Field theoretic vs. partonic formulation of angular momentum

Matthias Burkardt

New Mexico State University

February 7, 2012

Probabilistic interpretation of GPDs as Fourier transforms of impact parameter dependent PDFs

•
$$
H(x, 0, -\Delta_{\perp}^2) \longrightarrow q(x, \mathbf{b}_{\perp})
$$

 $\tilde{H}(x, 0, -\Delta_{\perp}^2) \longrightarrow q(x, \mathbf{b}_{\perp})$

- $\tilde{H}(x,0,-\boldsymbol{\Delta}^2_\perp)\longrightarrow \Delta q(x,{\mathbf{b}_\perp})$
- $E(x, 0, -\Delta_{\perp}^2) \longrightarrow \perp$ deformation of PDFs when the target is ⊥ polarized
- \rightarrow Ji relation (poor man's derivation)
	- comparison Jaffe \leftrightarrow Ji decomposition
	- $\int dx \bar{g}_2(x)x^2 \Rightarrow \perp$ force in DIS

Summary

Physics of GPDs

- form factors: $\xrightarrow{FT} \rho(\vec{r})$
- \bullet GPDs(x, $\vec{\Delta}$): form factor for quarks with momentum fraction x
- \hookrightarrow suitable FT of *GPDs* should provide spatial distribution of quarks with momentum fraction x
	- careful: cannot measure longitudinal momentum (x) and longitudinal position simultaneously (Heisenberg)
- \leftrightarrow consider purely transverse momentum transfer

Impact Parameter Dependent Quark Distributions

$$
q(x,{\mathbf{b}_\perp})=\int \frac{d^2\Delta_\perp}{(2\pi)^2} H(x,\xi=0,-{\Delta_\perp^2})e^{-i{\mathbf{b}_\perp}\cdot{\mathbf{\Delta}_\perp}}
$$

 $q(x, \mathbf{b}_{\perp})$ = parton distribution as a function of the separation \mathbf{b}_{\perp} from the transverse center of momentum $\mathbf{R}_{\perp} \equiv \sum_{i \in q, g} \mathbf{r}_{\perp,i} x_i$ MB, Phys. Rev. D62, 071503 (2000)

- No relativistic corrections (Galilean subgroup!)
- \hookrightarrow corollary: interpretation of 2d-FT of $F_1(Q^2)$ as charge density in transverse plane also free of relativistic corrections $(\rightarrow G.Miller)$
	- probabilistic interpretation

Impact parameter dependent quark distributions

unpolarized proton

- $q(x,\mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H(x,0,-\mathbf{\Delta}^2_{\perp})e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}_{\perp}}$
- $\bullet x =$ momentum fraction of the quark
- $\vec{b} = \perp$ distance of quark from \perp center of momentum
- \bullet small x: large 'meson cloud'
- larger x: compact 'valence core'
- $x \to 1$: active quark becomes center of momentum
- $\rightarrow \vec{b}_\perp \rightarrow 0$ (narrow distribution) for $x \rightarrow 1$

Impact parameter dependent quark distributions $5\frac{5}{5}$

Impact parameter dependent quark distributions 6

proton 'polarized in $+\hat{x}$ direction' & localized in the \perp direction

$$
q(x,{\mathbf{b}_\perp}) = \!\!\int\!\!\frac{d^2\Delta_\perp}{(2\pi)^2} H_q(x,0,-\Delta_\perp^2) e^{-i{\mathbf{b}_\perp}\cdot{\mathbf{\Delta}_\perp}} -\frac{1}{2M}\frac{\partial}{\partial b_y} \!\int\!\!\frac{d^2\Delta_\perp}{(2\pi)^2} E_q(x,0,-\Delta_\perp^2) e^{-i{\mathbf{b}_\perp}\cdot{\mathbf{\Delta}_\perp}} \Bigg]
$$

spin + relativity = weirdness $(\rightarrow$ Naomi Makins)

above $q(x,b_{\perp})$ calculated in \perp localized state $|\hat{x}'\rangle \equiv |p^+, \mathbf{R}_{\perp} = 0, +\rangle + |p^+, \mathbf{R}_{\perp} = 0, -\rangle$ which is <u>not</u> eigenstate of \perp nucleon spin

- due to presence of $\mathbf{p}_\perp \neq 0$
- $\bullet \pm$ refers to light-front helicity states (issue when $\mathbf{p}_{\perp} \neq 0$)

distribution in delocalized wave packet

MB, PRD72, 094020 (2005) $q_\psi(x,{\mathbf{b}_\perp}) = \int d^2 r_\perp q(x,b_\perp-r_\perp) \left(|\psi({\mathbf{r}_\perp})|^2 - {1\over {2M}}{\partial\over\partial r}_\perp |\psi({\mathbf{r}_\perp})|^2 \right)$ two contributions to ⊥ shift

- intrinsic shift relative to center of momentum \mathbf{R}_{\perp}
- o overall shift of \mathbf{R}_{\perp} for \perp polarized nucleon

Angular Momentum carried by Quarks 7

spherically symmetric wave packet has center of momentum off-center:

• illustrate this relativistic effect using bag model wave functions:

$$
\psi = \begin{pmatrix} f(r) \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + M_N} f(r) \end{pmatrix} \chi \quad \text{with} \quad \chi = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

 $\int d^3r f^2(r) = 1$, take limit of large 'radius' R for wave packet evaluate $T_q^{0z} = \frac{i}{2}\bar{q} (\gamma^0 \partial^z + \gamma^z \partial^0) q$ in this state

 $\psi^{\dagger} \partial_z \psi$ even under $y \to -y$, i.e. no contribution to $\langle yT_q^{0z} \rangle$

use $i\psi^{\dagger}\gamma^0\gamma^z\partial^0\psi = E\psi^{\dagger}\gamma^0\gamma^z\psi$

$$
\langle T^{0z}y \rangle = E \int d^3r \psi^{\dagger} \gamma^0 \gamma^z \psi y = E \int d^3r \psi^{\dagger} \begin{pmatrix} 0 & \sigma^z \\ \sigma^z & 0 \end{pmatrix} \psi y
$$

=
$$
\frac{2E}{E + M_N} \int d^3r \chi^{\dagger} \sigma^z \sigma^y \chi f(r) (-i) \partial^y f(r) y
$$

=
$$
\frac{E}{E + M_N} \int d^3r f^2(r) \stackrel{R \to \infty 1}{\longrightarrow} \frac{1}{2}
$$

 \hookrightarrow p pol. in $+\hat{x}$ direction has CoM shifted by $\frac{1}{2M_N}$ in $+\hat{y}$ direction!

Angular Momentum carried by Quarks 8

spherically symmetric wave packet has center of momentum off-center:

• illustrate this relativistic effect using bag model wave functions:

$$
\psi = \begin{pmatrix} f(r) \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + M_N} f(r) \end{pmatrix} \chi \quad \text{with} \quad \chi = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

$$
\langle T^{0z} y \rangle \stackrel{R \to \infty}{\longrightarrow} \frac{1}{2}
$$

 $\hookrightarrow p$ pol. in $+\hat{x}$ direction has CoM shifted by $\frac{1}{2M_N}$ in $+\hat{y}$ direction!

origin of 'shift' of CoM

- \bullet nucleon polarization: \odot
- counterclockwise momentum density from lower component

$$
\bullet
$$
 $p \sim \frac{1}{R}$, but $y \sim R$

$$
\hookrightarrow \langle T^{++}y \rangle = \mathcal{O}(1)
$$

- \bullet q in ground state orbit
- \leftrightarrow counterclockwise current from lower component
- \rightarrow q distribution shifted to top

unpolarized target

• all q polns. equally likely

- \bullet q in ground state orbit
- \leftrightarrow counterclockwise current from lower component
- \rightarrow q distribution shifted to top

unpolarized target

• q with pol. \uparrow shifted to left

- \bullet q in ground state orbit
- \leftrightarrow counterclockwise current from lower component
- \rightarrow q distribution shifted to top

unpolarized target

• q with pol. \downarrow shifted to right

- \bullet q in ground state orbit
- \leftrightarrow counterclockwise current from lower component
- \rightarrow q distribution shifted to top

unpolarized target

• q with pol. \rightarrow shifted to top

- \bullet q in ground state orbit
- \hookrightarrow counterclockwise current from lower component
- \rightarrow q distribution shifted to top

unpolarized target

• q with pol. \leftarrow shifted to bottom

unpolarized target

- transversity distribution in unpol. target described by chirally odd GPD \bar{E}_T
- $\bar{E}_T > 0$ for u & d (QCDSF)
- connection $h_1^{\perp}(x, \mathbf{k}_{\perp}) \leftrightarrow \bar{E}_T$ similar to $f_{1T}^{\perp}(x, \mathbf{k}_{\perp}) \leftrightarrow E$.
- $\hookrightarrow h_1^{\perp}(x,\mathbf{k}_{\perp}) < 0$ for $u/p, d/p$, u/π , \bar{d}/π , ..(MB+BH, 2008)
	- different valence quarks add coherently $|h_1^{\perp}| > |f_1^{\perp}|$ (MB+BH; Musch)

Angular Momentum Carried by Quarks 10

Total (Spin+Orbital) Quark Angular Momentum

$$
J_q^x = L_q^x + S_q^x = \int d^3r \left[y T_q^{0z}(\vec{r}) - z T_q^{0y}(\vec{r}) \right]
$$

 $T_q^{\mu\nu}(\vec{r})$ energy momentum tensor $(T_q^{\mu\nu}(\vec{r}) = T_q^{\nu\mu}(\vec{r}))$

 $T_q^{0i}(\vec{r})$ momentum density $[P_q^i = \int d^3r T_q^{0i}(\vec{r})]$

• think:
$$
(\vec{r} \times \vec{p})^x = yp^z - zp^y
$$

relate to impact parameter dependent quark distributions $q_{\psi}(x, \mathbf{r}_{\perp})$:

Consider spherically symmetric wave packet with nucleon polarized in $+\hat{x}$ direction

 \bullet eigenstate under rotations about x-axis

$$
\Rightarrow \text{ both terms in } J_q^x \text{ equal:}
$$
\n
$$
J_q^x = 2 \int d^3r \, y T_q^{0z}(\vec{r}) = \int d^3r \, y \left[T_q^{0z}(\vec{r}) + T_q^{z0}(\vec{r}) \right]
$$
\n
$$
\bullet \int d^3r \, y T_q^{00}(\vec{r}) = 0 = \int d^3r \, y T_q^{zz}(\vec{r})
$$
\n
$$
\Rightarrow \quad J_q^x = \int d^3r \, y T_q^{++}(\vec{r}) \quad \text{with} \quad T^{++} \equiv T^{00} + T^{0z} + T^{z0} + T^{zz}
$$

relate to impact parameter dependent quark distributions $q_{\psi}(x, \mathbf{r}_{\perp})$:

Consider spherically symmetric wave packet with nucleon polarized in $+\hat{x}$ direction

 \bullet eigenstate under rotations about x-axis

$$
\Rightarrow \text{ both terms in } J_q^x \text{ equal:}
$$
\n
$$
J_q^x = 2 \int d^3r \, y T_q^{0z}(\vec{r}) = \int d^3r \, y \left[T_q^{0z}(\vec{r}) + T_q^{z0}(\vec{r}) \right]
$$
\n•
$$
\int d^3r \, y T_q^{00}(\vec{r}) = 0 = \int d^3r \, y T_q^{zz}(\vec{r})
$$
\n
$$
\Rightarrow \quad J_q^x = \int d^3r \, y T_q^{++}(\vec{r}) \quad \text{with} \quad T^{++} \equiv T^{00} + T^{0z} + T^{z0} + T^{zz}
$$
\n•
$$
\int dx \, xq(x, \mathbf{r}_\perp) = \frac{1}{2m_N} \int dr^z T^{++}(\vec{r})
$$
\n(note: here x is momentum fraction and not r^x)

(note: here x is momentum fraction and not
$$
r \leftrightarrow \langle \psi | J_q^x | \psi \rangle = m_N \int dx \int d^2b_\perp x b^y q_\psi(x, \mathbf{b}_\perp)
$$

Angular Momentum Carried by Quarks 11

distribution in delocalized wave packet (pol. in $+\hat{x}$ direction)

$$
q_{\psi}(x,\mathbf{b}_{\perp}) = \int d^2 r_{\perp} q(x,b_{\perp} - r_{\perp}) \left(|\psi(\mathbf{r}_{\perp})|^2 - \frac{1}{2M} \frac{\partial}{\partial r_y} |\psi(\mathbf{r}_{\perp})|^2 \right) \text{ with }
$$

$$
q(x,\mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}}
$$

two contributions to ⊥ shift

- intrinsic shift relative to center of momentum \mathbf{R}_{\perp}
- o overall shift of \mathbf{R}_{\perp} for \perp polarized nucleon

insert into $\langle \psi | J_q^x | \psi \rangle = \int dx \int d^2 b_\perp q_\psi(x, \mathbf{b}_\perp)$ MB, PRD72, 094020 (2005)

 $\langle \psi | J_q^x | \psi \rangle = \frac{1}{2} \int dx \, x \left[H_q(x, 0, 0) + E_q(x, 0, 0) \right]$ (here: derived for $\vec{p} = \vec{0}$ only!)

- X.Ji (1996): rotational invariance \Rightarrow apply to all components of \vec{J}
- result for J_q^z also applies to $p_z \neq 0$
- partonic interpretation (\perp shift) exists only for \perp components!
- not valid for J_q^x when $p_z \neq 0$

insert into $\langle \psi | J_q^x | \psi \rangle = \int dx \int d^2b_\perp q_\psi(x, \mathbf{b}_\perp)$ MB, PRD72, 094020 (2005)

 $\langle \psi | J_q^x | \psi \rangle = \frac{1}{2} \int dx \, x \left[H_q(x, 0, 0) + E_q(x, 0, 0) \right]$ (here: derived for $\vec{p} = \vec{0}$ only!)

- X.Ji (1996): rotational invariance \Rightarrow apply to all components of \vec{J}
- result for J_q^z also applies to $p_z \neq 0$
- partonic interpretation (⊥ shift) exists only for ⊥ components!
- not valid for J_q^x when $p_z \neq 0$

gauge invariance

matrix element of $T_q^{++} = \bar{q}\gamma^+ i\partial^+q$ in $A^+ = 0$ gauge same as that of $\bar{q}\gamma^+$ $(i\partial^+ - gA^+)$ q in any gauge \hookrightarrow identify $\frac{1}{2} \int dx \, x \left[H(x, 0, 0) + E(x, 0, 0) \right]$ with J_q in decomposition where $\vec{L}_q = \int d^3x \langle P,S|q^\dagger(\vec{x})\left(\vec{x} \times i\vec{D}\right) \rangle q(\vec{x})|P,S\rangle$

insert into $\langle \psi | J_q^x | \psi \rangle = \int dx \int d^2 b_{\perp} q_{\psi}(x, \mathbf{b}_{\perp})$ MB, PRD72, 094020 (2005)

 $\langle \psi | J_q^x | \psi \rangle = \frac{1}{2} \int dx \, x \left[H_q(x, 0, 0) + E_q(x, 0, 0) \right]$ (here: derived for $\vec{p} = \vec{0}$ only!)

- X.Ji (1996): rotational invariance \Rightarrow apply to all components of \vec{J}
- result for J_q^z also applies to $p_z \neq 0$
- partonic interpretation (\perp shift) exists only for \perp components!
- not valid for J_q^x when $p_z \neq 0$

caution!

- made heavily use of rotational invariance
- \hookrightarrow itentification $\langle \psi | J_q^x | \psi \rangle = \frac{1}{2} \int dx \, x \left[H(x, 0, 0) + E(x, 0, 0) \right]$ does not apply to unintegrated quantities

•
$$
\int d^2\Delta_{\perp}e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}_{\perp}}\frac{x}{2}\left[H(x,0,-\Delta_{\perp}^2)+E(x,0,-\Delta_{\perp}^2)\right]
$$
 not equal to $J^z(\mathbf{b})_{\perp}$

 $J_q(x) \equiv \frac{x}{2} \left[H_q(x, 0, 0) + E_q(x, 0, -\Delta_{\perp}^2) \right]$ not x-distribution of angular momentum $J_q^z(x)$ in long. pol. target

regardless whether one takes gauge covariant definition or not

first: QED without electrons

• apply
$$
\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{b}(\vec{a} \cdot \vec{c})
$$
 to $\vec{E} \times (\vec{\nabla} \times \vec{A})$

$$
\vec{J} = \int d^3r \, \vec{x} \times (\vec{E} \times \vec{B}) = \int d^3r \, \vec{x} \times [\vec{E} \times (\vec{\nabla} \times \vec{A})] \n= \int d^3r \left[E^j (\vec{x} \times \vec{\nabla}) A^j - \vec{x} \times (\vec{E} \cdot \vec{\nabla}) \vec{A} \right]
$$

• integrate by parts (drop surface term)

$$
\vec{J} = \int d^3r \left[E^j \left(\vec{x} \times \vec{\nabla} \right) A^j + \left(\vec{x} \times \vec{A} \right) \vec{\nabla} \cdot \vec{E} + \vec{E} \times \vec{A} \right]
$$

• drop 2^{nd} term (eq. of motion $\vec{\nabla} \cdot \vec{E} = 0$), yielding $\vec{J} = \vec{L} + \vec{S}$ with

$$
\vec{L} = \int d^3r\, E^j\left(\vec{x}\times\vec{\nabla}\right)A^j \hspace{1cm} \vec{S} = \int d^3r\, \vec{E}\times\vec{A}
$$

• note: \vec{L} and \vec{S} not separately gauge invariant as written, but can be made so $(\rightarrow$ nonlocal)

Example: Photon Angular Momentum in QED 13

QED with electrons

$$
\vec{J}_{\gamma} = \int d^{3}r \, \vec{r} \times (\vec{E} \times \vec{B}) = \int d^{3}r \, \vec{r} \times [\vec{E} \times (\vec{\nabla} \times \vec{A})]
$$

$$
= \int d^{3}r \left[E^{j} (\vec{r} \times \vec{\nabla}) A^{j} - \vec{r} \times (\vec{E} \cdot \vec{\nabla}) \vec{A} \right]
$$

$$
= \int d^{3}r \left[E^{j} (\vec{r} \times \vec{\nabla}) A^{j} + (\vec{r} \times \vec{A}) \vec{\nabla} \cdot \vec{E} + \vec{E} \times \vec{A} \right]
$$

• replace 2^{nd} term (eq. of motion $\vec{\nabla} \cdot \vec{E} = e^{i\theta} = e^{i\phi} \vec{v}$), yielding

$$
\vec{J}_{\gamma} = \int d^3r \left[\psi^{\dagger} \vec{r} \times e \vec{A} \psi + E^j \left(\vec{x} \times \vec{\nabla} \right) A^j + \vec{E} \times \vec{A} \right]
$$

 $\psi^{\dagger} \vec{r} \times e \vec{A} \psi$ cancels similar term in electron OAM $\psi^{\dagger} \vec{r} \times (\vec{p} - e \vec{A}) \psi$

- \hookrightarrow decomposing \vec{J}_{γ} into spin and orbital also shuffles angular momentum from photons to electrons!
	- can also be done for only part of $\vec{A} \rightarrow \text{Chen/Goldman}$, Wakamatsu

$\frac{1}{5}\Delta\Sigma$ \mathcal{L}_q ΔG 'pizza quattro stagioni' light-cone framework & gauge $A^+=0$ $\frac{1}{2}=\sum_{\bm{q}}\frac{1}{2}\Delta q+\mathcal{L}_{\bm{q}}+\Delta G+\mathcal{L}_{\bm{g}}$ ${\cal L}_q=\int\!\!d^3r\langle P,S|\,\bar q(\vec r)\gamma^\dagger\!\!\left(\vec r\times i\vec\partial\right)^z\!\!\!\!q(\vec r)|P,S\rangle$ $\Delta G = \varepsilon^{+ -ij} \int d^3r \, \langle P, S | \, {\rm Tr} F^{+i} A^j \, | P, S \rangle$ ${\cal L}_g\! =\! 2\!\int\!\! d^3r \langle P_{\!\scriptscriptstyle\gamma} S| {\rm Tr} F^{+j}\!\Big({\vec x}\times i\vec\partial\Big) \! \stackrel{z}{A}{}^j|P_{\!\scriptscriptstyle\gamma} S\rangle$

Jaffe decomposition

Jaffe decomposition

- \bullet Δq from polarized DIS
- ΔG from $\Delta q(x)$ $\overrightarrow{p} \& \frac{d}{d \ln Q^2} \Delta q(x)$
- ΔG gauge invariant! Nonlocal for $A^+ \neq 0$
- no exp./lattice access to \mathcal{L}_q , \mathcal{L}_q
- only $\mathcal{L} \equiv \mathcal{L}_g + \sum_q \mathcal{L}_q$, by subtraction $\mathcal{L}=\frac{1}{2}-\Delta G-\sum_{q}\frac{1}{2}\Delta q$

Ji decomposition L_a $\frac{1}{2}\Delta\Sigma$ J_a 'pizza tre stagioni' $\frac{1}{2} = \sum_q \frac{1}{2}\Delta q + L_q + J_g$ $\frac{1}{2}\Delta q = \frac{1}{2}\int d^3x \langle P, S | q^{\dagger}(\vec{x}) \Sigma^3 q(\vec{x}) | P, S \rangle$ $L_q = \int d^3x \langle P,S|q^\dagger(\vec{x})\left(\vec{x}\times i\vec{D}\right)^3\!\!\!\!\!q(\vec{x})|P,S\rangle$ $J_g = \int d^3x \, \langle P,S| \left[\vec{x} \times \left(\vec{E} \times \vec{B}\right)\right]^3 |P,S\rangle$ $\bullet i\vec{D} = i\vec{\partial} - q\vec{A}$

Ji decomposition

 \bullet Δq from polarized DIS

•
$$
J_q \equiv \frac{1}{2}\Delta q + L_q =
$$

\n $\frac{1}{2} \int_0^1 dx \left[H_q(x, 0, 0) + E_q(x, 0, 0) \right]$
\nfrom DVCS

 J_q in principle from gluon-GPDs; in practice $J_g = \frac{1}{2} - J_q$ easier

 \bullet L_q matrix element of

$$
q^\dagger \left[\vec{r} \times \left(i\vec{\partial} - g\vec{A} \right) \right]^z q = \bar{q} \gamma^0 \left[\vec{r} \times \left(i\vec{\partial} {-} g\vec{A} \right) \right]^z q
$$

 \mathcal{L}_q^z matrix element of $(\gamma^+ = \gamma^0 + \gamma^z)$

$$
\bar{q}\gamma^+\left[\vec{r}\times i\vec{\partial}\right]^z q\Big|_{A^+=0}
$$

- (for $\vec{p} = 0$) matrix element of $\bar{q}\gamma^z \left[\vec{r} \times (\vec{v}-g\vec{A})\right]^z q$ vanishes (parity!)
- $\rightarrow L_q$ identical to matrix element of $\bar{q}\gamma^+ \left[\vec{r} \times (\vec{\omega} g\vec{A})\right]^z q$ (nucleon at rest)
- \hookrightarrow even in light-cone gauge, L_q^z and \mathcal{L}_q^z still differ by matrix element of $q^{\dagger} (\vec{r} \times g\vec{A})^z q \Big|_{A^+=0} = q^{\dagger} (r^x g A^y - r^y g A^x) q \Big|_{A^+=0}$

• how significant is that difference?

scalar diquark model

- LC wave functions $\psi_s^S(x, \mathbf{k}_{\perp})$
- \hookrightarrow \mathcal{L}_q from $|\psi_s^S(x, \mathbf{k}_\perp)|^2$
	- GPDs from overlap integrals of $\psi^\dagger \psi$
- \hookrightarrow L_q from Ji
	- $L_a = \mathcal{L}_a$. No surprise since $L_q - \mathcal{L}_q \sim \langle q^\dagger \vec{r} \times \vec{A} q \rangle$ and no \overline{A} in scalar diquark model
	- $L_q(x) \neq \mathcal{L}_q(x)$

scalar diquark model

- \bullet interpretation of $J_q(x) \equiv \frac{x}{2} [q(x) + E^q(x, 0, 0)]$ not that of distribution of AM in x
- FT of $J(t) \equiv \frac{x}{2} [q(x) + E^q(x, 0, 0)]$ <u>not</u> distribution of J_q^z in **b**_⊥

M.B. + Hikmat BC, PRD 79, 071501 (2009)

QED for dressed e^- in QED

- LC wave functions $\psi_{sh}^{S}(x, \mathbf{k}_{\perp})$
- \hookrightarrow \mathcal{L}_q from $|\psi_{sh}^S(x, \mathbf{k}_{\perp})|^2$
	- GPDs from overlap integrals of $\psi^\dagger \psi$

$$
\hookrightarrow L_q \text{ from Ji}
$$

 $\mathcal{L}_e = L_e + \frac{\alpha}{4\pi} \neq L_e$

higher twist in polarized DIS

$$
\bullet \ \sigma_{LL} \propto g_1 - \frac{2Mx}{\nu}g_2
$$

•
$$
g_1 = \frac{1}{2} \sum_q e_q^2 g_1^q
$$
 with $g_1^q = q^{\uparrow}(x) + \bar{q}^{\uparrow}(x) - q^{\downarrow}(x) - \bar{q}^{\downarrow}(x)$

 \bullet q_2 involves quark-gluon correlations

 \rightarrow no parton interpret. as difference between number densities for g_2

• for \perp pol. target, $g_1 \& g_2$ contribute equally

$$
\sigma_{LT}\propto g_T\equiv g_1+g_2
$$

 \hookrightarrow 'clean' separation between g_2 and $\frac{1}{Q^2}$ corrections to g_1

What can we learn from q_2 ?

•
$$
g_2 = g_2^{WW} + \bar{g}_2
$$
 with $g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$

$$
d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{1/2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) \right| P, S \right\rangle
$$

$$
d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP + 2S^x} \langle P, S | \bar{q}(0)gG^{+y}(0) \gamma^+ q(0) | P, S \rangle
$$

$$
\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^{y} + B^{x}
$$

$$
d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP + 2S^x} \langle P, S | \bar{q}(0)gG^{+y}(0) \gamma^+ q(0) | P, S \rangle
$$

color Lorentz force

$$
\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^{y} + B^{x} = -(\vec{E} + \vec{v} \times \vec{B})^{y}
$$
 for $\vec{v} = (0, 0, -1)$

$$
d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{1/2}S^x} \langle P, S | \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) | P, S \rangle
$$

color Lorentz force

$$
\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v}\times\vec{B}\right)^y \text{ for } \vec{v} = (0,0,-1)
$$

 $\rightarrow d_2 \leftrightarrow$ average color Lorentz force acting on quark moving with $v = c$ in $-\hat{z}$ direction in the instant after being struck by γ^*

$$
\langle F^y \rangle = -2M^2 d_2 = -\frac{M}{P^{+2} S^x} \langle P, S | \bar{q}(0) g G^{+y}(0) \gamma^+ q(0) | P, S \rangle
$$

cf. Qiu-Sterman matrix element $\langle k_\perp^y \rangle \equiv \int_0^1 dx \int d^2k_\perp \, k_\perp^2 f_{1T}^\perp(x,k_\perp^2)$

$$
\langle k_{\perp}^y\rangle=-\frac{1}{2p^+}\left\langle P,S\left|\bar{q}(0)\int_0^\infty dx^-gG^{+y}(x^-)\gamma^+q(0)\right|P,S\right\rangle
$$

semi-classical interpretation: average k_{\perp} in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity

matrix element defining d_2

$$
\quad\leftrightarrow\quad
$$

 1^{st} integration point in QS-integral

$$
d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP + 2S^x} \langle P, S | \bar{q}(0)gG^{+y}(0) \gamma^+ q(0) | P, S \rangle
$$

color Lorentz force

$$
\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v}\times\vec{B}\right)^y \text{ for } \vec{v} = (0,0,-1)
$$

 $\rightarrow d_2 \leftrightarrow$ average color Lorentz force acting on quark moving with $v = c$ in $-\hat{z}$ direction in the instant after being struck by γ^*

$$
\langle F^{y} \rangle = -2M^{2} d_{2} = -\frac{M}{P^{+2} S^{x}} \langle P, S | \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0) | P, S \rangle
$$

sign of $d_2 \leftrightarrow \perp$ imaging

- $\kappa_q/p \longrightarrow$ sign of deformation
- \leftrightarrow direction of average force
- $\mapsto d_2^u > 0, d_2^d < 0$
	- cf. $f_{1T}^{\perp u} < 0, f_{1T}^{\perp u} < 0$

lattice (Göckeler et al., 2005)

 $d_2^u \approx 0.010, d_2^d \approx -0.0056$

magnitude of d_2

$$
\bullet\ \langle F^y\rangle = -2M^2 d_2 = -10\tfrac{GeV}{fm}d_2
$$

expect partial cancellation of forces in SSA

$$
\hookrightarrow |\langle F^y\rangle|\ll \sigma\approx 1\tfrac{GeV}{fm}
$$

 $\leftrightarrow d_2 = \mathcal{O}(0.01) \quad (\rightarrow \text{C.Weiss})$

Summary 20

- $E^q(x, 0, -\Delta_{\perp}^2) \longrightarrow \perp$ deformation of PDFs for \perp polarized target
- \perp deformation \leftrightarrow (sign of) SSA (Sivers; Boer-Mulders)
- parton interpretation for Ji-relation
- $L_a \neq \mathcal{L}_a$
- higher-twist $(\int dx x^2 \bar{g}_2(x), \int dx x^2 \bar{e}(x)) \leftrightarrow \bot$ force in DIS
- \perp deformation \leftrightarrow (sign of) quark-gluon correlations $(\int dx\,x^2\bar{g}_2(x),\,\int dx\,x^2\bar{e}(x)$)