2}(q^{2})]$

Need both polarized and unpolarized nucleon and different kinematics (p_i, q_j, s) to separate out T₁ (q²), T₂ (q²) and T₃ (q²)

Renormalization and Quark-Glue Mixing

Momentum and Angular Momentum Sum Rules

$$\begin{split} \langle x \rangle_{q}^{R} &= Z_{q} \langle x \rangle_{q}^{L}, \quad \langle x \rangle_{g}^{R} = Z_{g} \langle x \rangle_{g}^{L}, \\ J_{q}^{R} &= Z_{q} J_{q}^{L}, \quad J_{g}^{R} = Z_{g} J_{g}^{L}, \\ Z_{q} \langle x \rangle_{q}^{L} + Z_{g} \langle x \rangle_{g}^{L} = I, \quad Z_{q} T_{1}^{q}(0) + Z_{g} T_{1}^{g}(0) = I, \\ Z_{q} J_{q}^{L} + Z_{g} J_{g}^{L} &= \frac{1}{2} \quad \Rightarrow \begin{cases} Z_{q} T_{1}^{q}(0) + Z_{g} T_{1}^{g}(0) = I, \\ Z_{q} (T_{1}^{q} + T_{2}^{q})(0) + Z_{g} (T_{1}^{g} + T_{2}^{g})(0) = I, \\ Z_{q} T_{2}^{q}(0) + Z_{g} T_{2}^{g}(0) = 0 \end{cases}$$

Mixing

$$\begin{bmatrix} \langle x \rangle_q^{\overline{MS}}(\mu) \\ \langle x \rangle_g^{\overline{MS}}(\mu) \end{bmatrix} = \begin{bmatrix} C_{qq}(\mu) & C_{qg}(\mu) \\ C_{gq}(\mu) & C_{gg}(\mu) \end{bmatrix} \begin{bmatrix} \langle x \rangle_q^R \\ \langle x \rangle_g^R \end{bmatrix}$$

Lattice Parameters

- Quenched 16³ x 24 lattice with Wilson fermion
- Quark spin and <x> were calculated before for both the C.I. and D.I.
- κ = 0.154, 0.155, 0.1555 (m_n = 650, 538, 478 MeV)
- 500 configurations
- 400 noises (Optimal Z₄ noise with unbiased subtraction) for DI
- 16 nucleon sources

Connected Insertions of $T_1 (q^2)$ and $T_2 (q^2)$ for u/d Quarks

cross check

page 27

Disconnected Insertions of $T_1(q^2)$ and $T_2(q^2)$ for u/d Quarks

Gauge Operators from the Overlap Dirac Operator

Overlap operator

 $D_{ov} = 1 + \gamma_5 \varepsilon(H); \quad H = \gamma_5 D_W(m_0)$ Index theorem on the lattice (Hasenfratz, Laliena, Niedermayer, Lüscher) index $D_{ov} = -Tr\gamma_5(1 - \frac{a}{2}D_{ov})$ Local version (Kikukawa & Yamada, Adams, Fujikawa, Suzuki) $q_L(x) = -tr\gamma_5(1 - \frac{a}{2}D_{ov}(x,x)) \xrightarrow{a \to 0} a^4q(x) + O(a^6)$

Study of topological structure of the vacuum

- Sub-dimensional long range order of coherent charges (Horvàth et al; Thacker talk in Lattice 2006)
- Negativity of the local topological charge correlator (Horvàth et al)

We obtain the following result

$$\mathbf{tr}_{s}\sigma_{\mu\nu}aD_{o\nu}(x,x) = c^{T}a^{2}F_{\mu\nu} + O(a^{3}),$$

$$c^{T} = \rho \int_{-\pi}^{\pi} \frac{d^{4}k}{(2\pi)^{4}} \frac{2\left[(\rho + r\sum_{\lambda}(c_{\lambda} - 1))c_{\mu}c_{\nu} + 2rc_{\mu}s_{\nu}^{2}\right]}{(\sum_{\mu}s_{\mu}^{2} + [\rho + \sum_{\nu}(c_{\nu} - 1)]^{2})^{3/2}}$$

where, r = 1, $\rho = 1.368$, $c^T = 0.11157$

Liu, Alexandru, Horvath – PLB 659, 773 (2007)

Noise estimation $D_{ov}(x,x) \rightarrow \langle \eta_x^{\dagger} (D_{ov} \eta)_x \rangle$ with Z_4 noise with color-spin dilution and some dilution in space-time as well.

Glue $T_1(q^2)$ and $T_2(q^2)$

Renormalized results: $Z_q = 1.05, Z_g = 1.05$						
	CI(u)	CI(d)	CI(u+d)	DI(u/d)	DI(s)	Glue
	0.428	0.156	0.586	0.038	0.024	0.313
<x></x>	(40)	(20)	(45)	(6)	(6)	(56)
T ₂ (0)	0.297	218	0.064	-0.002	001	059
	(112)	(80)	(22)	(2)	(3)	(52)
	0.726	072	0.651	0.036	0.023	0.254
2J	(128)	(82)	(51)	(7)	(7)	(76)

 $T_2(0)_{CI} + T_2(0)_{DI} + T_2(0)_g = 0.002(56)$

S. Brodsky et al. NPB 593, 311(2001) → no anomalous gravitomagnetic moment
 E. Leader, arXiv:1109.1230 → transverse angular momentum

Cl(u+d)
Dl(u+d)
Dl(s)
Glue

<x>

Cl(u+d)
Dl(u+d)
Dl(s)
Glue

2 J

Flavor-singlet g_A

• Quark spin puzzle (dubbed `proton spin crisis')

$$- g_A^0 = \Delta u + \Delta d + \Delta s = \begin{cases} \frac{1}{0.75} & \text{NRQN} \\ \text{RQN} \end{cases}$$

– Experimentally (EMC, SMC, ...

$$\Delta \Sigma = g_A^0 \sim 0.2 - 0.3$$

$$(\overline{u}\gamma_{\mu}\gamma_{5}u + \overline{d}\gamma_{\mu}\gamma_{5}d)(t)$$

$$g_{A,con}^{0} = (\Delta u + \Delta d)_{con}$$

$$g^{0}_{A,dis} = (\Delta u + \Delta d + \Delta s)_{dis}$$

S.J. Dong, J.-F. Lagae, and KFL, PRL 75, 2096 (1995)

DI sea contribution independent of quark mass
 ∆u = ∆d ≅ ∆s
 This suggests U(1) anomaly at work.

•
$$g_A^8 = \Delta u + \Delta d - 2\Delta s \approx g_A^0(\text{CI})$$

Lattice resolution: U(1) anomaly

g^0_A	$= (\Delta u + \Delta d)$	$_{con} + (\Delta u + \Delta d$	$(+\Delta s)_{dis}$	= 0.62(9) +	-3(-0.1)	2(1)) =	0.25(12)
---------	---------------------------	---------------------------------	---------------------	-------------	----------	---------	----------

	Lattice	Expt. (SMC)	NRQM	RQM
$g_A^0 = \Delta u + \Delta d + \Delta s$	0.25(12)	0.22(10)	1	0.75
$g_A^3 = \Delta u - \Delta d$	1.20(10)	1.2573(28)	5/3	1.25
$g_A^8 = \Delta u + \Delta d - 2\Delta s$	0.61(13)	0.579(25)	1	0.75
Δu	0.79(11)	0.80(6)	1.33	1
Δd	42(11)	-0.46(6)	-0.33	-0.25
Δs	12(1)	-0.12(4)	0	0
F_A	0.45(6)	0.459(8)	0.67	0.5
D_A	0.75(11)	0.798(8)	1	0.75
F_A / D_A	0.60(2)	0.575(16)	0.67	0.67

 $F_A = (\Delta u - \Delta s)/2; \quad D_A = (\Delta u - 2\Delta d + \Delta s)/2$

Renormalized results:

	CI(u)	CI(d)	CI(u+d)	DI(u/d)	DI(s)	Glue
	0.726	072	0.651	0.036	0.023	0.254
2J	(128)	(82)	(51)	(7)	(7)	(76)
	0.95	-0.32	0.65	-0.12	-0.12	
g _a	(11)	(12)	(8)	(1)	(1)	
	-0.25	0.26	0.00	0.17	0.15	
2 L	(18)	(14)	(10)	(2)	(2)	

Quark Spin, Orbital Angular Momentum, and Gule Angular Momentum

 $\Delta q \approx 0.25;$ 2 $L_q \approx 0.49 \ (0.0(CI)+0.49(DI));$ 2 $J_g \approx 0.25$

Summary

- Path-integral formulation of DIS reveals the CS partons in addition to DS partons.
- The CS partons can be isolated with the help of the combination of experiments and lattice calculations.
- Momentum fraction of quarks (both valence and sea) and glue have been calculated for a quenched lattice:
 - Glue momentum fraction is ~ 31%.
 - $-g_A^0 \sim 0.25$ in agreement with expt.
 - Glue angular momentum is ~ 25%.
 - Quark orbital angular momentum is large for the sea quarks (~ 50%).

Current project

- Dynamical domain-wall fermion gauge (RBC + UKQCD configurations, lowest pion mass ~ 180 MeV on 4.5 fm box)
 + overlap fermion for the valence.
- Quark loops with low mode averaging and improved nucleon propagator.