Transversity in electroproduction of pseudoscalar mesons

P. Kroll

Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg INT Seattle, February 2012

Outline:

- Transverse spin
- Evidence for strong $\gamma_T^* \to \pi$ transitions
- Transversity in the handbag approach
- Parametrizations of the GPDs
- Results
- Summary

Transverse spin

inclusive: transversity distributions $\Delta_T q(x)$ $(h_1(x))$ not accessible in DIS but in SIDIS (analysis Anselmino et al (09))

exclusive: transv. GPDs H_T , \tilde{H}_T , E_T , \tilde{E}_T (lead. twist) soft matrix elements ~ $\langle p' | \bar{q}(-z/2) i \sigma^{+i} q(z/2) | p \rangle$ Hoodbhoy-Ji (98), Diehl (01) reduction formula: $H^q_T(x, \xi = t = 0) = \Delta_T q(x)$ difficult to access in exp: helicity flip of light quarks suppressed only a few applications: Pire et al electroproduction of ρ_T Liuti et al production of π^0 Goloskokov-K production of pseudoscalar mesons

An almost model-independent argument consider pion electroproduction

sum and difference of single-flip ampl. ($\sim \sqrt{-t'}$ for $t' \to 0$)

$$\mathcal{M}_{0+\mu+}^{N(U)} = \frac{1}{2} \Big[\mathcal{M}_{0+\mu+} + (-)\mathcal{M}_{0+-\mu+} \Big] \qquad \mu = \pm 1$$
$$\implies \qquad \mathcal{M}_{0+-+}^{N(U)} = + (-)\mathcal{M}_{0+++}^{N(U)}$$

like a one-particle-exchange of either Natural or Unnatural parity

nucleon helicity flip: $\mathcal{M}_{0--+} \sim t' \qquad \mathcal{M}_{0-++} \sim const$ sum and difference inconvenient (const can be small (or zero) for dynamical reasons)

PK 3

Experiment:

 $\gamma p \rightarrow \pi^+ n$ cross section exhibits pronounced maximum c cannot be small Phillips (1967): Regge cuts necessary

Pion electroproduction

HERMES(09) $Q^2 \simeq 2.5 \,\mathrm{GeV}^2, \ W = 3.99 \,\mathrm{GeV}$ $\sin \phi_s$ harmonic very large does not seem to vanish for $t' \rightarrow 0$ $A_{UT}^{\sin \phi_S} \propto \mathrm{Im} \left[\mathcal{M}_{0-,++}^* \mathcal{M}_{0+,0+} \right]$ n-f. ampl. $\mathcal{M}_{0-,++}$ required not vanishing in forward direction

assumption: $|\mathcal{M}_{0--+}| \ll |\mathcal{M}_{0-++}|, |\mathcal{M}_{0+\pm+}|$

Transverse cross sections

Handbag: can $\mathcal{M}_{0-,++}$ be fed by ordinary GPDs?

lead. twist pion wave fct. $\propto q'\cdot\gamma\gamma_5$ (perhaps including ${f k}_\perp$)

twist-3 w.f. (suppressed by μ_{π}/Q)

 $\mathcal{M}_{0-,++} \propto t'$ $\mathcal{M}_{0-,++} \propto \mathsf{const}$

transv. GPDs in long. amplitudes suppressed by extra $\sqrt{-t'}/Q$

 $\gamma_T^* \to \pi$ in the handbag approach see Diehlo1, GK10, GK11 $\overline{E}_T \equiv 2\widetilde{H}_T + E_T \qquad \mu = \pm 1$

$$\mathcal{M}_{0+\mu+} = e_0 \frac{\sqrt{-t'}}{4m} \int d\bar{x} \left\{ \left(H_{0+\mu-} - H_{0-\mu+} \right) \left(\overline{E}_T - \xi \widetilde{E}_T \right) \right. \\ \left. + \left(H_{0+\mu-} + H_{0-\mu+} \right) \left(\widetilde{E}_T - \xi E_T \right) \right\} \\ \mathcal{M}_{0-\mu+} = e_0 \sqrt{1 - \xi^2} \int d\bar{x} \left\{ H_{0-\mu+} \left[H_T + \frac{\xi}{1 - \xi^2} \left(\widetilde{E}_T - \xi E_T \right) \right] \right. \\ \left. + \left(H_{0+\mu-} - H_{0-\mu+} \right) \frac{t'}{4m^2} \widetilde{H}_T \right\}$$

with parity conservation: $\mathcal{M}_{0+\pm+} = \mathcal{M}_{0+++}^N \pm \mathcal{M}_{0+++}^U$ time-reversal invariance: \widetilde{E}_T is odd function of ξ N: \overline{E}_T with corrections of order ξ^2 U: order ξ small -t': \mathcal{M}_{0-++} mainly H_T with corrections of order ξ^2 \mathcal{M}_{0--+} suppressed by t/Q^2 due to H_{0--+}

The twist-3 pion distr. amplitude

projector
$$q\bar{q} \to \pi$$
 (3-part. $q\bar{q}g$ contr. neglected) Beneke-Feldmann (01)
 $\sim q' \cdot \gamma \gamma_5 \Phi + \mu_{\pi} \gamma_5 \Big[\Phi_P - \imath \sigma_{\mu\nu} (\dots \Phi'_{\sigma} + \dots \Phi_{\sigma} \partial / \partial \mathbf{k}_{\perp \nu}) \Big]$
definition: $\langle \pi^+(q') \mid \bar{d}(x) \gamma_5 u(-x) \mid 0 \rangle = f_{\pi} \mu_{\pi} \int d\tau e^{iq'x\tau} \Phi_P(\tau)$
local limit $x \to 0$ related to divergency of axial vector current
 $\Longrightarrow \mu_{\pi} = m_{\pi}^2 / (m_u + m_d) \simeq 2 \text{ GeV}$ at scale 2 GeV (conv. $\int d\tau \Phi_P(\tau) = 1$)

Eq. of motion:
$$\tau \Phi_P = \Phi_{\sigma}/N_c - \tau \Phi'_{\sigma}/(2N_c)$$
solution: $\Phi_P = 1, \quad \Phi_{\sigma} = \Phi_{AS}$ Braun-Filyanov (90)

$$H_{0-,++}
eq 0$$
, Φ_P dominant, Φ_σ contr. $\propto t'/Q^2$

in coll. appr.: $H_{0-,++}$ singular \mathbf{k}_{\perp} factorization (m.p.a.) regular

$$M_{0-++} = e_0 \sqrt{1-\xi^2} \int dx H_{0-++} H_T , \qquad M_{0-++} = -e_0 \frac{\sqrt{-t'}}{4m} \int dx H_{0-++} \overline{E}_T$$

The $\gamma_L^* \to \pi$ amplitudes and pion pole

$$\mathcal{M}_{0+0+} = \frac{e_0}{2}\sqrt{1-\xi^2} \int dx (H_{0+0+} - H_{0-0-}) \left(\widetilde{H} - \frac{\xi^2}{1-\xi^2}\widetilde{E}_{n.p.}\right)$$
$$\mathcal{M}_{0-0+} = e_0 \frac{\sqrt{-t'}}{4m} \int dx (H_{0+0+} - H_{0-0-}) \xi \widetilde{E}_{n.p.}$$

 ρ_{π}

leading amplitudes for $Q^2 \to \infty$

For π^+ production - pion pole

$$\mathcal{M}_{0+0+}^{\text{pole}} = -e_0 \frac{2m\xi Q}{\sqrt{1-\xi^2}} \frac{\rho_{\pi}}{t-m_{\pi}^2}$$

$$\mathcal{M}_{0-0+}^{\text{pole}} = -e_0 \sqrt{-t'} Q \frac{\rho_{\pi}}{t-m_{\pi}^2}$$

$$\mathcal{M}_{0+\pm+}^{\text{pole}} = \pm 2\sqrt{2}e_0 m\xi \sqrt{-t'} \frac{\rho_{\pi}}{t-m_{\pi}^2}$$

$$\mathcal{M}_{0-\pm+}^{\text{pole}} = \pm \sqrt{2}e_0 t' \sqrt{1-\xi^2} \frac{\rho_{\pi}}{t-m_{\pi}^2}$$

$$\rho_{\pi} = \sqrt{2}g_{\pi NN} F_{\pi}(Q^2) F_{\pi NN}(t)$$
(see assumption 1 and following remarks)

Double distributions

integral representation (i = u, d valence quarks)

$$\widetilde{H}^{i}(\bar{x},\xi,t) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \,\delta(\beta + \xi\alpha - \bar{x}) \,\widetilde{f}_{i}(\beta,\alpha,t)$$

 \tilde{f}_i double distributions Mueller *et al* (94), Radyushkin (99) advantage - polynomiality automatically satisfied

useful ansatz with relation to PDFs (reduction formula respected)

$$\tilde{f}_i(\beta, \alpha, t) = \Delta q_i(\beta) \Theta(\beta) \exp\left[\left(\tilde{b}_i + \tilde{\alpha}'_i \ln(1/\beta)\right)t\right] \frac{3}{4} \frac{\left[(1-|\beta|)^2 - \alpha^2\right]}{(1-|\beta|)}$$

 $\tilde{\alpha}'_{h'} = 0.45 \,\mathrm{GeV}^{-2}$ $\tilde{b}_{h'} = 0.0$ t-dependence of Regge residue Regge intercept and residue at t = 0 included in PDF $\tilde{E}_{n.p.}$ analogously, forward limit parameterized as $\tilde{e}_q = \tilde{N}_q \beta^{-0.48} (1-\beta)^5$ $\tilde{N}_u = 14 \,\tilde{N}_d = 4$, $\tilde{\alpha}'_e = 0.45 \,\mathrm{GeV}^{-2}$, $\tilde{b}_e = 0.9 \,\mathrm{GeV}^{-2}$, values fitted to π^+ data

Comparison with lattice results

Hägler (07), Göckeler (05)

lowest pion mass 352 MeV, no chiral extrapolation

in general at $t \simeq 0$ reasonable agreement but t dependences flatter than DD ansatz (and form factor data) relative t dependence of moments in good agreement

Parametrization of H_T and \overline{E}_T

 H_T : transversity PDFs Anselmino et al(09) $\Delta_T q(x) = N_{H_T}^q \sqrt{x} (1-x) [q(x) + \Delta q(x)]$ DD ansatz

parameters: $\alpha(0) = -0.02$, $\alpha' = 0.45 \,\mathrm{GeV}^{-2}$, b = 0 , $N^u = 0.78$, $N^d = -1.01$

 \overline{E}_T : Lattice result for moments of $\overline{E}_T = 2\widetilde{H}_T + E_T$: QCDSF-UKQCD(06) Large, same sign and almost same size for u and d quarks \overline{E}_T parameterization (like $\widetilde{E}_{n.p.}$): $e_T^a = \overline{N}_T^e e^{b_{eT}t} x^{-\alpha_T^e(t)} (1-x)^{\beta_{eT}^a}$ parameters: $\alpha(0) = 0.3$, $\alpha' = 0.45 \,\text{GeV}^{-2}$, $b = 0.5 \,\text{GeV}^{-2}$, $\overline{N}_T^u = 6.83$, $\overline{N}_T^d = 5.05$ adjusted to lattice results

Burkardt related to Boer-Mulders fct $\langle \cos(2\phi) \rangle$ in SIDIS – same pattern

	lattice	this work		lattice	this work
H^u_{T10}	0.857(13)	0.585	\bar{E}^u_{T10}	2.93(13)	2.93
H^u_{T20}	0.268(6)	0.123	\bar{E}^u_{T20}	0.420(31)	0.360
H^d_{T10}	-0.212(5)	-0.153	\bar{E}^d_{T10}	1.90(9)	1.90
H^d_{T20}	-0.052(2)	-0.021	\bar{E}^d_{T20}	0.260(23)	0.199

 H_T lattice moments are larger by about factor of 2 as those constructed from transversity PDFs with help of DD ansatz

\overline{E}_T in pion electroproduction

unseparated (longitinal, transverse) cross sections π^+ : pion pole and $\propto F^u - F^d$ π^0 : no pion pole and $\propto 2F^u + F^d$

 $\begin{array}{ll} \text{consider } u - d \text{ signs:} & \overline{E}_T, \ \widetilde{E}^{n.p.} \text{ same,} & \widetilde{H}, H_T \text{ opposite sign} \\ \implies & \widetilde{H} \text{ and } H_T \text{ large for } \pi^+, \text{ small for } \pi^0 \\ & \widetilde{E}^{n.p.} \text{ and } \overline{E}_T \text{ small for } \pi^+, \text{ large for } \pi^0 \end{array}$

Results for pion production

Goloskokov-K (10),(11) optimized for small ξ and large W

η/π^0 ratio

data CLAS (prel.)

$$\frac{d\sigma(\eta)}{d\sigma(\pi^0)} \simeq \left(\frac{f_\eta}{f_\pi}\right)^2 \frac{1}{3} \left| \frac{e_u \langle F^u \rangle + e_d \langle F^d \rangle}{e_u \langle F^u \rangle - e_d \langle F^d \rangle} \right|^2 \qquad (f_\eta = 1.26 f_\pi)$$

if F^u and F^d have opposite sign: $\eta/\pi^0 \simeq 1$ if F^u and F^d have same sign: $\eta/\pi^0 < 1$ $t' \simeq 0 \ \widetilde{H}, H_T$ dominant (see also Eides et al(98)) $t' \neq 0 \ \overline{E}_T$ dominant

PK 16

Strangeness production

would probe \widetilde{H} , \widetilde{E} and H_T for flavor symmetry breaking in sea e.g.

$$F_{p \to \Sigma^0} = -F_v^d + (F^s - F^{\bar{d}}),$$

$$F_{p \to \Lambda} = -\frac{1}{\sqrt{6}} \left[2F_v^u - F_v^d + (2F^{\bar{u}} - F^{\bar{d}} - F^s) \right]$$

L-T interference

$$\frac{d\sigma_{LT}}{dt} \sim \operatorname{Re}\left[M_{0-0+}^* M_{0-++}\right] \sim \operatorname{Re}\left[\langle H_T \rangle \langle \widetilde{E} \rangle^*\right]$$
$$A_{LU}\sigma_0 \sim \operatorname{Im}\left[M_{0-0+}^* M_{0-++}\right] \sim \operatorname{Im}\left[\langle H_T \rangle \langle \widetilde{E} \rangle^*\right]$$

no data at small ξ data on π^0 production at larger ξ from CLAS - small but non-zero from our GPDs: both quantities practically zero understimate of H_T and/or $\tilde{E}_{\rm n.p.}$? see als deep dip of forward cross section

Transversity in vector meson electroproduction?

SDME for ρ^0 production data HERMES

$$r_{00}^5 \sim \operatorname{Re} \left[\mathcal{M}_{0+0+} \mathcal{M}_{0+++}^* \right]$$

 $r_{00}^1 \sim -|\mathcal{M}_{0+++}|^2$

twist-3 effect $\sim m_{
ho}/Q$ (not enhanced by chiral condensate)

Summary

- analysis of pseudoscalar meson electroproduction within handbag approach complicated, many GPDs contribute
- clear indications in data (CLAS,HERMES) for strong contributions from $\gamma_T^* \rightarrow \pi$ transitions
- within handbag approach $\gamma_T^* \to \pi$ transitions are related to transversity (helicity-flip) GPDs accompanied by a twist-3 pion wave fct.
- H_T constrained by transversity PDFs from analysis of A_{UT} for SIDIS \overline{E}_T constrained by lattice results
- fit to HERMES π^+ data and interesting predictions for other channels
- trends and magnitudes of large ξ CLAS data reproduced

CLAS result for π^0 **production**

CLAS results at low W, i.e. at large skewness Quantitative comparison with our results is to be done with utmost caution (cf. difficulties with ρ^0 production)

prel. Data: CLAS

unseparated cross section

 σ_{LT}

 σ_{TT}

see also Hall A (dip)