Exclusive vector mesonelectroproduction and GPDs

P. Kroll

Fachbereich Physik, Univ. Wuppertal and Univ. RegensburgSeattle, February ²⁰¹²

Outline:

- •Exclusive processes, GPDs, power corrections, parametrization
- •Analysis of vector meson electroproduction
- •DVCS
- • \bullet The GPD E
- •What did we learn about GPDs?

(Transverse localization of partons, Ji's sum rule)

•Summary

based on work done in collaboration with S. Goloskokov hep-ph/0501242, 0611290, arXiv:0708.3569, 0809.4126, 0906.0460

Hard exclusive scattering - GPDs

DVCS and meson electroproduction rigorous proofs of collinear factorization in generalized Bjorken regime: Radyushkin, Collins et al, Ji-Osborne $^{2},W\rightarrow\infty$, x_{Bj} fixed)

hard subprocesses

 γ^* $ig \rightarrow Vg,$
* . . . $V(P)$ γ^* $*_q \to V(P, \gamma)q$

and GPDs and meson w.f. (encode the soft physics)

 $\mathcal{M} \sim \int_{-}^{1}$ $\int_{-1}^{1}d\bar{x}\,\mathcal{H}(\bar{x},\xi,t)F(\bar{x},\xi,t)$

dominant transitions γ_L^* \sim d but often non $_L^* \rightarrow V_L(P)$, γ_T^* $\hat{\tau} \rightarrow \gamma_T$ others power suppressed but often non-negligible (e.g. γ^*_T $_{T}^{\ast}\rightarrow V_{T}$ large)

Power corrections?

coll. factorization proven for $Q^2\rightarrow\infty$, at finite value there may be power corr.

 $R=\sigma_{L}/\sigma_{T}$ data: H1, ZEUS $W\simeq80\,{\rm GeV}$ $\gamma^*_T \to V_T$ transiti $_{T}^{*} \rightarrow V_{T}$ transitions substantial

data H1(09) collinear factorization: $\sigma_L\sim 1/Q^6$ at fixed x_{Bj}

Parameterizing the GPDs

double distribution ansatz (Mueller et al (94), Radyushkin (99))

$$
F_i(\bar{x}, \xi, t) = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \xi \alpha - \bar{x}) f_i(\beta, \alpha, t) + D_i \, \Theta(\xi^2 - \bar{x}^2)
$$

$$
\text{DD: } f_i = \text{zero-skewness} \text{ GPD} \times \text{weight} \text{ fct (generates } \xi \text{ dep.})
$$
\n
$$
F(\bar{x}, \xi = 0, t) = f(\bar{x}) \exp\left[(b_f + \alpha'_f \ln(1/\bar{x}))t \right]
$$
\n
$$
f = q, \Delta q, \delta^q \text{ for } H, \tilde{H}, H_T \text{ or } c\bar{x}^{-\alpha_f(0)}(1-\bar{x})^{\beta_f}
$$
\n
$$
\text{Regge-like } t \text{ dep. (for small } \xi \text{ and small } -t \text{ reasonable app.})
$$

 $-t$ reasonable appr.)

advantage: polynomiality and reduction formulas automatically satisfied

^D-term neglected

used in our analysis

Transverse localization of partons

Burkhardt (00) : $\xi = 0$ case $(x = x' = \bar{x})$ Fourier transform:

$$
q(x,\xi=0,\mathbf{b}) = \int \frac{d^2 \mathbf{\Delta}}{(2\pi)^2} e^{-i\mathbf{b}\cdot\mathbf{\Delta}} H^q(x,\xi=0,t=-\Delta^2)
$$

and analogously for the other GPDs

 $q(x,\xi=0,\mathbf{b})$ gives probability to find a quark q with long. momentum fraction x at transverse position \bf{b} (seen in an IMF)

$$
\sim \exp [tg_h(x)] :
$$
 $q(x,\xi = 0,\mathbf{b}) = \frac{1}{4\pi} \frac{q(x)}{g_h(x)} \exp \left[-\frac{b^2}{4g_h(x)} \right]$

Transverse size of the proton

Diehl ${\it et}$ ${\it al}$ (04): <code>analysis</code> of nucleon form factors more complicated profile function required for large x , large $-t$

$$
\exp\left[g_h(x)t\right] : \qquad \qquad g_h = (b_h + \alpha' \ln 1/x)(1-x)^3 + Ax(1-x)^2
$$

strong $x\leftrightarrow t$ correlation, small x (small $t)$: $g_h \longrightarrow$ Regge profile fct

FT:

center of momentum $\sum x_i\mathbf{b}_i = 0$ b transv. distance of struck parton $\mathbf{b}/(1$ $\left(x\right)$ distance between struck parton and spectator system provides estimate of size of hadron d^2 quarks: Regge-like $(1-x)^3$ $(1-x)$ $(x) = \langle b^2 \rangle$ $\langle x^2 \rangle_x/(1$ $(x)^2 = 4g_h(x)/(1$ $\left(x\right) ^{2}$ for u $\left(x\right) ^{3}\quad \ \ (1$ $\left(x\right) ^{2}$ term

$\textbf{The } \gamma^* p \rightarrow VB \textbf{ amplitudes} \ W \textbf{ and small } t$

consider large Q^2 , W and small t ;
kinomatics fixes skewness: $\zeta \approx \frac{x}{\pi}$ kinematics fixes skewness: $\xi \simeq \frac{x_{\rm Bj}}{2-x_{\rm Bj}} [1 + m_V^2/Q^2] \simeq x_{\rm Bj}/2 + {\rm m.m.c.}$

$$
\mathcal{M}_{\mu+,\mu+}(V) = \frac{e_0}{2} \left\{ \sum_a e_a C_V^{aa} \langle H_{\text{eff}}^g \rangle_{V\mu} + \sum_{ab} C_V^{ab} \langle H_{\text{eff}}^{ab} \rangle_{V\mu} \right\},
$$

$$
\mathcal{M}_{\mu-,\mu+}(V) = -\frac{e_0}{2} \frac{\sqrt{-t'}}{M+m} \left\{ \sum_a e_a C_V^{aa} \langle E^g \rangle_{V\mu} + \sum_{ab} C_V^{ab} \langle E^{ab} \rangle_{V\mu} \right\},
$$

 \mathcal{C}_V^{ab} flavor factors, $M(m)$ mass of $B(p)$, $H_{\text{eff}} = H - \xi^2/(1-\xi^2)E$ contributions from \widetilde{H} to T-T amplitude not shown electroproduction with unpolarized protons at small ξ : E not much larger than H (see below) \Longrightarrow $H_{\text{eff}} \to H$ for small ξ $|M_{\mu-,\mu+}|^2 \propto t'/m^2$ neglected \implies probes H (exception ρ^+) trans. polarized target: probes $Im[\langle E \rangle^* \langle H \rangle]$ interference polarized beam and target: $\qquad \qquad \mathsf{probes}\; Re[\langle H\rangle^*\langle \widetilde H\rangle]$ interference

Subprocess amplitudes

 $F= H, E \quad \ \ \lambda$ parton helicities $\langle F\rangle^{ab(g)}_{V\mu}$ $F^{aa} = F^{a}$, $F^{ab} = F^{a} - F^{b}$ = $\sum_\lambda\int d\bar{x}{\cal H}^{Vab(g)}_{\mu\lambda,\mu\lambda}(\bar{x},\xi,Q^2,t=0)\,F^{ab(g)}(\bar{x},\xi,t)$ $= F^a$ $a^a-F^b \quad (a \neq b)$ (with flavor symmetry) γ ∗ $\,V\,$ ··》 coll. \mathcal{H}^{Vab} = $\int d\tau d^2$ 2 \it{b} $\hat{\Psi}$ $\Psi V \mu$ $(\tau,$ − $\vec{b}) \exp[$ $\, S \,$ $(\tau,$ → b, Q 2

LO pQCD

fact.

 $+$ quark trans. mom.

⁺ Sudakov supp.

 \Rightarrow lead. twist for $Q^2 \to \infty$

$$
TT: \int_0^1 d\tau \frac{\Phi_V(\tau)}{\tau} \frac{1}{\mathbf{k}_\perp^2 + c\tau Q^2}
$$

$$
\begin{array}{rcl}\nV^{ab}_{\mu\lambda,\mu\lambda} & = & \int d\tau d^2b \,\hat{\Psi}_{V\mu}(\tau,-\vec{b}) \exp[-S(\tau,\vec{b},Q^2)] \\
& \times & \hat{\mathcal{F}}^{ab}_{\mu\lambda,\mu\lambda}(\bar{x},\xi,\tau,Q^2,\vec{b})\n\end{array}
$$

Sudakov factor (Sterman et al) $S \propto$ $\propto \ln \frac{\ln (\tau Q/\sqrt{2} \Lambda_{\rm QCD})}{-\ln (b \Lambda_{\rm QCD})} + \text{NLL}$ $\hat{\mathcal{F}}$ FT of hard scattering kernel e.g. FT of $\propto e_a/[k_{\perp}^2$ $\frac{2}{\perp}+\tau(\bar{x}+\xi)Q^2$ $^{2}/(2\xi)]$

regularizes also TT amplitude

in collinear appr – IR singular

Goloskokov-K. 06, 07, 08, 09:

analysis of cross sections and spin density matrix elements for ρ^0 and ϕ electroproduction data taken from HERMES, COMPASS, E665, H1, ZEUScover large range of kinematics $Q^2 \simeq 3-100\,{\rm GeV}^2\, \quad W \simeq 5-180\,{\rm GeV}$

 H constructed from CTEQ6 PDFs through the double distr. ansatz $(D=0,$ sum rules and positivity bounds checked numerically)

Gaussian wave fcts for the mesons $\quad\Psi_{Vj} \propto \exp\big[$ − $- a_{V j}^2 k_{\perp}^2 / (\tau \bar{\tau})$ main features of H seems fairly well determined at small ξ and $x \!\lesssim\! 0.6$

(bears resemblance to color dipole model: Frankfurt et al (95), Nikolaev et al(11), Anikin(11))

ρ^0 and ϕ cross sections

Goloskokov-K (09)

 ω , ρ^+ very large at small W too \textsf{CLASS}^- (most likely val. quarks responsible)
deathle distribute weath to a simula for value of weaker at large 63 (double distrib. ansatz too simple for valence quarks at large ξ ? (resonances?) breakdown of handbag physics?

JLAB12 may explore region close to minimum

GPD composition

$$
Q^2 = 4 \,\mathrm{GeV}^2,
$$

glue+sea, <mark>glue</mark>, valence +interf.

gluons $(+$ sea) dominant for COMPASS kinematics

data: H1 (open), ZEUS (filled squares), E665 (triangles), HERMES (circles)

$\sigma_L(\phi)/\sigma_L(\rho^0)$

suppression due to different a_V SU(3) breaking in sea $\kappa_s = \frac{(u(x)+d(x))/2}{s(x)}$ CTEQ6 $\kappa_s \simeq 2$ at low Q^2 and $\rightarrow 1$ for $Q^2 \rightarrow \infty$ and valence quarks for HERMES, CLAS $\mathsf{COMPASS}$ data on ρ^0 and ϕ may verify dominance of gluons $(+)$ sea) JLAB12: checks sea

Results on cross sections

PK ¹³

DVCS

Exploiting universality: applying ^a ^given set of GPDs determined in either DVCS or mesonpredictions electroproduction, to the other process

Kumericky ${\it et \ al \ (11)}$, Meškauskas-Müller (11)

set of <mark>GK</mark> GPDs applied to DVCS at HERA kinematics in a LO collinear calculation

(compatible with GK approach to meson prod.)

Moutarde-Sabatie (K) in progress using ${\sf GK}$ ${\sf GPDS}$ –first results show reasonable agreement some difficulties for Jlab kinematics (large skewness, small W , small Q^2)

Moutarde-Sabatie (prel.) • using GK GPDs HERMES beam spin, beam charge and target spin asymmetries in genera^l well described with ^a few exceptions (like the above example, wait for recoil data) asymmetries dominated by H , other GPDS (\widetilde{H},E) can be neglected exception $A_{IIT}^{\sin{(\phi)}}$ $\frac{\sin{(\phi-\phi_{s})}}{UT,DVCS}$ (see below)

What do we know about E_v ?

analysis of Pauli FF for proton and neutron at $\xi=0$ $\;$ Diehl et al (04) :

$$
F_2^{p(n)} = e_{u(d)} \int_0^1 dx E_v^u(x, \xi = 0, t) + e_{d(u)} \int_0^1 dx E_v^d(x, \xi = 0, t)
$$

ansatz: $E_v^a = e_v^a(x) \exp[t g_v^a(x)]$ $e_v^a = N_a x^{-\alpha_v(0)} (1 - x)^{\beta_v^a}$ (like PDFs)
 N_a fixed from $\kappa_a = \int_0^1 dx E_v^a(x, \xi = 0, t = 0)$

fits to FF data: β_v^u (other powers not excluded in ⁰⁴ analysis) $\frac{u}{v}\simeq 4$, β_v^d $v^a_v=\beta^u_v$ $v\,$ $v^u + 1.6$ new J ${\sf Lab}$ data on G_E^n up to $3.5(5.0)\,\text{GeV}^2$, favor β^u_v E,M $\beta^u_v \simeq 4.5$, $\beta^d_v \simeq 6$ (prelimina \bm{v} $\frac{u}{v} < \beta_v^d$ \bm{v} $\frac{u}{v}\simeq 4.5$, β_v^d Input to double distribution ansatz $\frac{d}{v}\simeq6$ (preliminary)

E for gluons and sea quarks

Diehl-Kugler(07), GK(09) sum rule (Ji's s.r. and momentum s.r. of DIS) at $t=\xi=0$

$$
\int_0^1 dx x e_g(x) = e_{20}^g = -\sum e_{20}^{a_v} - 2 \sum e_{20}^{\bar{a}}
$$

valence term very small, in particular if $\beta^u_v \leq \beta^d_v$

 \Rightarrow gluon and sea quark moments cancel each other almost completely

positivity bound for FT forbids large sea
$$
\implies
$$
 gluon small too $\frac{b^2}{m^2} \left(\frac{\partial e_s(x,b)}{\partial b^2} \right)^2 \leq s^2(x,b) - \Delta s^2(x,b)$

forw. limits (flavor symm. sea for E assumed): $e_i = N_i x^{-\alpha_g(0)}(1-x)^{\beta_i}$ and Regge-like t dependence: $\qquad \qquad$ $\propto \exp\left[t\left(\alpha_i'\ln(1/x)+b_i^e\right)\right]$

 N_s fixed by saturating bound, N_g from sum rules, $\alpha_g=0.1+0.15t$

input to double distribution ansatz

${\bf Results~for~}A_{UT}(V)$

 $A_{UT}(\phi)\simeq 0\qquad \quad$ prel. <code>HERMES</code> data: $A_{UT}=-0.05\pm0.12$ (integrated) $(E\; {\hbox{for}}\; {\hbox{gluons}}$ and sea small and partial cancellation) $_{\hbox{\tiny{PK 18}}}$

Target asymmetry in DVCS

data: HERMES ⁰⁶ $\langle Q^2 \rangle \simeq 2.7 \, \text{GeV}^2$ ², $\langle x_{\text{Bj}} \rangle \simeq 0.1$

$$
A_{UT,DVCS}^{\sin(\phi-\phi_s)} \sim \text{Im}\Big[\langle E \rangle^* \langle H \rangle\Big] \qquad \propto \sqrt{-t'}
$$

 E necessary

Moutarde-Sabatie (K) $\qquad\qquad$ ($\bullet\qquad N_s < 0, \ \beta_s = 7, \ \textsf{flavor} \ \textsf{symm.} \ \ \textsf{sea})$ no recoil data from $\sf{HERMES} \qquad (\bullet \quad N_s>0)$

E^{g} ?

will affect electroproduction of ϕ as well (gluonic and strange GPDs) large A_N in J/Ψ most likely leads also to large asymmetry in ϕ production e.g. for $x_0=0.05$: $A_{UT}=0.15$ (integrated over t)

What did we learn about GPDs from meson production?

Status of small-skewness GPDs as extracted from meson electroproduction data. The upper (lower) part is for ^gluons and sea (valence) quarks. Except of H for gluons and sea quarks all GPDs are probed for scales of about $4\,{\rm GeV}^2$ PDFs *****

Valence quark GPDs

PK ²²

Tomography of d_v graphs

 $q_v^X(x, \mathbf{b}) = q_v(x, \mathbf{b}) - \frac{b^y}{m} \frac{\partial}{\partial \mathbf{b}^2} e_v^q(x, \mathbf{b})$ $e_{\pmb v}$ contains non-zero orbital angular momentum

Diehl et al (04)

PK ²³

Ji's sum rule

 $\langle J^a \rangle =$ $= \frac{1}{2}\Big[q^{a}_{20} + e^{a}_{20}\Big] \qquad \langle J^{g} \rangle = \frac{1}{2}\Big[g_{20} + e^{g}_{20}\Big] \qquad (\xi = 0)$ for the variants discussed in context of A_{UT} : **using CTEQ6 PDFs**

 $J^u = 0.250$ $J^d = 0.020$ $J^s = 0.015$ $J^g = 0.214$ $= 0.276 = 0.046 = 0.041 = 0.132$ $= 0.225$ $= -0.005$ $= -0.011$ $= 0.286$

 J^i quoted at scale $4\,\text{GeV}^2,~\sum J^i \simeq 1/2,$ the spin of the proton

characteristic, stable pattern: for all variants J^u and J^g are large, others small

$$
\langle J^{u_v} \rangle = 0.208(6) \qquad \langle J^{d_v} \rangle = -0.011(11)
$$

(prel. from new form factor analysis) Lattice (Hägler et al (07)): $\langle J^u \rangle = 0.214(27)$, $\langle J^d \rangle = -0.001(27)$, $(m_\pi(\mathrm{phys}))$

orbital angular momenta: subtract contribution from spin

$$
\langle L^{i} \rangle := \langle J^{i} \rangle - \Delta q^{i} / 2 \qquad \langle L^{u_{v}} \rangle \simeq -0.255(6) \quad \langle L^{d_{v}} \rangle \simeq 0.160(11)
$$

Summary

- \bullet exclusive electroproduction of vector mesons allows to extract the GPD H rather well at small ξ and $W \! \gtrsim \! 4 \, \text{GeV}$
- \bullet information on E , from A_{UT} less precise, for valence quarks not too bad due to form factor constraint
- $\bullet\,$ double distr. ansatz is flexible enough to account for all small ξ data
- $\bullet\,$ gluon and sea-quark sector almost unknown (exception $H)$, no experimental information as yet
- the GPDs allows to predict DVCS, results in fair agreement withexperiment
- the GPDs allow to study transverse localization of partons (at least for valence quarks) and to evaluate Ji's sum rule
- $\bullet\,$ open question with large ξ region: does handbag physics still apply or have the GPD parameterizations to be improved at large ξ ? (see failure with $\sigma_L(\rho^0))$