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1 Definition of the canonical energy-momentum
tensor: free field

(Interacting fields more challenging: will be discussed all day Wednesday)

Lagrangian density, function of set of fields ϕr and their derivatives ∂ϕr

∂xµ

L = L
(
ϕr,

∂ϕr
∂xµ

)
(1)

Here r should be thought of as a spinor index for a Dirac field, a Lorentz
index for a vector field, and not there for a scalar field.

1.1 Symmetry under space-time translations

Under an infinitesmal transformation

xµ → xµ + ϵµ (2)

δL = L′ − L = ϵµ
∂L
∂xµ

(3)

If L translationally invariant it does not depend explicitly on xµ. Thus

δL =
∑
r

[
∂L

∂ϕr(x)
δϕr +

∂L
∂(∂ϕr/∂xµ)

δ

(
∂ϕr
∂xµ

)]
(4)

Now

δϕr = ϕr(x+ ϵ)− ϕr(x) = ϵν
∂ϕr
∂xν

(5)

Also

∂

∂xµ
δϕr =

∂

∂xµ
ϕr(x+ ϵ)− ∂

∂xµ
ϕr(x)

=
∂

∂(xµ + ϵ)
ϕr(x+ ϵ)− ∂

∂xµ
ϕr(x) = δ

(
∂ϕr
∂xµ

)
(6)
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Now use Euler-Lagrange equations to replace

∂L
∂ϕr(x)

=
∂

∂xµ

∂L
∂(∂ϕr/∂xµ)

(7)

Thus

ϵµ
∂L
∂xµ

=
∂

∂xµ

[∑
r

∂L
∂(∂ϕr/∂xµ)

ϵν
∂ϕr
∂xν

]
(8)

Since ϵ is arbitrary, eventually get

∂

∂xµ
tµν ≡ ∂µ t

µν = 0 (9)

where

tµν = −gµν L+
∑
r

∂L
∂(∂ϕr/∂xµ)

∂ϕr
∂xν

= tµνcan (10)

1.2 Conservation of momentum

It follows that

P ν
can ≡

∫
d3x t0νcan (11)

is independent of time

∂P ν
can

∂t
= 0 (12)

All above is Classical and P ν corresponds to the total energy and momentum
and also generates space-time translations.

For a quantized free field P ν
can becomes P̂ ν

can and should be the generator of
translations. Now a unitary operator produces translations:

U(a)ϕr(x)U
−1(a) = ϕr(x+ a) (13)

For an infinitesmal translation x′ = x+ ϵ we should then have

U(ϵ) = eiϵµ P̂µ
can ≈ 1 + iϵµ P̂

µ
can (14)

which leads to the requirement

i[P̂µ
can , ϕr(x) ] = ∂µ ϕr(x) (15)

Note:
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1) One has to check that P̂ ν
can really does satisfy the correct commutation

relation. How can you do this? The procedure of quantization fixes various
EQUAL TIME commutation relations. Since P̂ ν

can is independent of time, you
can choose the time variables in the fields in P̂ ν

can to be the same as the time
variable in ϕr(x) and then use the ETCs.

2) If one expresses P̂ ν
can in terms of the creation and annihilation operators

of the free field one sees that it corresponds to the total energy and momentum.

From now on will drop the HAT on operators.

2 Lorentz and rotational symmetry: the canon-
ical angular momentum density

If there is invariance under an infinitesmal Lorentz transformation

xµ → x′µ = xµ + ϵµνx
ν ϵµν = − ϵνµ (16)

similar arguments lead to the conservation law

∂µ Mµνλ
can = 0 (17)

where

Mµνλ
can = (xνtµλcan − xλtµνcan) +

∂L
∂(∂ϕr/∂xµ)

(
Σνλ

) s

r
ϕs (18)

The “spin” term
(
Σνλ

) s

r
ϕs reflects what happens to the field at x = 0 i.e.

where 0′ = 0

ϕr(0) → ϕr(0)−
ϵνλ
2

(
Σνλ

) s

r
ϕs(0) (19)

Forms of
(
Σνλ

) s

r
for various fields (note antisymmetry under ν ↔ λ) :

Scalar: 0

Dirac spin 1/2: 1
4 [γ

ν γλ]rs where r, s are spinor indices

Spin 1: gλsgνr − gνsgλr where r, s are Lorentz indices.

The conserved angular momentum is
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M ij
can ≡

∫
d3xM0ij

can

=

∫
d3x (xit0jcan − xjt0ican)︸ ︷︷ ︸

Orbital

+

∫
d3x

∂L
∂(∂ϕr/∂x0)

(
Σij

) s

r
ϕs︸ ︷︷ ︸

Spin

(20)

Classically M ij
can generates rotations in the ij plane and Jk = 1/2 ϵkijM ij is

the angular momentum in the k direction.

In the quantized theory the operator M ij
can must satisfy

i[M ij
can , ϕr(x)] = (xi∂j − xj∂i)ϕr(x) + (Σij) s

r ϕs(x) (21)

3 Modifications of tµνcan: Belinfante version

Generally:

• 1) tµνcan is not symmetric under µ ↔ ν, whereas gravity couples to a sym-
metric tensor.

• 2) ∂ν t
µν
can ̸= 0

Define

Hµνλ =
∂L

∂(∂ϕr/∂xµ)

(
Σνλ

) s

r
ϕs = Hµλν (22)

so that
Mµνλ

can = (xνtµλcan − xλtµνcan) +Hµνλ (23)

Then

0 = ∂µ Mµνλ
can = gνµ t

µλ
can + xν ∂µ t

µλ
can︸ ︷︷ ︸

=0

−gλµ tµνcan − xλ ∂µ t
µλ
can︸ ︷︷ ︸

=0

+∂µH
µνλ (24)

so that

tνλcan − tλνcan = − ∂µH
µνλ (25)

Define

tνλbel = tνλcan +
1

2
∂µ


antisymm underµ↔ν︷ ︸︸ ︷

Hµνλ − (Hνµλ +Hλµν)︸ ︷︷ ︸
symmetric under ν↔λ

 (26)

Check:
tνλbel − tλνbel = tνλcan − tλνcan + ∂µH

µνλ = 0
√

(27)
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Check:

∂ν t
νλ
bel =

1

2
∂ν∂µ


antisymm underµ↔ν︷ ︸︸ ︷

Hµνλ + (Hνµλ +Hλµν)

 = 0
√

(28)

Now note that

t0λbel = t0λcan +
1

2
∂µ

[
Hµ0λ − (H0µλ +Hλµ0)

]
= t0λcan +

1

2
∂j

[
Hj0λ − (H0jλ +Hλj0)

]
(29)

Thus

t0λbel(x) = t0λcan(x) + spatial divergence (30)

It follows that

Pλ
bel ≡

∫
d3x t0λbel(x) = Pλ

can (31)

if the fields vanish at infinity.

4 Modification of the angular momentum den-
sity: the Belinfante version

In the expression for Mµνλ
can substitute

tνλcan = tνλbel −
1

2
∂ρ

[
Hρνλ − (Hνρλ +Hλρν)

]
≡ tνλbel −

1

2
∂ρG

ρνλ (32)

After some straightforward algebra, find

Mµνλ
can = (xνtµλbel − xλtµνbel) +

1

2
∂ρ[x

λGρµν − xνGρµλ] (33)

Thus,

Mµνλ
bel ≡ (xνtµλbel − xλtµνbel)

= Mµνλ
can − 1

2
∂ρ[x

λGρµν − xνGρµλ] (34)

and
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M0νλ
bel = M0νλ

can − 1

2
∂ρ[x

λGρ0ν − xνGρ0λ] (35)

Now note that

∂0[x
λG00ν − xνG00λ] = 0 because G00λ = 0 (36)

Thus finally

M0νλ
bel = M0νλ

can − 1

2
∂j [x

λGj0ν − xνGj0λ] (37)

so that M0νλ
bel and M0νλ

can differ by a spatial divergence.
Hence,

M ij
bel ≡

∫
d3xM0ij

bel =

∫
d3x (xit0jbel − xjt0ibel)

= M ij
can (38)

if the fields vanish fast enough at infinity

NOTE: No spin term in M ij
bel ! Somewhat unintuitive. Looks purely orbital.

5 Some food for thought

There are several delicate questions involved in the above, both at classical and
quantum level.

5.1 Classical: a circularly polarized light beam

Applying the above to a free classical electromagnetic field, one gets

Jcan =

∫
d3x (E ×A)︸ ︷︷ ︸
spin term

+

∫
d3xEi(x×∇Ai)︸ ︷︷ ︸

orbital term

(39)

and

Jbel =

∫
d3x [x× (E ×B)] (40)

Consider a left-circularly polarized (= positive helicity) beam propagating
along OZ i.e. along e(z):

Aµ =

(
0,
E0

ω
cos(kz − ωt),

E0

ω
sin(kz − ωt), 0

)
(41)
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gives correct E and B.
E, B and A all rotate in the XY plane.
Consider the component of Jcan along OZ. Note that

∇Ax,y ∝ e(z) so that (x×∇Ax,y)z = 0 (42)

so only the spin term contributes to Jcan, z. Substituting for E and A one finds

Jcan, z per unit volume =
E2

0

ω
(43)

The energy density is E2
0 , so for one photon per unit volume E2

0 = ~ω so
that

Jcan, z per photon = ~
√

(44)

For Belinfante case

E ×B ∝ ez (45)

so that

J bel, z per unit volume = [x× (E ×B)]z = 0 × (46)

5.2 Quantum: what does it mean to say an operator van-
ishes at infinity?

The equivalence of canonical and Belinfante momentum and angular momentum
depended on being able to neglect integrals of spatial divergences. For a clas-
sical field, which has numerical values, this is clear. But what about quantum
operators?

Usually we are interested in expectation values of these operators i.e their
forward matrix elements. For these it is usually possible to justify neglecting
the contribution at infinity.

5.2.1 Spatial divergence of a local operator

A local operator O(x) is defined at one space-time point and must satisfy the
law of translation i.e.

eia·PO(x)e−ia·P = O(x+ a) (47)

For the spatial divergence of a local operator we have

⟨p′ | ∂jO(x) |p ⟩ =
∂

∂xj
⟨p′ |O(x) |p ⟩

=
∂

∂xj
⟨p′|e−ix·PO(0) eix·P |p ⟩ =

[
∂

∂xj
e−ix·(p−p′)

]
⟨p′|O(0)|p ⟩

= i(p′j − pj)⟨p′ |O(0) |p ⟩ e−ix·(p−p′) (48)
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so that as p′ → p

⟨p | ∂jO(x) |p ⟩ = 0 if ⟨p |O(0) |p ⟩ is non-singular (49)

5.2.2 Spatial divergence of a compound operator

In the angular momentum case the spatial divergence involves an operator of
the form xO(x). While this is defined at one space-time point it is not a local
operator.
To see this suppose that Q(x) = xO(x) is a local operator. Then

Q(x) = e−ix·PQ(0) eix·P = 0 for all x, since Q(0) = 0 (50)

It is then much more difficult to show that one can neglect the expectation
value of the spatial divergence of a compound operator. It can be done, but
requires use of wave packets, as demonstrated by Shore and White [1].

6 The expectation value of the angular momen-
tum

For illustration we will use Jbel.

Consider its matrix elements for a Dirac particle whose state is specified by
momentum p and covariant spin (pseudo)vector S i.e |p, S ⟩ :

Sµ =

(
p · s
m

, s+
p · s

m(p0 +m)
p

)
(51)

where s is the rest-frame spin vector and the normalization is S2 = −1.
Recall that p · S = 0 for a physical particle.

We would like to evaluate ⟨p, S |M ij
bel |p, S ⟩. So, for example, we have

⟨p, S |Jbel, z |p, S ⟩ =
∫
d3x ⟨p, S | [x t02bel(t,x)− y t01bel(t,x)] |p, S ⟩ (52)

Consider the first term:
Use translational invariance to shift t02bel(t,x) = e−ix·P t02bel(0) e

ix·P .
Thus evaluate ∫

d3xx ⟨p, S | t02bel(0) |p, S ⟩︸ ︷︷ ︸
independent ofx

(53)

= ∞ or = 0 ???? totally ambiguous! (54)

The problem is an old one: In ordinary QM plane wave states give infinities.
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The solution is an old one: Build a wave packet, a superposition of physical
plane wave states.

Problem: How do you build a physical wave packet for a spin 1/2 particle?
Cannot use ∫

d3pψ(p)|p, S ⟩ with fixed S (55)

since need p · S = 0 i.e. S = S(p).
(If you could have fixed S, it would have made life much simpler.)

So you are forced to consider

∫
d3p d3p′ ψ∗(p′)ψ(p) ⟨p′, S′ |M ij

bel |p, S ⟩ =

=

∫
d3p d3p′ ψ∗(p′)ψ(p) ⟨p′, S′ | (xit0jbel − xjt0ibel) |p, S ⟩ (56)

where S′ = S(p′).

Hence we need expressions for the non-forward matrix elements ⟨p′, S′ | tµνbel |p, S ⟩.

7 The matrix elements of the energy momentum
tensor

In order to discuss angular momentum we will need to understand the structure
of the matrix elements of tµν .

First consider the matrix elements of something like the electromagnetic cur-
rent jµem.

Under Lorentz transformations jµem transforms like a 4-vector. Consider its
matrix elements for a Dirac particle whose state is specified by momentum p
and covariant spin vector S i.e |p, S ⟩ :

It would be wrong to write

⟨p′ S′ |jµem(0) |pS ⟩ = Apµ +Bp′µ + C(p · S′)Sµ +D(p′ · S)S′µ + ....... (57)

because the non-forward matrix element does not transform as a 4-vector.

The reason is the Wigner (or Wick) rotation.

Let U(Λ) be the unitary operator corresponding to a Lorentz transformation
p→ Λ p. Then
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U(Λ) |p, S ⟩ ̸= |Λp, ΛS ⟩ (58)

.
There is also a Wigner rotation of the spin. For forward, and only for for-

ward, matrix elements do the Wigner rotations cancel out. (For a pedagogical
discussion see Chapter 2 of [2] ).

Of course for the em current we never try to do something like Eq. (57). We
write

⟨p′ S′ |jµem(0) |pS ⟩ = ū(p′ S′)
[
F1(q

2) γµ +
κ

2m
F2(q

2) iσµν qν

]
u(p, S) (59)

and the spinors effectively absorb the Wigner rotations.

Similarly, we cannot say that the non-forward matrix element of tµν trans-
forms like a second rank tensor. Doing so has led to some errors in the literature.
(See [3] for a detailed explanation).

For any particle with spin, one must factor out the wave-functions (the ana-
logues of the Dirac spinors), and what is left then transforms like a tensor.

Finally, the simplest way to handle the wave packets is to fix the rest frame
spin vector s, and to study∫

d3p d3p′ ψ∗
p0, s(p

′)ψp0, s(p) ⟨p′, s |M ij
bel |p, s ⟩ (60)

where ψp0, s(p) is sharply peaked at p = p0 so that p′ − p is small, and ulti-
mately we take the limit p′ − p → 0.

The most general structure of the matrix elements of the conserved hermitian
operator tµν(0) , with no special symmetry under µ↔ ν is

⟨p′, s|tµν(0)|p, s⟩ = ū(p′, s){G(pµpν + p′µp′ν)

+H(pµp′ν + pνp′µ) +mS[(p+ p′)µγν + (p+ p′)νγµ]

+(p · p′ −m2)(G−H)gµν

+mA[(p+ p′)µγν − (p+ p′)νγµ]}u(p, s) (61)

where the u(p, s), u(p′, s) are the usual canonical Dirac spinors normalized to
ūu = 1 and G,H, S and A are Lorentz scalars. Note that all terms, except the
A-term, are symmetric in µ↔ ν.

Expanding this to first order in ∆µ = p′µ − pµ, yields
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⟨p+∆/2, s | tµν(0) | p−∆/2, s⟩ = 2Dpµpν − i∆ρ

M

{
S(pµϵρναβ + pνϵρµαβ)

+A(pµϵρναβ − pνϵρµαβ) +
D

M(p0 +M)
pµpνϵ0ραβ

}
Sαpβ (62)

where D = G + H + 2S, and we have ignored a term in gµν , irrelevant for the
angular momentum analysis.

Note that this is not a tensor in its indices µ, ν. Also note that for the
symmetric tµνbel(0) we simply put A = 0.

Using this in the wave packet expression, relabeling the central momentum
by p instead of p0, we find, after much labour,

⟨ψp,s |M ij
bel |ψp,s ⟩ =

1

m

{ D
2(p0 +m)

(pj ϵ0iαβ − pi ϵ0jαβ)

+ S ϵijαβ
}
Sα pβ (63)

Here the normalization is

⟨ψp,s |ψp,s ⟩ = 1 (64)

so this is the expectation value.

The energy of the state is related to the forward matrix element of t00 and
leads to

D = 1. (65)

We obtain the value of S by choosing a wave-packet with p = (0, 0, p) and
s = (0, 0, 1). This is then a helicity state |ψ1/2⟩ and should be an eigenstate of
Jz with eigenvalue 1/2. Hence for this state

⟨ψ1/2|Jz|ψ1/2⟩ = ⟨ψ1/2|M12|ψ1/2⟩ = 1/2 (66)

which implies
S = 1/2 (67)

Finally we get a surprisingly simple result

⟨Jbel⟩ =
1

2
s (68)

Note:

• This holds both for longitudinal and transverse polarization

• Ge the same result for Jcan

The result is not at all intuitive!

So check this by a completely independent approach.
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7.1 Approach via rotational properties of states

This is the simplest most direct approach.

a) It does not need wave packets because it does not use the energy momen-
tum tensor.

b) It works for arbitrary spin, and equally well for helicity states or standard
canonical or boost states.

Let |p,m⟩ be a state with momemtum p which has spin projection m in the
rest system.

Under a rotation about axis-i through an angle β:

U [Ri(β)] |p,m⟩ = |Ri(β)p, n⟩D s
nm(RW (p, β)). (69)

where U [Ri(β)] is the unitary operator effecting the rotation and RW (p, β) is
the Wigner rotation.

For a pure rotation the Wigner rotation is very simple

RW (p, β) = Ri(β). (70)

Since the angular momentum operators are the generators of rotations

U [Ri(β)] = exp(−iβJi) (71)

We have

∂

∂β
U [Ri(β)] = −iJi exp(−iβJi) (72)

so that

Ji = i lim
β→0

∂

∂β
U [Ri(β)] (73)

Thus

⟨p′,m′|Ji|p,m⟩ = i
∂

∂β
⟨p′,m′|U [Ri(β)] |p,m⟩

∣∣∣
β=0

= i
∂

∂β
{⟨p′,m′ |Ri(β)p, n⟩D s

nm[Ri(β))]}β=0 (74)

Leads to exactly the same result!

⟨Jbel⟩ =
1

2
s. (75)

What’s more, it works for any spin ! Previous approach was strictly for spin
1/2.
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7.2 Consequence of incorrect treatment of matrix element
of tµν as a tensor

For standard (e.g. Bjorken-Drell) canonical spin states, as derived by Jaffe-
Manohar,

⟨Ji⟩JM =
1

4Mp0

{
(3p20 −M2)si −

3p0 +M

p0 +M
(p · s)pi

}
(76)

to be compared with

⟨Ji⟩ =
1

2
si (77)

In general these are different. However, one may easily check that, for longitu-
dinal polarization, i.e. when

s = p̂ p = (0, 0, p) s = (0, 0, 1) (78)

⟨Jz⟩JM =
1

4Mp0

{
(3p20 −M2)− 3p0 +M

p0 +M
p2
]

=
1

4Mp0

{
(3p20 −M2)− 3p0 +M

p0 +M
(p20 −m2)

]
=

1

4Mp0
{
(3p20 −M2)− (3p0 +M) (p0 −m)

]
=

1

2
=

1

2
sz (79)

in agreement with Eq.(77).

Of particular importance is the case of transverse polarization s ⊥ p :

⟨Ji⟩JM =
3p20 −m2

4mp0
si (80)

which is quite different from Eq. (77)!

Moreover, if you assume that sum rules should only apply to the “infinite
momentum frame” i.e. to the limit p0 → ∞, then you conclude, wrongly, that
you cannot have a transverse polarization sum rule.
Note that the fact that Eq. (80) is incorrect is NOT controversial. It has been
graciously acknowledged by the authors.

8 Concluding: beyond the single free field case

In the single free field case, aside from the incorrect conclusion about transverse
sum rules, things are fairly straightforward and non-controversial.
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However, when dealing with a system of interacting fields, all sorts of new
problems and ambiguities arise. These will form the subject matter of Wednes-
day’s talks.

It is also interesting to ask if you really need to consider only p0 → ∞ in
order to derive a sum rule. This will be discussed in my talk on Thursday:
A new relation between transverse angular momentum and generalized parton
distributions.(arXiv:1109.1230v2; to appear as a Rapid Communication in PRD)
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