
Field theoretic vs. partonic formulation of
angular momentum

Matthias Burkardt

New Mexico State University

February 7, 2012



Outline 2

Probabilistic interpretation of GPDs as Fourier
transforms of impact parameter dependent PDFs

H(x, 0,−∆2
⊥) −→ q(x,b⊥)

H̃(x, 0,−∆2
⊥) −→ ∆q(x,b⊥)

E(x, 0,−∆2
⊥) −→⊥ deformation of PDFs when

the target is ⊥ polarized

↪→ Ji relation (poor man’s derivation)

comparison Jaffe↔Ji decomposition∫
dxḡ2(x)x2 ⇒ ⊥ force in DIS

Summary



Physics of GPDs 3

form factors:
FT←→ ρ(~r)

GPDs(x, ~∆): form factor for quarks with momentum fraction x

↪→ suitable FT of GPDs should provide spatial distribution of
quarks with momentum fraction x

careful: cannot measure longitudinal momentum (x) and
longitudinal position simultaneously (Heisenberg)

↪→ consider purely transverse momentum transfer

Impact Parameter Dependent Quark Distributions

q(x,b⊥) =

∫
d2∆⊥
(2π)2

H(x, ξ = 0,−∆2
⊥)e−ib⊥·∆⊥

q(x,b⊥) = parton distribution as a function of the separation b⊥
from the transverse center of momentum R⊥ ≡

∑
i∈q,g r⊥,ixi

MB, Phys. Rev. D62, 071503 (2000)

No relativistic corrections (Galilean subgroup!)

↪→ corollary: interpretation of 2d-FT of F1(Q2) as charge density in
transverse plane also free of relativistic corrections (→G.Miller)

probabilistic interpretation



Impact parameter dependent quark distributions 4

unpolarized proton

q(x,b⊥) =
∫
d2∆⊥
(2π)2 H(x, 0,−∆2

⊥)e−ib⊥·∆⊥

x = momentum fraction of the quark
~b =⊥ distance of quark from ⊥ center of
momentum

small x: large ’meson cloud’

larger x: compact ’valence core’

x→ 1: active quark becomes center of
momentum

↪→ ~b⊥ → 0 (narrow distribution) for x→ 1



Impact parameter dependent quark distributions 5

proton ’polarized in +x̂ direction’

no axial symmetry!

q(x,b⊥) =

∫
d2∆⊥
(2π)2

Hq(x, 0,−∆2
⊥)e−ib⊥·∆⊥

− 1

2M

∂

∂by

∫
d2∆⊥
(2π)2

Eq(x, 0,−∆2
⊥)e−ib⊥·∆⊥

Physics: relevant density in DIS is
j+ ≡ j0 + j3 and left-right asymmetry
from j3
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proton ’polarized in +x̂ direction’ & localized in the ⊥ direction

q(x,b⊥) =

∫
d2∆⊥
(2π)2

Hq(x, 0,−∆2
⊥)e−ib⊥·∆⊥− 1

2M

∂

∂by

∫
d2∆⊥
(2π)2

Eq(x, 0,−∆2
⊥)e−ib⊥·∆⊥ (1)

spin + relativity = weirdness (→ Naomi Makins)

above q(x,b⊥) calculated in ⊥ localized state
|′x̂′〉 ≡ |p+,R⊥=0,+〉+ |p+,R⊥=0,−〉 which is not eigenstate of ⊥ nucleon spin

due to presence of p⊥ 6= 0

± refers to light-front helicity states (issue when p⊥ 6= 0)

distribution in delocalized wave packet

MB, PRD72, 094020 (2005)
qψ(x,b⊥) =

∫
d2r⊥q(x, b⊥ − r⊥)

(
|ψ(r⊥)|2 − 1

2M
∂
∂r⊥|ψ(r⊥)|2

)
two contributions to ⊥ shift

intrinsic shift relative to center of momentum R⊥

overall shift of R⊥ for ⊥ polarized nucleon



Angular Momentum carried by Quarks 7

spherically symmetric wave packet has center of momentum off-center:

illustrate this relativistic effect using bag model wave functions:

ψ =

(
f(r)

~σ·~p
E+MN

f(r)

)
χ with χ =

1√
2

(
1
1

)
∫
d3rf2(r) = 1, take limit of large ’radius’ R for wave packet

evaluate T 0z
q = i

2 q̄
(
γ0∂z + γz∂0

)
q in this state

ψ†∂zψ even under y → −y, i.e. no contribution to 〈yT 0z
q 〉

use iψ†γ0γz∂0ψ = Eψ†γ0γzψ

〈T 0zy〉 = E

∫
d3rψ†γ0γzψy = E

∫
d3rψ†

(
0 σz

σz 0

)
ψy

=
2E

E +MN

∫
d3rχ†σzσyχf(r)(−i)∂yf(r)y

=
E

E +MN

∫
d3rf2(r)

R→∞−→ 1

2

↪→ p pol. in +x̂ direction has CoM shifted by 1
2MN

in +ŷ direction!
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spherically symmetric wave packet has center of momentum off-center:

illustrate this relativistic effect using bag model wave functions:

ψ =

(
f(r)

~σ·~p
E+MN

f(r)

)
χ with χ =

1√
2

(
1
1

)

〈T 0zy〉 R→∞−→ 1

2

↪→ p pol. in +x̂ direction has CoM shifted by 1
2MN

in +ŷ direction!

origin of ’shift’ of CoM

nucleon polarization:
⊙

counterclockwise momentum density
from lower component

p ∼ 1
R , but y ∼ R

↪→ 〈T++y〉 = O(1)



Sign of Boer-Mulders Function 9

q with polarization
⊙

q in ground state orbit

↪→ counterclockwise current from
lower component

↪→ q distribution shifted to top

unpolarized target

all q polns. equally likely



Sign of Boer-Mulders Function 9

q with polarization
⊙

q in ground state orbit

↪→ counterclockwise current from
lower component

↪→ q distribution shifted to top

unpolarized target

q with pol. ↑ shifted to left



Sign of Boer-Mulders Function 9

q with polarization
⊙

q in ground state orbit

↪→ counterclockwise current from
lower component

↪→ q distribution shifted to top

unpolarized target

q with pol. ↓ shifted to right



Sign of Boer-Mulders Function 9

q with polarization
⊙

q in ground state orbit

↪→ counterclockwise current from
lower component

↪→ q distribution shifted to top

unpolarized target

q with pol. → shifted to top



Sign of Boer-Mulders Function 9

q with polarization
⊙

q in ground state orbit

↪→ counterclockwise current from
lower component

↪→ q distribution shifted to top

unpolarized target

q with pol. ← shifted to
bottom



Sign of Boer-Mulders Function 9

q with polarization
⊙

lattice calculations (QCDSF)

unpolarized target

transversity distribution in
unpol. target described by
chirally odd GPD ĒT

ĒT > 0 for u & d (QCDSF)

connection h⊥1 (x,k⊥)↔ ĒT
similar to f⊥1T (x,k⊥)↔ E.

↪→ h⊥1 (x,k⊥) < 0 for u/p, d/p,
u/π, d̄/π, ..(MB+BH, 2008)

different valence quarks add
coherently |h⊥1 | > |f⊥1 |
(MB+BH; Musch)
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Total (Spin+Orbital) Quark Angular Momentum

Jxq = Lxq + Sxq =

∫
d3r

[
yT 0z

q (~r)− zT 0y
q (~r)

]
Tµνq (~r) energy momentum tensor (Tµνq (~r) = T νµq (~r))

T 0i
q (~r) momentum density [P iq =

∫
d3rT 0i

q (~r) ]

think: (~r × ~p)x = ypz − zpy

relate to impact parameter dependent quark distributions qψ(x, r⊥):

Consider spherically symmetric wave packet with nucleon polarized in
+x̂ direction

eigenstate under rotations about x-axis

↪→ both terms in Jxq equal:

Jxq = 2
∫
d3r yT 0z

q (~r) =
∫
d3r y

[
T 0z
q (~r) + T z0q (~r)

]∫
d3r yT 00

q (~r) = 0 =
∫
d3r yT zzq (~r)

⇒ Jxq =

∫
d3r yT++

q (~r) with T++ ≡ T 00 + T 0z + T z0 + T zz
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relate to impact parameter dependent quark distributions qψ(x, r⊥):

Consider spherically symmetric wave packet with nucleon polarized in
+x̂ direction

eigenstate under rotations about x-axis

↪→ both terms in Jxq equal:

Jxq = 2
∫
d3r yT 0z

q (~r) =
∫
d3r y

[
T 0z
q (~r) + T z0q (~r)

]∫
d3r yT 00

q (~r) = 0 =
∫
d3r yT zzq (~r)

⇒ Jxq =

∫
d3r yT++

q (~r) with T++ ≡ T 00 + T 0z + T z0 + T zz

∫
dxxq(x, r⊥) = 1

2mN

∫
drzT++(~r)

(note: here x is momentum fraction and not rx)

↪→ 〈ψ|Jxq |ψ〉 = mN

∫
dx
∫
d2b⊥xb

yqψ(x,b⊥)
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distribution in delocalized wave packet (pol. in +x̂ direction)

qψ(x,b⊥) =
∫
d2r⊥q(x, b⊥ − r⊥)

(
|ψ(r⊥)|2 − 1

2M
∂
∂ry
|ψ(r⊥)|2

)
with

q(x,b⊥) =

∫
d2∆⊥
(2π)2

Hq(x, 0,−∆2
⊥)e−ib⊥·∆⊥− 1

2M

∂

∂by

∫
d2∆⊥
(2π)2

Eq(x, 0,−∆2
⊥)e−ib⊥·∆⊥ (2)

two contributions to ⊥ shift

intrinsic shift relative to center of momentum R⊥

overall shift of R⊥ for ⊥ polarized nucleon

insert into 〈ψ|Jxq |ψ〉 =
∫
dx
∫
d2b⊥qψ(x,b⊥) MB, PRD72, 094020 (2005)

〈ψ|Jxq |ψ〉 = 1
2

∫
dxx [Hq(x, 0, 0) + Eq(x, 0, 0)] (here: derived for ~p = ~0 only!)

X.Ji (1996): rotational invariance ⇒ apply to all components of ~J

result for Jzq also applies to pz 6= 0

partonic interpretation (⊥ shift) exists only for ⊥ components!

not valid for Jxq when pz 6= 0
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insert into 〈ψ|Jxq |ψ〉 =
∫
dx
∫
d2b⊥qψ(x,b⊥) MB, PRD72, 094020 (2005)

〈ψ|Jxq |ψ〉 = 1
2

∫
dxx [Hq(x, 0, 0) + Eq(x, 0, 0)] (here: derived for ~p = ~0 only!)

X.Ji (1996): rotational invariance ⇒ apply to all components of ~J

result for Jzq also applies to pz 6= 0

partonic interpretation (⊥ shift) exists only for ⊥ components!

not valid for Jxq when pz 6= 0

gauge invariance

matrix element of T++
q = q̄γ+i∂+q in A+ = 0 gauge same as that of

q̄γ+ (i∂+ − gA+) q in any gauge

↪→ identify 1
2

∫
dxx [H(x, 0, 0) + E(x, 0, 0)] with Jq in decomposition where

~Lq=
∫
d3x〈P,S|q†(~x)

(
~x× i ~D

)
q(~x)|P,S〉
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insert into 〈ψ|Jxq |ψ〉 =
∫
dx
∫
d2b⊥qψ(x,b⊥) MB, PRD72, 094020 (2005)

〈ψ|Jxq |ψ〉 = 1
2

∫
dxx [Hq(x, 0, 0) + Eq(x, 0, 0)] (here: derived for ~p = ~0 only!)

X.Ji (1996): rotational invariance ⇒ apply to all components of ~J

result for Jzq also applies to pz 6= 0

partonic interpretation (⊥ shift) exists only for ⊥ components!

not valid for Jxq when pz 6= 0

caution!

made heavily use of rotational invariance

↪→ itentification 〈ψ|Jxq |ψ〉 = 1
2

∫
dxx [H(x, 0, 0) + E(x, 0, 0)] does not apply to

unintegrated quantities∫
d2∆⊥e

−ib⊥·∆⊥ x
2

[
H(x, 0,−∆2

⊥) + E(x, 0,−∆2
⊥)
]

not equal to Jz(b)⊥
Jq(x) ≡ x

2

[
Hq(x, 0, 0) + Eq(x, 0,−∆2

⊥)
]

not x-distribution of angular
momentum Jz

q (x) in long. pol. target

regardless whether one takes gauge covariant definition or not
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first: QED without electrons

apply ~a× (~b× ~c) = ~b(~a · ~c)−~b(~a · ~c) to ~E ×
(
~∇× ~A

)
~J =

∫
d3r ~x×

(
~E × ~B

)
=

∫
d3r ~x×

[
~E ×

(
~∇× ~A

)]
=

∫
d3r

[
Ej
(
~x× ~∇

)
Aj − ~x× ( ~E · ~∇) ~A

]
integrate by parts (drop surface term)

~J =

∫
d3r

[
Ej
(
~x× ~∇

)
Aj +

(
~x× ~A

)
~∇ · ~E + ~E × ~A

]
drop 2nd term (eq. of motion ~∇ · ~E = 0), yielding ~J = ~L+ ~S with

~L =

∫
d3r Ej

(
~x× ~∇

)
Aj ~S =

∫
d3r ~E × ~A

note: ~L and ~S not separately gauge invariant as written, but can
be made so (→ nonlocal)



Example: Photon Angular Momentum in QED 13

QED with electrons

~Jγ =

∫
d3r ~r ×

(
~E × ~B

)
=

∫
d3r ~r ×

[
~E ×

(
~∇× ~A

)]
=

∫
d3r

[
Ej
(
~r × ~∇

)
Aj − ~r × ( ~E · ~∇) ~A

]
=

∫
d3r

[
Ej
(
~r × ~∇

)
Aj +

(
~r × ~A

)
~∇ · ~E + ~E × ~A

]

replace 2nd term (eq. of motion ~∇ · ~E = ej0 = eψ†ψ), yielding

~Jγ =

∫
d3r

[
ψ†~r × e ~Aψ + Ej

(
~x× ~∇

)
Aj + ~E × ~A

]
ψ†~r × e ~Aψ cancels similar term in electron OAM ψ†~r × (~p− e ~A)ψ

↪→ decomposing ~Jγ into spin and orbital also shuffles angular momentum from
photons to electrons!

can also be done for only part of ~A→ Chen/Goldman, Wakamatsu
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Ji decomposition

1
2 =

∑
q

1
2∆q + Lq + Jg

1
2∆q = 1

2

∫
d3x 〈P, S| q†(~x)Σ3q(~x) |P, S〉

Lq=
∫
d3x〈P,S|q†(~x)

(
~x× i ~D

)3

q(~x)|P,S〉

Jg =
∫
d3x 〈P, S|

[
~x×
(
~E × ~B

)]3
|P, S〉

i ~D = i~∂ − g ~A

Jaffe decomposition

light-cone framework & gauge A+ = 0

1
2 =

∑
q

1
2∆q + Lq + ∆G+ Lg

Lq=
∫
d3r〈P,S| q̄(~r)γ+

(
~r × i~∂

)z
q(~r)|P,S〉

∆G=ε+−ij∫d3r 〈P, S|TrF+iAj |P, S〉
Lg=2

∫
d3r〈P,S|TrF+j

(
~x× i~∂

)z
Aj |P,S〉
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Jaffe decomposition

∆q from polarized DIS

∆G from ∆g(x)

(
→
p
←
p & d

d lnQ2 ∆q(x))

∆G gauge invariant! Nonlocal for
A+ 6= 0

no exp./lattice access to Lq, Lg
only L ≡ Lg +

∑
q Lq, by

subtraction
L = 1

2 −∆G−
∑
q

1
2∆q

Jaffe decomposition

light-cone framework & gauge A+ = 0

1
2 =

∑
q

1
2∆q + Lq + ∆G+ Lg

Lq=
∫
d3r〈P,S| q̄(~r)γ+

(
~r × i~∂

)z
q(~r)|P,S〉

∆G=ε+−ij∫d3r 〈P, S|TrF+iAj |P, S〉
Lg=2

∫
d3r〈P,S|TrF+j

(
~x× i~∂

)z
Aj |P,S〉
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Ji decomposition

1
2 =

∑
q

1
2∆q + Lq + Jg

1
2∆q = 1

2

∫
d3x 〈P, S| q†(~x)Σ3q(~x) |P, S〉

Lq=
∫
d3x〈P,S|q†(~x)

(
~x× i ~D

)3

q(~x)|P,S〉

Jg =
∫
d3x 〈P, S|

[
~x×
(
~E × ~B

)]3
|P, S〉

i ~D = i~∂ − g ~A

Ji decomposition

∆q from polarized DIS

Jq ≡ 1
2∆q + Lq =

1
2

∫ 1

0
dx [Hq(x, 0, 0) + Eq(x, 0, 0)]

from DVCS

Jg in principle from gluon-GPDs;
in practice Jg = 1

2 − Jq easier
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Lq matrix element of

q†
[
~r ×

(
i~∂ − g ~A

)]z
q = q̄γ0

[
~r ×

(
i~∂−g ~A

)]z
q

Lzq matrix element of (γ+ = γ0 + γz)

q̄γ+
[
~r × i~∂

]z
q
∣∣∣
A+=0

(for ~p = 0) matrix element of q̄γz
[
~r ×

(
i~∂−g ~A

)]z
q vanishes

(parity!)

↪→ Lq identical to matrix element of q̄γ+
[
~r ×

(
i~∂−g ~A

)]z
q (nucleon

at rest)

↪→ even in light-cone gauge, Lzq and Lzq still differ by matrix element

of q†
(
~r × g ~A

)z
q
∣∣∣
A+=0

= q† (rxgAy − rygAx) q
∣∣
A+=0

how significant is that difference?
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scalar diquark model

LC wave functions ψSs (x,k⊥)

↪→ Lq from |ψSs (x,k⊥)|2

GPDs from overlap integrals
of ψ†ψ

↪→ Lq from Ji

Lq = Lq.
No surprise since
Lq − Lq ∼ 〈q†~r × ~Aq〉 and no
~A in scalar diquark model

Lq(x) 6= Lq(x)

scalar diquark model

interpretation of
Jq(x) ≡ x

2 [q(x) + Eq(x, 0, 0)]
not that of distribution of AM
in x

FT of
J(t) ≡ x

2 [q(x) + Eq(x, 0, 0)]
not distribution of Jzq in b⊥

M.B. + Hikmat BC,
PRD 79, 071501 (2009)

QED for dressed e− in QED

LC wave functions ψSsh(x,k⊥)

↪→ Lq from |ψSsh(x,k⊥)|2

GPDs from overlap integrals
of ψ†ψ

↪→ Lq from Ji

Le = Le + α
4π 6= Le
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higher twist in polarized DIS

σLL ∝ g1 − 2Mx
ν g2

g1 = 1
2

∑
q e

2
qg
q
1 with gq1 = q↑(x) + q̄↑(x)− q↓(x)− q̄↓(x)

g2 involves quark-gluon correlations

↪→ no parton interpret. as difference between number densities for g2

for ⊥ pol. target, g1 & g2 contribute equally

σLT ∝ gT ≡ g1 + g2

↪→ ’clean’ separation between g2 and 1
Q2 corrections to g1

What can we learn from g2?

g2 = gWW
2 + ḡ2 with gWW

2 (x) ≡ −g1(x) +
∫ 1

x
dy
y g1(y)

d2 ≡ 3

∫
dxx2ḡ2(x) =

1

2MP+2Sx

〈
P, S

∣∣q̄(0)gG+y(0)γ+q(0)
∣∣P, S〉
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d2 ≡ 3

∫
dxx2ḡ2(x) =

1

2MP+2Sx

〈
P, S

∣∣q̄(0)gG+y(0)γ+q(0)
∣∣P, S〉

√
2G+y = G0y +Gzy = −Ey +Bx
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d2 ≡ 3

∫
dxx2ḡ2(x) =

1

2MP+2Sx

〈
P, S

∣∣q̄(0)gG+y(0)γ+q(0)
∣∣P, S〉

color Lorentz force
√

2G+y = G0y +Gzy = −Ey +Bx = −
(
~E + ~v × ~B

)y
for ~v = (0, 0,−1)
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d2 ≡ 3

∫
dxx2ḡ2(x) =

1

2MP+2Sx

〈
P, S

∣∣q̄(0)gG+y(0)γ+q(0)
∣∣P, S〉

color Lorentz force
√

2G+y = G0y +Gzy = −Ey +Bx = −
(
~E + ~v × ~B

)y
for ~v = (0, 0,−1)

↪→ d2 ↔ average color Lorentz force acting on quark moving with
v = c in −ẑ direction in the instant after being struck by γ∗

〈F y〉 = −2M2d2 = − M

P+2Sx

〈
P, S

∣∣q̄(0)gG+y(0)γ+q(0)
∣∣P, S〉

cf. Qiu-Sterman matrix element 〈ky⊥〉 ≡
∫ 1

0
dx
∫
d2k⊥ k

2
⊥f
⊥
1T (x, k2

⊥)

〈ky⊥〉 = − 1

2p+

〈
P, S

∣∣∣∣q̄(0)

∫ ∞
0

dx−gG+y(x−)γ+q(0)

∣∣∣∣P, S〉
semi-classical interpretation: average k⊥ in SIDIS obtained by
correlating the quark density with the transverse impulse acquired
from (color) Lorentz force acting on struck quark along its trajectory
to (light-cone) infinity

matrix element defining d2 ↔ 1st integration point in QS-integral
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d2 ≡ 3

∫
dxx2ḡ2(x) =

1

2MP+2Sx

〈
P, S

∣∣q̄(0)gG+y(0)γ+q(0)
∣∣P, S〉

color Lorentz force
√

2G+y = G0y +Gzy = −Ey +Bx = −
(
~E + ~v × ~B

)y
for ~v = (0, 0,−1)

↪→ d2 ↔ average color Lorentz force acting on quark moving with
v = c in −ẑ direction in the instant after being struck by γ∗

〈F y〉 = −2M2d2 = − M

P+2Sx

〈
P, S

∣∣q̄(0)gG+y(0)γ+q(0)
∣∣P, S〉

sign of d2 ↔⊥ imaging

κq/p −→ sign of deformation

↪→ direction of average force

↪→ du2 > 0, dd2 < 0

cf. f⊥u1T < 0, f⊥u1T < 0

lattice (Göckeler et al., 2005)

du2 ≈ 0.010, dd2 ≈ −0.0056

magnitude of d2

〈F y〉 = −2M2d2 = −10GeVfm d2

expect partial cancellation of
forces in SSA

↪→ |〈F y〉| � σ ≈ 1GeVfm

↪→ d2 = O(0.01) (→ C.Weiss)
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Eq(x, 0,−∆2
⊥) −→ ⊥ deformation of PDFs for ⊥ polarized target

⊥ deformation ↔ (sign of) SSA (Sivers; Boer-Mulders)

parton interpretation for Ji-relation

Lq 6= Lq
higher-twist (

∫
dxx2ḡ2(x),

∫
dxx2ē(x)) ↔ ⊥ force in DIS

⊥ deformation ↔ (sign of) quark-gluon correlations
(
∫
dxx2ḡ2(x),

∫
dxx2ē(x) )


