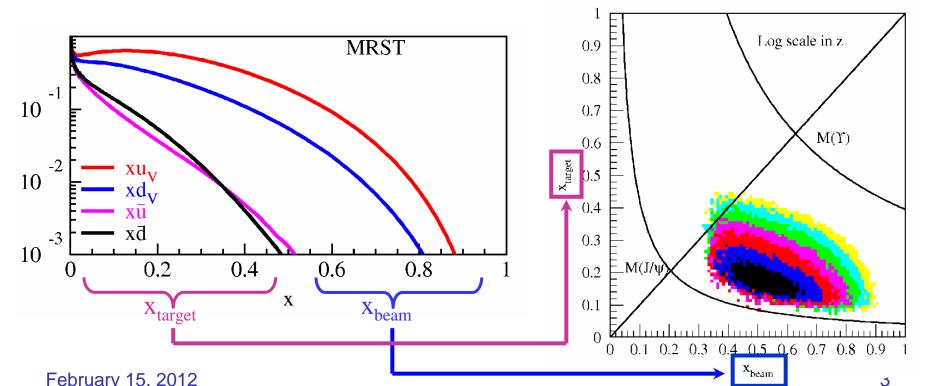
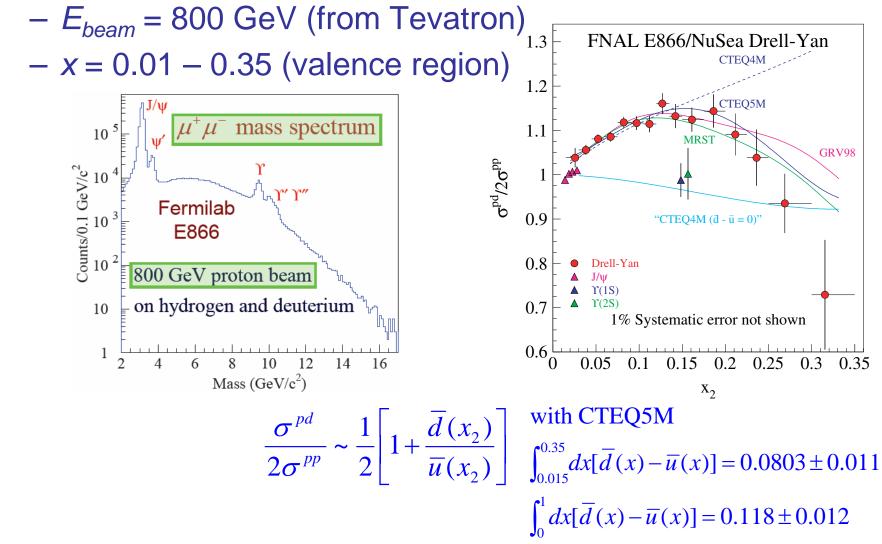
Sea-quark spin/flavor with Drell-Yan experiments


INT Workshop "Orbital Angular Momentum in QCD" February 15, 2012 Yuji Goto (RIKEN)

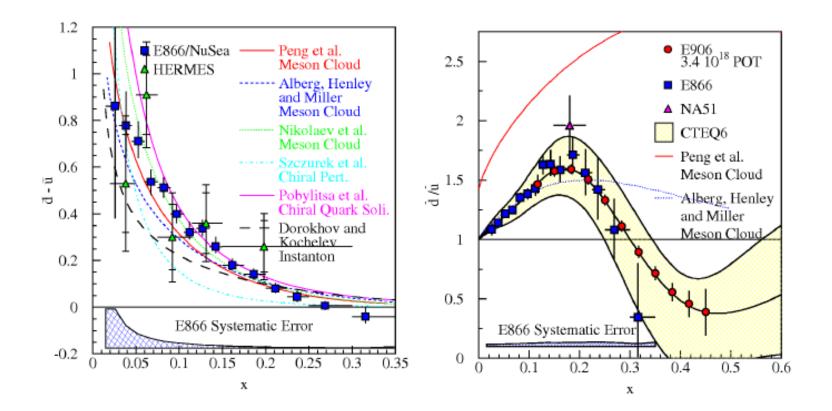
Outline


- Fermilab Drell-Yan experiments
 - Unpolarized program
 - Flavor asymmetry of sea-quark distribution
 - Boer-Mulders distribution
- Polarized Drell-Yan experiments
 - RHIC polarized programs (Bland's talk on Feb.10)
 - Sivers distribution
 - Other programs (possible extension of Fermilab program)

Drell-Yan experiments

- $\frac{d^2\sigma}{dx_{\rm b}dx_{\rm t}} = \frac{4\pi\alpha^2}{x_{\rm b}x_{\rm t}s} \sum_{q\in\{u,d,s,\dots\}} e_q^2 \left[\bar{q}_{\rm t}\left(x_{\rm t}\right)q_{\rm b}\left(x_{\rm b}\right) + \bar{q}_{\rm b}\left(x_{\rm b}\right)q_{\rm t}\left(x_{\rm t}\right)\right]$
- Fixed target experiment (e.g. at Fermilab)
 - forward detector acceptance chooses large x_b and small x_t

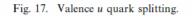
• Fermilab-E866/NuSea experiment



Fermilab-E906/SeaQuest experiment

- Nucleon structure
 - With hydrogen and deuterium targets
 - Select anti-quark distributions in hadrons
 - Flavor asymmetry of sea-quark distributions
 - Boer-Mulders distribution
- Nuclear matter
 - With nuclear targets
 - Partonic energy loss
 - EMC effect

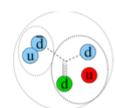
- Fermilab-E906/SeaQuest experiment
 - $E_{beam} = 120 \text{ GeV}$ (from Main Injector)
 - -x = 0.1 0.45

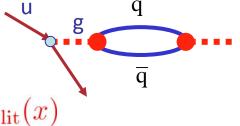

- Competition between
 - perturbative QCD
 - gluon dissociation $\bar{d}_{\rm split}(x) = \bar{u}_{\rm split}(x) = \bar{q}_{\rm split}(x)$
 - non-perturbative contributions
 - Meson cloud model

$$|p\rangle = (1 - a - b) |p_0\rangle + a |N\pi\rangle + b |\Delta\pi\rangle + \dots$$

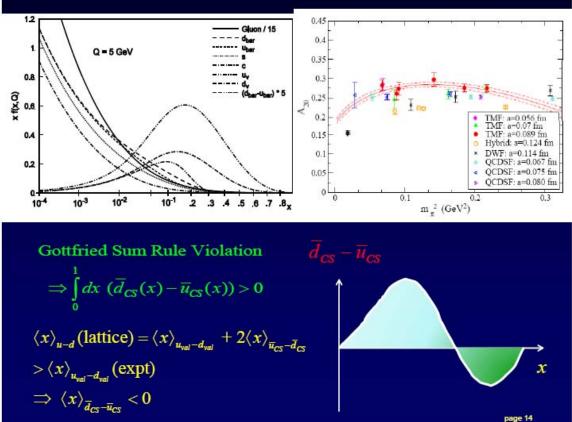
• Chiral quark model

$$\langle q|\bar{q}\rangle = \left[1 - \frac{3a}{2}\right] \langle q|\bar{q}\rangle + \frac{3a}{2} \langle q\pi|\bar{q}\pi\rangle \quad \int_0^1 \left[\bar{d}(x) - \bar{u}(x)\right] dx = \frac{2a}{3} \int_0^{\pi^+} dx \quad \text{if } x = \frac{2a}{3} \int_0^{\pi^+} dx$$


Instanton model



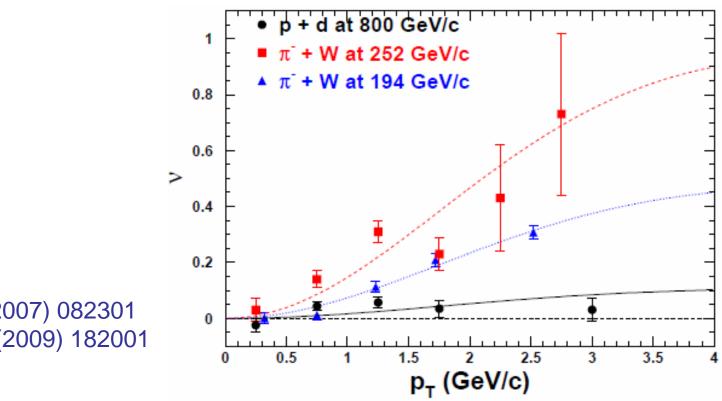
d


- π^+ in the proton as an origin of anti-d quark
 - pseudo-scaler meson should have orbital angular momentum in the proton...

 $\overline{u}.\overline{d}$

- Liu's talk on Feb.6 $\overline{d} \overline{u} < 0$?
 - In lattice calculation, connected sea component should be d-bar – u-bar < 0
 - But, this component doesn't contribute to OAM...

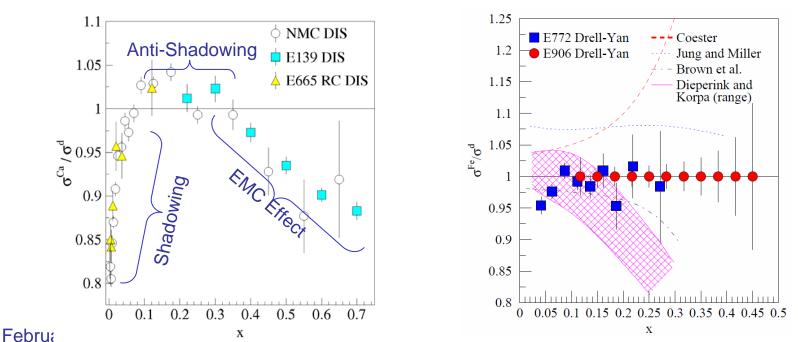
Drell-Yan decay angular distributions


• A general expression for Drell-Yan decay angular distributions

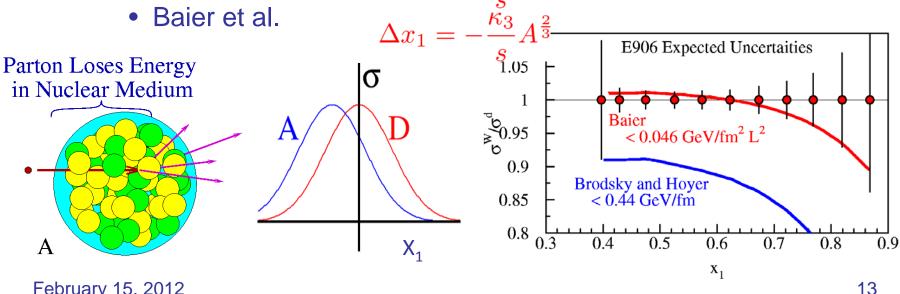
$$\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right]$$

- $-\lambda = 1$, $\mu = \nu = 0$ for non-zero p_T in Collins-Soper frame
- λ can differ from 1, but should satisfy 1- λ =2 ν (Lam-Tung relation)
- Reflect the spin-1/2 nature of quarks (analog of the Callan-Gross relation in DIS)
- Insensitive to QCD corrections
- Violation of the Lam-Tung relation
 - $-v \neq 0$ and v increases with p_T
 - Violation of the Lam-Tung relation suggests new mechanisms with non-perturbative origin

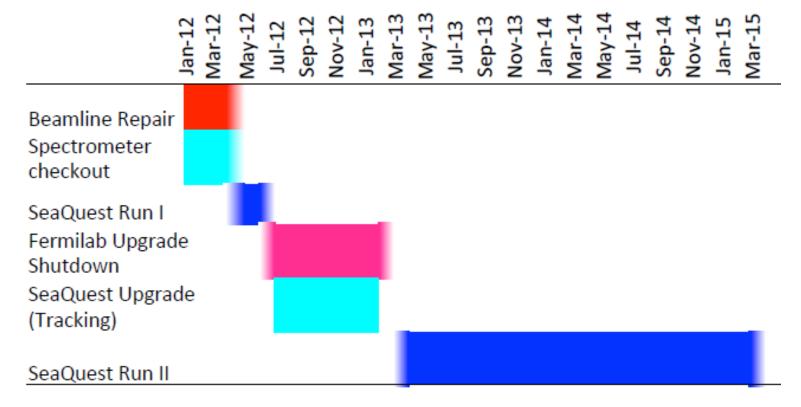
Drell-Yan decay angular distributions


- Boer-Mulders function h_1^{\perp}
 - Small ν is observed for p+d and p+p
 - π^- +W: [valence $h_1^{\perp}(\pi)$] \otimes [valence $h_1^{\perp}(p)$]
 - p+d and p+p: [valence $h_1^{\perp}(p)$] \otimes [sea $h_1^{\perp}(p)$]

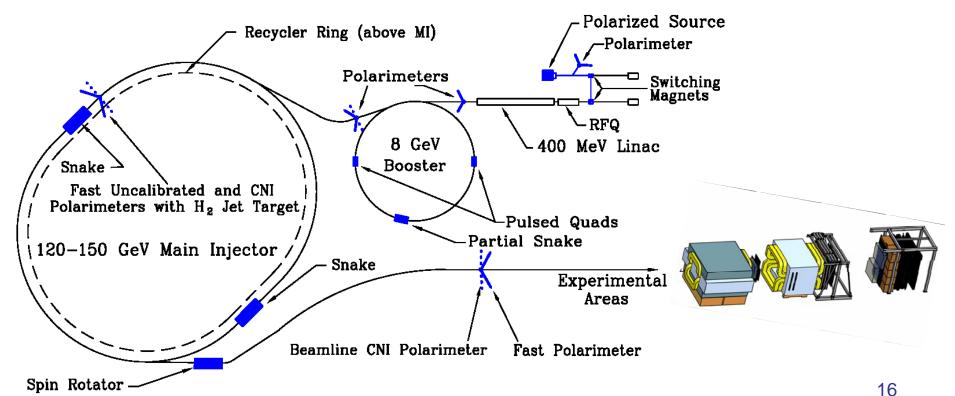
L. Y. Zhu et al., Phys. Rev. Lett. 99 (2007) 082301 Phys. Rev. Lett. 102 (2009) 182001


EMC effect

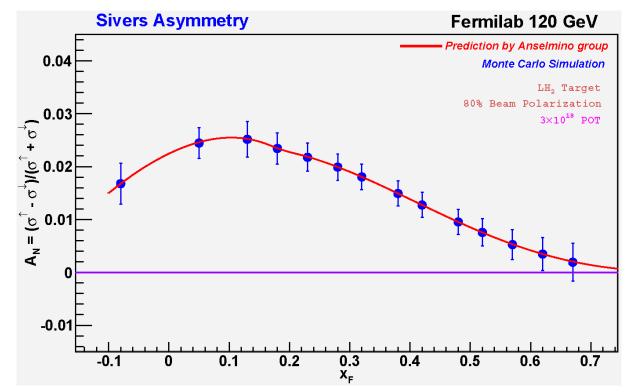
- Discovered by the EMC collaboration from muon DIS experiments in 1983
- Modification of the antiquark distributions in nuclei relative to the nucleon
 - Virtual meson exchange modifies the antiquark distributions of the nuclei
 - Present Drell-Yan data suggests no modification


Parton energy loss

- Energy loss in cold nuclear matter
 - Prior to annihilation
 - No apparent shift in x_1 found so far
 - Important to understand energy loss in hot nuclear matter
 - Models
 - Galvin and Milana $\Delta x_1 = -\kappa_1 x_1 A^{\frac{1}{3}}$
 - Brodsky and Hoyer $\Delta x_1 = -\frac{\kappa_2}{c}A^{\frac{1}{3}}$

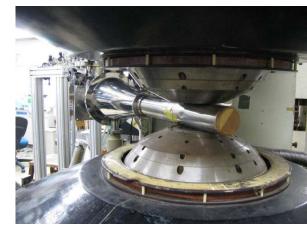

Fermilab-E906/SeaQuest experiment

- Status
 - Present critical path is a repair of beam line vacuum
 - Experiment is ready to run
 - Run (> 2 months) before Fermilab maintenance break

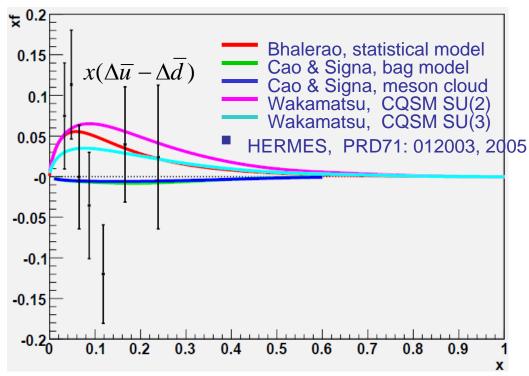


- Many new inputs for remaining proton-spin puzzle
- Single transverse-spin asymmetry
 - Sivers function measurement
 - Transversity
 - Boer-Mulders function
- Double transverse-spin asymmetry
 - Transversity (quark⊗antiquark for p+p collisions)
- Double helicity asymmtry
 - Flavor asymmetry of sea-quark polarization

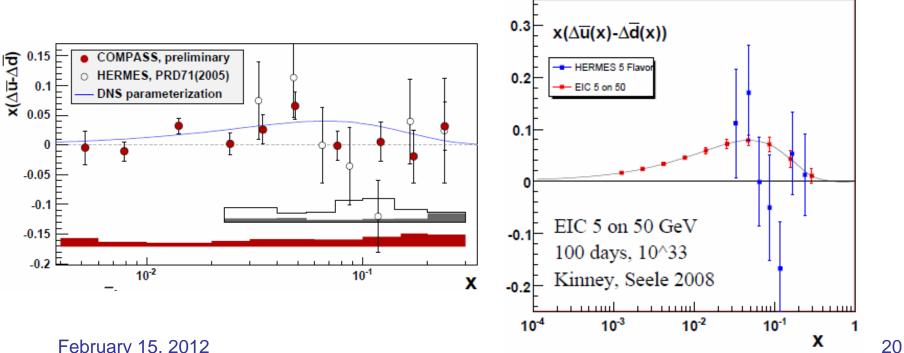
- Polarized beam
- Polarized Fermilab Main Injector study completed: arXiv:1110.3042
- Approx. \$4M+
- Physics proposal to Fermilab in June 2012



- Clean measurement of sign and shape of Sivers distributions to compare DIS and Drell-Yan
- Luminosity
 - $L_{av} = 2 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (10% of available beam time: $I_{av} = 15 \text{ nA}$)
 - 100 fb⁻¹ for 5 x 10⁵ min: (= 2 yrs at 50% efficiency)



- Polarized target R&D
- KEK
 - Rebuilding "Michigan" target @ North-CH/K5
 - Irradiated-NH3
 - 5-T magnet & 1-K cryostat
 - Vacuum & cryostat system made
 - But damaged by the earthquake
 - 213 MHz NMR to be tested (2011)
 - Microwave 140GHz EIO to be purchased (2011-12)
 - Sample test to be done (2012)
- Yamagata Univ.
 - Material R&D
 - Polyethylene fiber
 - Large surface area
 - Large cooling power
 - Deformation performance
 - To be tested with a new cryostat (2011-12)
 - Cooling test underway

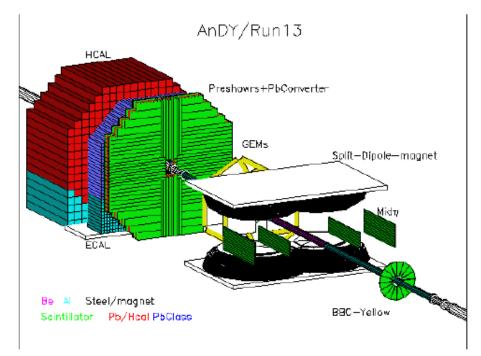


- Double helicity asymmetry
 - $-A_{LL}$ measurement
 - Flavor asymmetry of sea-quark polarization
 - High luminosity accumulation is very important

- Flavor asymmetry of sea-quark polarization
 - SIDIS data from HERMES, and new COMPASS data available
 - W data from RHIC will be available in the near future
 - Polarized Drell-Yan data will be able to cover higher-x region

- Options with SeaQuest apparatus after the unpolarized experiment
 - At RHIC with internal target (unpolarized)
 - At J-PARC (unpolarized & polarized programs)
- Many other programs in the world

experiment	particles	energy	x1 or x2	luminosity
COMPASS	π [±] + p↑	160 GeV √s = 17.4 GeV	x2 = 0.2 - 0.3	$2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
COMPASS (low mass)	π [±] + p↑	160 GeV √s = 17.4 GeV	x2 ~ 0.05	$2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
PAX	p↑ + pbar	collider √s = 14 GeV	x1 = 0.1 - 0.9	$2 \times 10^{30} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
PANDA (low mass)	pbar + p↑	15 GeV √s = 5.5 GeV	x2 = 0.2 - 0.4	$2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$
J-PARC	p↑+p	50 GeV √s = 10 GeV	x1 = 0.5 - 0.9	10 ³⁵ cm ⁻² s ⁻¹
NICA	p↑+p	collider √s = 20 GeV	x1 = 0.1 - 0.8	10 ³⁰ cm ⁻² s ⁻¹
RHIC PHENIX Muon	p↑+p	collider √s = 500 GeV	x1 = 0.05 - 0.1	$2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$
RHIC Internal Target phase-1	p↑+p	250 GeV √s = 22 GeV	x1 = 0.2 - 0.5	$2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
RHIC Internal Target phase-2	p↑+p	250 GeV √s = 22 GeV	x1 = 0.2 - 0.5	3×10^{34} cm 2 s 1


RHIC experiments: AnDY

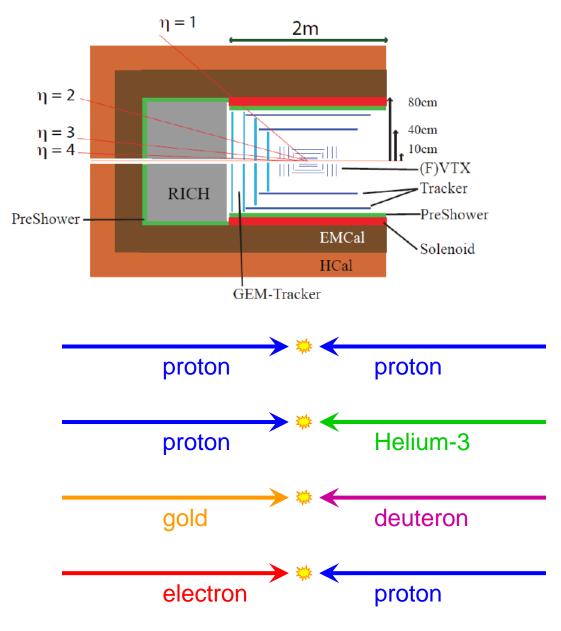
Bland's talk on Feb.10

2.10.2012

Goal of A_NDY Project

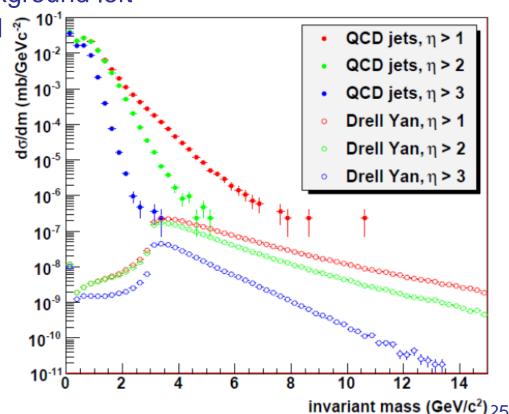
Measure the analyzing power for forward Drell-Yan production to test the predicted change in sign from semi-inclusive deep inelastic scattering to DY associated with the Sivers function

GEANT model of proposed A_NDY apparatus (run-13)

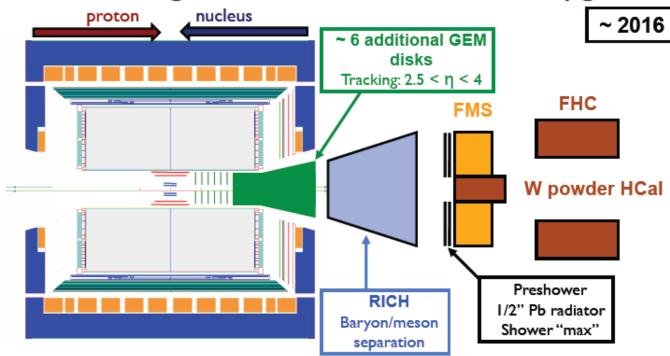

February and an and a

31

RHIC experiments: sPHENIX upgrade


- Spin physics highlights with forward upgrade
 - Transverse spin program
 - Jet
 - Drell-Yan process
 - Longitudinal
 - Δ G via jets, γ -jet (correlation measurement)
 - Polarized Helium-3 and RHIC energy upgrade
- Cold nuclear matter
- Low-x gluon saturation

RHIC experiments: sPHENIX upgrade


RHIC experiments: sPHENIX upgrade

- Drell-Yan S/N w.r.t. QCD backgrounds
 - Drell-Yan signal 4-10 GeV/ c^2
 - Energy cut E1,E2 > 2 GeV
 - Forward rapidities
 - Effectively no background left
 - Statistically limited

RHIC experiments: STAR upgrade

STAR moving forward: instrumentation upgrade

- Forward instrumentation optimized for p+A and transverse spin physics
 - Charged-particle tracking
 - e/h and γ/π⁰ discrimination
 - Baryon/meson separation
- · The upgrade can be utilized for forward (hadronic side) in e+p, e+A

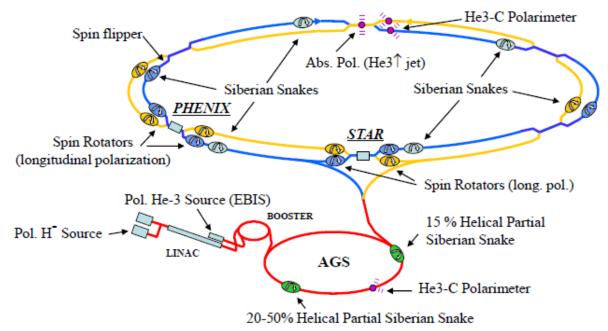
February 15, 2012

16

RHIC experiments: STAR upgrade

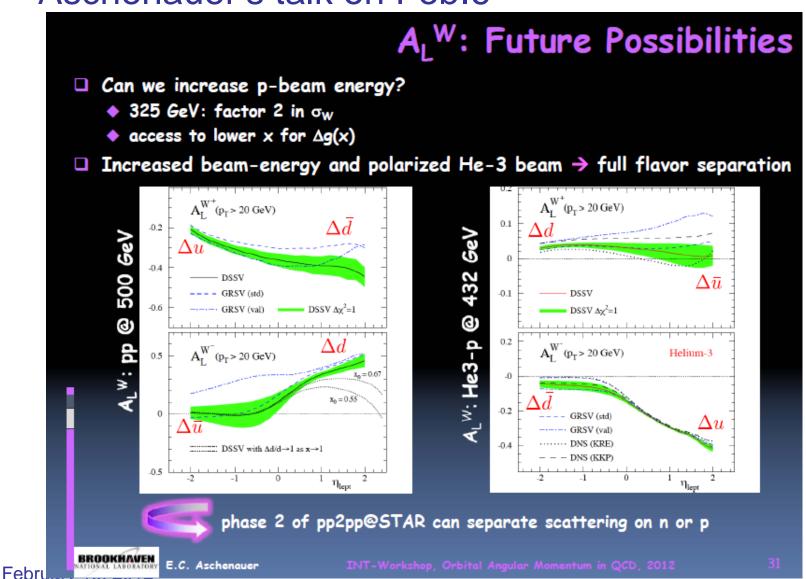
STAR Upgrades and physics: Nucleon spin and Cold nuclear matter

100			
year	near term (11-13)	mid-decade (14-16)	long term (17-19)
Colliding system	P+b	p+p, p+ ³ He	р+р, р+А
Upgrade	FGT,FHC,DAQ10K, Trigger	HFT,MTD,Trigger, RP phase II	Forward Detectors,Trigger
Nucleon spin structure	W A _L jet and di-jet A _{LL} , intra-jet correlation, Λ D _{LL} /D _{TT}	W A _L with polarized ³ He	A _N in p+p, p+A
QCD beyond collinear factorization	Forward A _N	Forward A _N with ³ He (Flavor separation)	Drell-Yan, Forward- Forward corr.
Exotic particles		exotic mesons,baryons	exotic mesons,baryons
Properties of initial states			Charm corr. Drell- Yan J/Ψ. F-Fcorr. ,Λ


11

RHIC upgrades: Helium-3

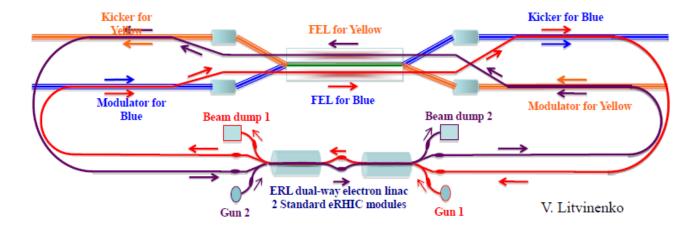
Polarized Helium-3 acceleration


Polarized He-3 in RHIC

- Resent workshop to review status and R&D needs for polarized He-3 acceleration
- Polarized He-3 from new EBIS; test soon possibly starting with unpolarized He-3
- Polarimetry:
- Relative: He3-C CNI polarimeter;
- Absolute: He3-He3 CNI polarimeter using polarized He-3 jet
- Depolarizing resonances are stronger; no depolarization expected with six snakes in RHIC
- Physics from polarized p-He3? High luminosity may be possible (see below)

RHIC upgrades: Helium-3

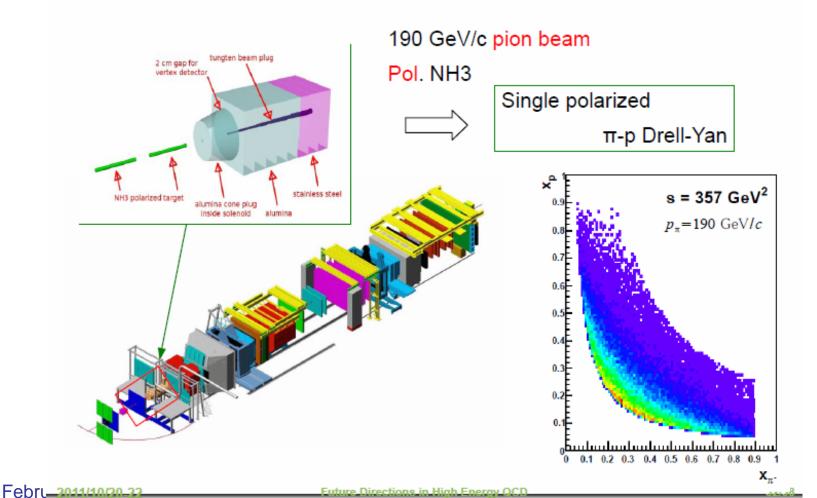
Aschenauer's talk on Feb.6



RHIC upgrades: Luminosity

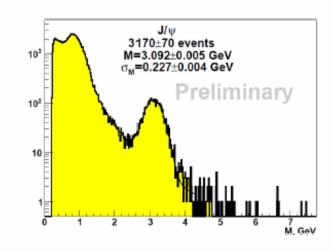
- High luminosity
 - Coherent electron cooling

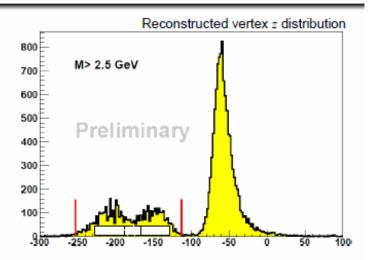
Coherent electron Cooling for RHIC


- RHIC: overlap length ~ 10 cm, ϵ_n (95%) ~ 1 π μm , β^* ~ 10 cm \Box ~ x10 luminosity increase
- Together with eLens beam-beam compensation 5 x10³³ cm⁻² s⁻¹ might be possible for 500 GeV pp (~ 25 interactions per crossing)
- LHC demonstrated 30 interactions per crossing is OK, planning for 200!
- Effect of long range beam-beam?
- Possible layout in RHIC IP of CeC driven by a single linac:

20

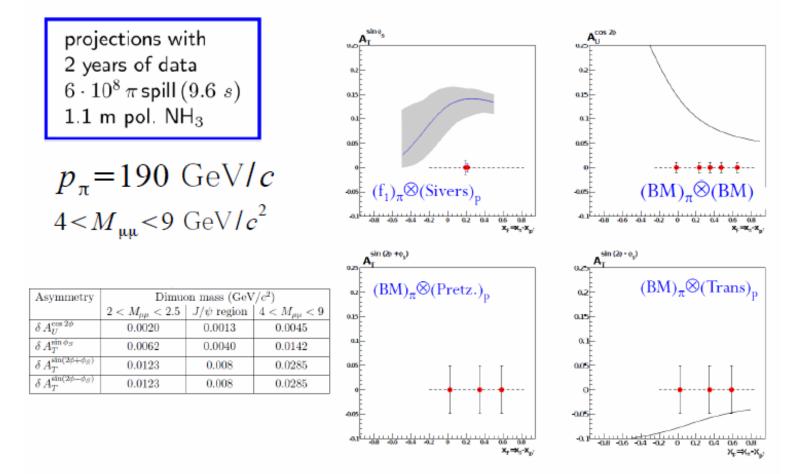
COMPASS experiment


COMPASS-II polarized Drell-Yan
COMPASS II: Drell-Yan


31

COMPASS experiment

COMPASS-II polarized Drell-Yan
The results from 2009 beam test

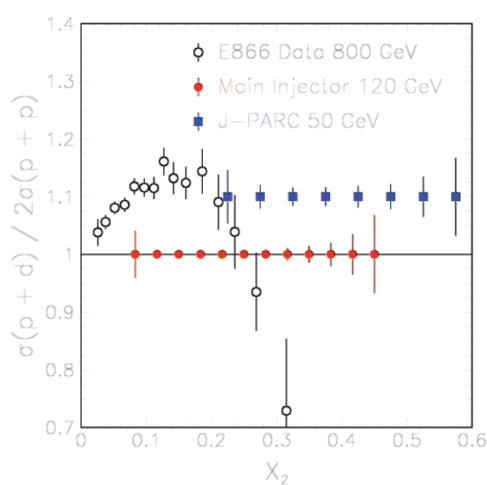

	Expected	Found
J/ψ	3600±600	3170±70
DY M>4 GeV	110±22	84±10

- 3 days of data taking 8.10⁷ π^{-} /9.6 s spill
- -2 cells of CH₂ of 40-20-40 cm
- temporary absorber
- simple trigger

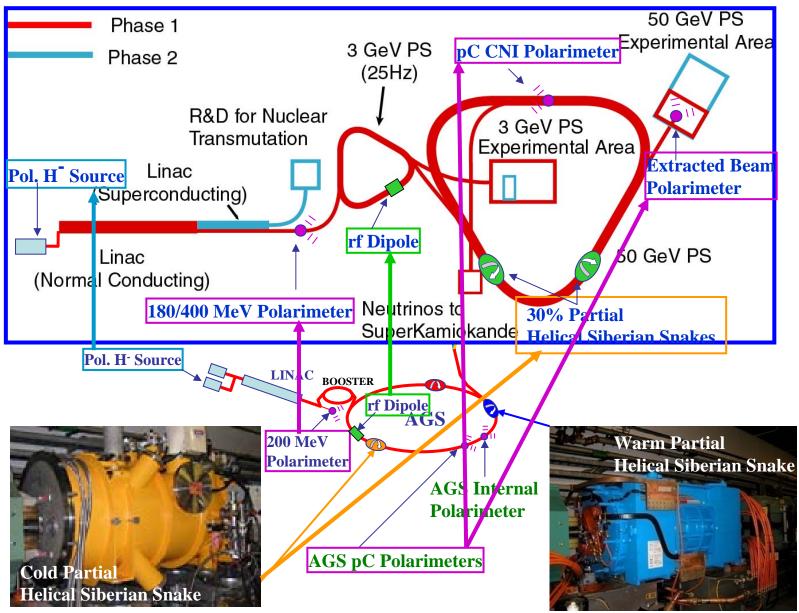
COMPASS experiment

COMPASS-II polarized Drell-Yan
Projections for azimuthal asymmetries

Febru-2011/10/20-22


35/38 33

J-PARC proposal/Lol


- P04: measurement of high-mass dimuon production at the 50-GeV proton synchrotron
 - spokespersons: Jen-Chieh Peng (UIUC) and Shinya Sawadas (KEK)
 - "deferred"
- P12-LoI: study of parton distribution function of mesons via Drell-Yan process at J-PARC at high-p beamline
 - spokesperson: Seonho Choi (Seoul National University)
- P24: polarized proton acceleration at J-PARC
 - contact persons: Yuji Goto (RIKEN) and Hikaru Sato (KEK)
 - "no decision"

J-PARC P04 proposal

- Flavor asymmetry of sea-quark distribution
- Unpolarized Drell-Yan
 - Higher-x coverage
 - 10¹² protons per spill (3s)
 - 50-cm long LH2/LD2 targets
 - 60-day runs for each targets
 - Assuming 50% efficiency

Polarized proton acceleration at J-PARC

Summary

- Fermilab SeaQuest experiment
 - Flavor asymmetry of sea-quark distribution
 - Spatial distribution of sea-quarks in the nucleon \leftrightarrow OAM
 - Boer-Mulders distribution
 - Nuclear matter
- Polarized Drell-Yan experiments
 - Sivers distribution
 - AnDY/COMPASS/...
 - RHIC polarized programs
 - Detector/accelerator upgrades
 - possible future extension of SeaQuest experiment
 - Polarized beam/target at Fermilab
 - RHIC/J-PARC
 - Flavor asymmetry of sea-quark polarization
 - High luminosity accumulation is very important