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Hard exclusive scattering - GPDs

DVCS and meson electroproduction

rigorous proofs of collinear factorization in generalized Bjorken regime:

Radyushkin, Collins et al, Ji-Osborne (Q2,W → ∞, xBj fixed)

hard subprocesses

γ∗g → V g ,

γ∗q → V (P, γ)q

and GPDs and meson w.f.

(encode the soft physics)

p p′

γ∗
V

x x′

p p′

γ∗ V, P

p p′

γ∗ γ

M ∼
∫ 1

−1
dx̄H(x̄, ξ, t)F (x̄, ξ, t)

dominant transitions γ∗
L → VL(P ), γ∗

T → γT
others power suppressed but often non-negligible (e.g. γ∗

T → VT large)
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Power corrections?

coll. factorization proven for Q2 → ∞, at finite value there may be power corr.
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γ∗
T → VT transitions substantial

look only to longitudinal cross section?
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collinear factorization:

σL ∼ 1/Q6 at fixed xBj
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Parameterizing the GPDs
double distribution ansatz (Mueller et al (94), Radyushkin (99))

Fi(x̄, ξ, t) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|

dα δ(β + ξα− x̄) fi(β, α, t) +Di Θ(ξ2 − x̄2)

DD: fi = zero-skewness GPD × weight fct (generates ξ dep.)

F (x̄, ξ = 0, t) = f(x̄) exp [(bf + α′
f ln (1/x̄))t]

f = q,∆q, δq for H, H̃,HT or cx̄−αf (0)(1− x̄)βf

Regge-like t dep. (for small ξ and small −t reasonable appr.)

advantage: polynomiality and reduction formulas automatically satisfied

D-term neglected

used in our analysis
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Transverse localization of partons

Burkhardt (00): ξ = 0 case (x = x′ = x̄)

Fourier transform:

q(x, ξ = 0,b) =

∫
d2∆

(2π)2
e−ib·∆ Hq(x, ξ = 0, t = −∆2)

and analogously for the other GPDs

q(x, ξ = 0,b) gives probability to find a quark q with

long. momentum fraction x at transverse position b (seen in an IMF)

∼ exp [tgh(x)] : q(x, ξ = 0,b) =
1

4π

q(x)

gh(x)
exp

[
− b2

4gh(x)

]
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Transverse size of the proton

Diehl et al (04): analysis of nucleon form factors

more complicated profile function required for large x, large −t

exp [gh(x)t] : gh = (bh + α′ ln 1/x)(1− x)3 +Ax(1− x)2

strong x ↔ t correlation, small x (small −t): gh −→ Regge profile fct
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center of momentum
∑

xibi = 0

b transv. distance of struck parton

b/(1− x) distance between struck parton

and spectator system

provides estimate of size of hadron

d2(x) = 〈b2〉x/(1 − x)2 = 4gh(x)/(1 − x)2 for u

quarks: Regge-like (1− x)3 (1− x)2 term
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The γ∗p → V B amplitudes
consider large Q2, W and small t;

kinematics fixes skewness: ξ ≃ xBj

2−xBj
[1 +m2

V /Q
2] ≃ xBj/2 + m.m.c.

Mµ+,µ+(V ) =
e0
2

{
∑

a

eaCaa
V 〈Hg

eff〉V µ +
∑

ab

Cab
V 〈Hab

eff〉V µ

}
,

Mµ−,µ+(V ) = −e0
2

√
−t′

M +m

{
∑

a

eaCaa
V 〈Eg〉V µ +

∑

ab

Cab
V 〈Eab〉V µ

}
,

Cab
V flavor factors, M(m) mass of B(p), Heff = H − ξ2/(1− ξ2)E

contributions from H̃ to T-T amplitude not shown

electroproduction with unpolarized protons at small ξ:

E not much larger than H (see below) =⇒ Heff → H for small ξ

|Mµ−,µ+|2 ∝ t′/m2 neglected =⇒ probes H (exception ρ+)

trans. polarized target: probes Im[〈E〉∗〈H〉] interference
polarized beam and target: probes Re[〈H〉∗〈H̃〉] interference
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Subprocess amplitudes

F = H,E λ parton helicities

〈F 〉ab(g)V µ =
∑

λ

∫
dx̄HV ab(g)

µλ,µλ (x̄, ξ, Q2, t = 0)F ab(g)(x̄, ξ, t)

F aa = F a , F ab = F a − F b (a 6= b) (with flavor symmetry)

γ∗ V
· · ·

coll.

fact.

LO pQCD

+ quark trans. mom.

+ Sudakov supp.

⇒ lead. twist for Q2 → ∞

HV ab
µλ,µλ =

∫
dτd2b Ψ̂V µ(τ,−~b) exp[−S(τ,~b,Q2)]

× F̂ab
µλ,µλ(x̄, ξ, τ, Q

2,~b)

Sudakov factor (Sterman et al)

S ∝ ln
ln (τQ/

√
2ΛQCD)

− ln (bΛQCD) + NLL

F̂ FT of hard scattering kernel

e.g. FT of ∝ ea/[k
2
⊥ + τ(x̄+ ξ)Q2/(2ξ)]

TT :

∫ 1

0

dτ
ΦV (τ)

τ

1

k2
⊥ + cτQ2

regularizes also TT amplitude

in collinear appr – IR singular
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Goloskokov-K. 06, 07, 08, 09:

analysis of cross sections and spin density matrix elements

for ρ0 and φ electroproduction

data taken from HERMES, COMPASS, E665, H1, ZEUS

cover large range of kinematics Q2 ≃ 3− 100GeV2 W ≃ 5− 180GeV

H constructed from CTEQ6 PDFs through the double distr. ansatz

(D = 0, sum rules and positivity bounds checked numerically)

Gaussian wave fcts for the mesons ΨV j ∝ exp
[
− a2V jk

2
⊥/(τ τ̄)

]

main features of H seems fairly well determined at small ξ and x<∼ 0.6

(bears resemblance to color dipole model:

Frankfurt et al (95), Nikolaev et al(11), Anikin(11) )
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ρ0 and φ cross sections
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at Q2 = 4(3.8)GeV2 E665 ( ), HERMES (•), CORNELL ( )

ZEUS ( ), H1 ( ), CLAS (◦)
Goloskokov-K (09)

ω, ρ+ very large at small W too CLAS (most likely val. quarks responsible)

double distrib. ansatz too simple for valence quarks at large ξ? (resonances?)

breakdown of handbag physics?

JLAB12 may explore region close to minimum
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GPD composition
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data: H1 (open), ZEUS (filled squares), E665 (triangles), HERMES (circles)
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suppression due to different aV
SU(3) breaking in sea κs =

(u(x)+d(x))/2
s(x) CTEQ6

κs ≃ 2 at low Q2 and → 1 for Q2 → ∞
and valence quarks for HERMES, CLAS

COMPASS data on ρ0 and φ may verify dominance of gluons (+ sea)

JLAB12: checks sea
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Results on cross sections
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DVCS

Exploiting universality:

applying a given set of GPDs determined in either DVCS or meson

electroproduction, to the other process predictions

Kumericky et al (11), Meškauskas-Müller (11)

set of GK GPDs applied to DVCS at HERA kinematics in a LO collinear

calculation

(compatible with GK approach to meson prod.)

Moutarde-Sabatie (K) in progress

using GK GPDS –first results show reasonable agreement

some difficulties for Jlab kinematics (large skewness, small W , small Q2)
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Data: • HERMES (09)

(contaminated by reso-

nance contributions)

HERMES (11)

(prel. recoil data)

〈Q2〉 = 2.37GeV2

〈xBj〉 = 0.09

Moutarde-Sabatie (prel.) • using GK GPDs

HERMES beam spin, beam charge and target spin asymmetries

in general well described with a few exceptions

(like the above example, wait for recoil data)

asymmetries dominated by H, other GPDS (H̃, E) can be neglected

exception A
sin (φ−φs)
UT,DV CS (see below)
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What do we know about Ev?
analysis of Pauli FF for proton and neutron at ξ = 0 Diehl et al (04):

F
p(n)
2 = eu(d)

∫ 1

0

dxEu
v (x, ξ = 0, t) + ed(u)

∫ 1

0

dxEd
v (x, ξ = 0, t)

ansatz: Ea
v = eav(x) exp

[
tgav (x)

]
eav = Nax

−αv(0)(1− x)β
a
v (like PDFs)

Na fixed from κa =
∫ 1

0
dxEa

v (x, ξ = 0, t = 0)

fits to FF data: βu
v ≃ 4, βd

v = βu
v + 1.6

(other powers not excluded in 04 analysis)

new JLab data on Gn
E,M

up to 3.5(5.0)GeV2, favor βu
v < βd

v

βu
v ≃ 4.5, βd

v ≃ 6 (preliminary)

Input to double distribution ansatz
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E for gluons and sea quarks
Diehl-Kugler(07), GK(09)

sum rule (Ji’s s.r. and momentum s.r. of DIS) at t = ξ = 0

∫ 1

0

dxxeg(x) = eg20 = −
∑

eav

20 − 2
∑

eā20

valence term very small, in particular if βu
v ≤ βd

v

⇒ gluon and sea quark moments cancel each other almost completely

positivity bound for FT forbids large sea =⇒ gluon small too

b2

m2

(
∂es(x,b)

∂b2

)2

≤ s2(x, b)−∆s2(x, b)

forw. limits (flavor symm. sea for E assumed): ei = Nix
−αg(0)(1− x)βi

and Regge-like t dependence: ∝ exp
[
t
(
α′
i ln(1/x) + bei

)]

Ns fixed by saturating bound, Ng from sum rules, αg = 0.1 + 0.15t

input to double distribution ansatz
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Results for AUT (V )
data: HERMES (08) COMPASS prel.
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(E for gluons and sea small and partial cancellation)
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Target asymmetry in DVCS
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sin(φ−φs)
UT,DV CS ∼ Im

[
〈E〉∗〈H〉

]
∝

√
−t′

E necessary

Moutarde-Sabatie (K) ( • Ns < 0, βs = 7, flavor symm. sea)

no recoil data from HERMES (• Ns > 0)
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Eg?
not much known about Eg and Es

Possibility: AUT = AN for photoproduction of J/Ψ Koempel et al (11)

A
J/ψ
N (Q2 = 0, t = −0.8GeV2)
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dominated by gluonic GPDs

intrinsic charm small

AN generally small because

|〈Eg〉| ≪ |〈Hg〉| and small phase diff.

Diehl (10): node in Eg may lead to larger

AN , e.g. of order 10% for x0 = 0.05

will affect electroproduction of φ as well (gluonic and strange GPDs)

- large AN in J/Ψ most likely leads also to large asymmetry in φ production

e.g. for x0 = 0.05: AUT = 0.15 (integrated over t)
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What did we learn about GPDs from meson production?
GPD probed by constraints status

H ρ0, φ cross sections PDFs ***

H̃ ALL(ρ
0) polarized PDFs *

E AUT (ρ
0, φ) sum rule for 2nd moments *

Ẽ,HT , . . . - - -

H ρ0, φ cross sections PDFs, Dirac ff ***

H̃ π+ data pol. PDFs, axial ff **

E AUT (ρ
0, φ) Pauli ff **

Ẽn.p. π+ data pseudoscalar ff *

HT π+ data transversity PDFs *

H̃T , ET , ẼT - - -

Status of small-skewness GPDs as extracted from meson electroproduction

data. The upper (lower) part is for gluons and sea (valence) quarks. Except of

H for gluons and sea quarks all GPDs are probed for scales of about 4GeV2

PDFs *****
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Valence quark GPDs
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Tomography of dv graphs
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Ji’s sum rule

〈Ja〉 = 1

2

[
qa20 + ea20

]
〈Jg〉 = 1

2

[
g20 + eg20

]
(ξ = 0)

for the variants discussed in context of AUT : using CTEQ6 PDFs

Ju = 0.250 Jd = 0.020 Js = 0.015 Jg = 0.214

= 0.276 = 0.046 = 0.041 = 0.132

= 0.225 = −0.005 = −0.011 = 0.286

J i quoted at scale 4GeV2,
∑

J i ≃ 1/2, the spin of the proton

characteristic, stable pattern: for all variants Ju and Jg are large, others small

〈Juv 〉 = 0.208(6) 〈Jdv 〉 = −0.011(11)

(prel. from new form factor analysis)

Lattice (Hägler et al (07)): 〈Ju〉 = 0.214(27) , 〈Jd〉 = −0.001(27), (mπ(phys))

orbital angular momenta: subtract contribution from spin

〈Li〉 := 〈J i〉 −∆qi/2 〈Luv 〉 ≃ −0.255(6) 〈Ldv 〉 ≃ 0.160(11)
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Summary

• exclusive electroproduction of vector mesons allows to extract the GPD H

rather well at small ξ and W >∼ 4GeV

• information on E, from AUT less precise, for valence quarks not too bad

due to form factor constraint

• double distr. ansatz is flexible enough to account for all small ξ data

• gluon and sea-quark sector almost unknown (exception H), no

experimental information as yet

• the GPDs allows to predict DVCS, results in fair agreement with

experiment

• the GPDs allow to study transverse localization of partons (at least for

valence quarks) and to evaluate Ji’s sum rule

• open question with large ξ region: does handbag physics still apply or have

the GPD parameterizations to be improved at large ξ?

(see failure with σL(ρ
0))
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