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TMDsGPDs lensing

• LIMITATIONS: the connection is model-inspired and 
not general

• ADVANTAGES: it is possible to give an estimate of 
angular momentum for the first time using also TMD 
data
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Ji’s total angular mom.

Jq =
1
2

∫ 1

0
dx x

(
Hq(x, 0, 0) + Eq(x, 0, 0)

)
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Ji’s total angular mom.

Jq =
1
2

∫ 1

0
dx x

(
Hq(x, 0, 0) + Eq(x, 0, 0)

)

Forward limits of GPDs

q(x)

Well-known unpolarized PDF Impossible 
to measure directly

Thursday, 16 February 2012



The only “data” on E(x,0,0)

κp =
∫ 1

0

dx

3

[
2Euv (x, 0, 0)− Edv (x, 0, 0)− Esv (x, 0, 0)

]
,

κn =
∫ 1

0

dx

3

[
2Edv (x, 0, 0)− Euv (x, 0, 0)− Esv (x, 0, 0)

]
.

Anomalous magnetic moments
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The lensing function
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N.C.R. Makins, INT L Workshop, Feb 6-17, 2012

Phenomenology: Sivers Mechanism

M. Burkardt: Chromodynamic lensing

!+

u mostly over here

FSI kick

Electromagnetic coupling  ~ (J
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) stronger for oncoming quarks 
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Model agrees!

!
+

uv

d

Opposite sign to data … assuming Lu > 0 ... 

Parton energy loss considerations suggest
quenching of jets from 

“near” surface of target

➡ quarks from “far” surface should dominate

D. Sivers: Jet Shadowing

Assuming 

Lu > 0 ... Why?

Naomi Makins, last week
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Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; 

Relate to the quark contribution to the target proton                                                

!S ·!p jet×!q

!S ·!p jet×!q
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Stan Brodsky, Transversity2011
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This image occurred 6 times in Stan’s talk. 

The word “lensing” occurred 8 times.
Thursday, 16 February 2012



The physical picture

Burkardt, PRD66 (02)
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⦿

The physical picture

Burkardt, PRD66 (02)

Distortion in impact 
parameter
(related to GPD E) 
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The physical picture
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The physical picture

Burkardt, PRD66 (02)

⦿

Final-state interaction
(lensing function)
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The physical picture

Burkardt, PRD66 (02)

⦿

Final-state interaction
(lensing function)

Distortion in 
transverse 
momentum
(related to Sivers 
function) 
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The Sivers function

!0.4 !0.2 0.0 0.2 0.4

!0.4

!0.2

0.0

0.2

0.4

pX !GeV"

p Y
!GeV

"
f1
u

Ρ!GeV
!
2 "

x ! 0.21

4.4

0

Based on model calculation A.B., Conti, Guagnelli, Radici, EPJ A45 (2010)
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The Sivers function

Distortion in transverse-momentum space
Based on model calculation A.B., Conti, Guagnelli, Radici, EPJ A45 (2010)
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Origin of Sivers function
εjk
T kjSk

M
f⊥1T =

1
16π3

Im
[(

ψ+(x, kT )
)∗

ψ−(x, kT )
]

+−

Lz Lz + 1

cf. Brodsky, Pasquini, Xiao, Yuan, PLB687 (2010)
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Origin of Sivers function
εjk
T kjSk

M
f⊥1T =

1
16π3

Im
[(

ψ+(x, kT )
)∗

ψ−(x, kT )
]

+−

Lz Lz + 1

E(x, 0, 0) = lim
qT→0

(
− 1

qx − iqy

1
16π3

[(
ψ+(x, kT + (1− x)qT

)∗
ψ−(x, kT )

])

cf. Brodsky, Pasquini, Xiao, Yuan, PLB687 (2010)
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Origin of Sivers function

Brodsky, Hwang, Schmidt PLB 530 (02)
Ji, Yuan, PLB 543 (02)
Gamberg, Schlegel, PLB 685 (2010)
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Origin of Sivers function

Brodsky, Hwang, Schmidt PLB 530 (02)
Ji, Yuan, PLB 543 (02)
Gamberg, Schlegel, PLB 685 (2010)

Light-front wavefunctions, same as in E(x,0,0)

ψ−(x, kT + lT ) ψ+(x, kT )
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The lensing function

9

The derivative in (66) can now act either on the quark
fields or on the Wilson lines. In the first case though,
one gets no contribution to the average transverse mo-
mentum, since the involved combination of Wilson lines
vanishes,
[

W+∞
(

− 1
2z; 1

2z
)

−W−∞
(

− 1
2z; 1

2z
)
] ∣
∣
∣z+=0+

!zT =!0T

= 0 . (67)

The result (67) is obvious because both Wilson lines are
just running along the light-cone.

On the other hand, if the derivative acts on the Wilson
lines, one finds

i ∂i
T

[

W+∞
(

− 1
2z; 1

2z
)

−W−∞
(

− 1
2z; 1

2z
)
] ∣
∣
∣z+=0+

!zT =!0T

= g

∫

dy− W
(

− 1
2z; y

)

ta F+i
a

(

y
)

W
(

y; 1
2z

)
∣
∣
∣y+=z+=0+

!yT =!zT =!0T

= 2W
(

− 1
2z; 1

2z
)

Iq,i
(

1
2z

)
∣
∣
∣z+=0+

!zT =!0T

, (68)

where the paths of the remaining Wilson lines run along
the light-cone and the function Iq,i is defined by

Iq,i
(

1
2z

)

=
g

2

∫

dy− W
(

1
2z; y

)

ta F+i
a

(

y
)

W
(

y; 1
2z

)
∣
∣
∣y+=z+

!yT =!zT

. (69)

Plugging the results together one arrives at the following
expression for the average transverse momentum,

〈

kq,i
T (x)

〉

UT

=
1

2

∫
dz−

2π
eik·z 〈

P ; #ST

∣
∣ ψ̄

(

− 1
2z

)

γ+

×W
(

− 1
2z; 1

2z
)

Iq,i
(

1
2z

)

ψ
(

1
2z

) ∣
∣P ; #ST

〉
∣
∣
∣z+=0+

!zT =!0T

.(70)

Equation (70) is a representation of the average trans-
verse momentum in terms of a specific quark-gluon-quark
light-cone correlator [36, 52, 64]. Since the gluon field in
the three-parton correlator in (70) has zero longitudinal
momentum one often talks about a soft gluon matrix el-
ement. The reader is referred to [65, 66, 67, 68] where
such (or similar) matrix elements were first discussed in
connection with transverse SSAs.

To unravel a possible connection between the Sivers
effect and the GPD Eq, in Ref. [36] the RHS of (70)
was transformed to the impact parameter space, where
it takes the form

〈

kq,i
T (x)

〉

UT

=
1

2

∫

d2#bT

∫
dz−

2π
eixP+z− 〈

P+,#0T ; S
∣
∣ ψ̄

(

z1

)

γ+

×W
(

z1; z2

)

Iq,i
(

z2

)

ψ
(

z2

) ∣
∣P+,#0T ; S

〉

, (71)

with z1/2 as given in Eq. (36). Comparing the expression
in (71) with the correlator (34) for the quark GPDs in

impact parameter space (for Γ = γ+) one realizes that
the only difference is the additional factor Iq,i and an
integration upon the impact parameter #bT [36]. On the
basis of this observation one may hope to find a relation
of the type

〈

kq,i
T (x)

〉

UT
=

∫

d2#kT ki
T Φq(x,#kT ; S)

#
∫

d2#bT Iq,i(x,#bT )Fq(x,#bT ; S) , (72)

where, in rough terms, the function Iq,i incorporates the
effect of the gluon field in the correlator on the RHS
of (70). We mention that in the second term on the RHS
of (72) only the spin-dependent term of Fq contributes.

Expressed in terms of TMDs and GPDs Eq. (72) reads
〈

kq,i
T (x)

〉

UT

= −
∫

d2#kT ki
T

εjk
T kj

T Sk
T

M
f⊥q
1T (x,#k 2

T )

#
∫

d2#bT Iq,i(x,#bT )
εjk
T bj

T Sk
T

M

(

Eq(x,#b 2
T )

)′

. (73)

Interestingly, the relation (73) is indeed fulfilled in
the context of perturbative low order model calcula-
tions [37] (see also Sec. IV). It also provides an intu-
itive understanding of the origin of the Sivers transverse
SSA [35, 36]. However, Eq. (73) does not have the sta-
tus of a general, model-independent result (see also, e.g.,
Ref. [69]). The crucial problem lies in the fact that, in
general, the average transverse momentum

〈

kq,i
T (x)

〉

UT
caused by the Sivers effect cannot be factorized into the
function Iq,i (called lensing function in [36]) and the dis-
tortion of the impact parameter distribution of quarks
in a transversely polarized target which is determined by
(Eq)′.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context
of model calculations, we now follow a procedure given
in Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one in-
terchanges the impact parameter #bT and the transverse
momentum #kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the
relations. Note also that the two TMDs g1T and h⊥

1L have
no counterpart on the GPD side, as already pointed out
in Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depend-
ing on the number of derivatives of the involved GPDs
in impact parameter space. In the case of quark distri-
butions the results given in this subsection were already
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C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context
of model calculations, we now follow a procedure given
in Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one in-
terchanges the impact parameter #bT and the transverse
momentum #kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the
relations. Note also that the two TMDs g1T and h⊥

1L have
no counterpart on the GPD side, as already pointed out
in Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depend-
ing on the number of derivatives of the involved GPDs
in impact parameter space. In the case of quark distri-
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Sivers function Lensing function F.T. of E(x,0,t)

Burkardt, PRD66 (02)
Meissner, Metz, Goeke, PRD76 (07)

Thursday, 16 February 2012



Spectator model results
16

P

kk + l

P

∼ Iq,i

︷ ︸︸ ︷

+ h.c.

(a)

P − 1
2∆

k + 1
2∆k − 1

2∆

P + 1
2∆

(b)

FIG. 4: (a) Lowest order diagram for T-odd TMDs in spectator model calculations containing the interaction of the active
quark with the target remnant. The eikonal propagator arising from the Wilson line in the operator definition of TMDs is
indicated by a double line. Note that only the imaginary part of the box diagram on the left-hand side (LHS) of the cut
is relevant for the calculation of T-odd functions. The Hermitian conjugate diagram (h.c.) is not shown. (b) Lowest order
diagram for GPDs in spectator model calculations. The topology of diagram (a) matches with the one of diagram (b) if the
quark-spectator interaction, described by the lensing function I

q,i, is factored out.

in perturbation theory. In addition, we find that those
gluon distributions in the quark target model, which en-
ter the relation of third type as indicated in (84), satisfy
a relation with exactly the structure of (109).

As expected, the general structure of the relation
in (101) and in (109) is different. Note that due to the
Wilson line contribution to the T-odd TMDs, the prefac-
tor on the RHS in (101) contains couplings which do not
appear in (109). Moreover, the relative power of (1− x)
between the moments of the TMDs and of the GPDs
differs for both types of relations.

Evaluating (109) for three specific values of n one finds

h⊥q (0)
1T (x) =

3

(1 − x)2
H̃q

T (x, 0, 0) , (110)

h⊥q (1/2)
1T (x) =

8

(2π)2 (1 − x)2
H̃q (1/2)

T (x) , (111)

h⊥q (1)
1T (x) =

1

(2π) (1 − x)2
H̃q (1)

T (x) . (112)

Equations (110)–(112) are the counterparts of the rela-
tions of second type in (104)–(106).

Keeping in mind the discussion in Sec. III C [see in par-
ticular (76)] one may wonder if the relation of third type
in (109) can be rewritten such that the second deriva-
tive of the impact parameter distribution H̃q

T shows up.
This is indeed possible for arbitrary values of n. Instead
of providing a general formula we limit this discussion
to the particular case n = 1 in which the most compact
and appealing result follows. To this end we exploit the
model-independent identity

∫

d2"bT

"b 2
T

2M2
2

(

H̃q
T (x,"b 2

T )

)′′

= −π

∫ ∞

0
db2

T
1

2M2
2

(

H̃q
T (x,"b 2

T )

)′

=
π

M2
H̃q

T (x, 0)

=
1

(2π) (1 − x)2
H̃q (1)

T (x) . (113)

In (113) integration by parts is used in order to perform
the first step. Combining now Eqs. (112) and (113) one
immediately obtains

h⊥q (1)
1T (x) =

∫

d2"kT

"k 2
T

2M2
h⊥q

1T (x,"k 2
T )

=

∫

d2"bT

"b 2
T

2M2
2

(

H̃q
T (x,"b 2

T )

)′′

. (114)

Note that this relation has a strong similarity to the re-
lations of first type in Eqs. (61)–(63). Exactly the same
result holds for the relation of third type containing the
gluon distributions [see (76)], i.e.,

h⊥g (1)
1 (x) =

∫

d2"kT

"k 2
T

2M2
h⊥g

1 (x,"k 2
T )

=

∫

d2"bT

"b 2
T

2M2
2

(

Eg
T (x,"b 2

T ) + 2H̃g
T (x,"b 2

T )

)′′

. (115)

E. Relation of fourth type

Eventually, the relation of fourth type indicated in (77)
and (85) is considered. In the framework of the quark
target model calculation at lowest order such a relation
is satisfied because both the TMD h⊥g

1T and the GPD
H̃g

T vanish [see Eqs. (B18) and (B30)]. In order to ob-
tain nonzero results for those distributions higher order
diagrams have to be studied. At present one can say nei-
ther if higher order results obey a relation of fourth type
nor how the specific form of such a relation could look
like. One can only speculate that a possible relation of
fourth type may be similar to the relation of second type
because in both cases a T-odd TMD enters.

F. Higher order diagrams

As already pointed out above so far nontrivial relations
between GPDs and TMDs are only established if the

Burkardt, Hwang, PRD69 (04)
Lu, Schmidt, PRD75 (07)
A.B., F. Conti, M. Radici, PRD 78 (08)

f⊥(0)a
1T (x;Q2

L) = −3MCF αS

2(1− x)
Ea(x, 0, 0;Q2

L)
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Spectator model results

Lensing function (flavor independent)
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FIG. 4: (a) Lowest order diagram for T-odd TMDs in spectator model calculations containing the interaction of the active
quark with the target remnant. The eikonal propagator arising from the Wilson line in the operator definition of TMDs is
indicated by a double line. Note that only the imaginary part of the box diagram on the left-hand side (LHS) of the cut
is relevant for the calculation of T-odd functions. The Hermitian conjugate diagram (h.c.) is not shown. (b) Lowest order
diagram for GPDs in spectator model calculations. The topology of diagram (a) matches with the one of diagram (b) if the
quark-spectator interaction, described by the lensing function I

q,i, is factored out.

in perturbation theory. In addition, we find that those
gluon distributions in the quark target model, which en-
ter the relation of third type as indicated in (84), satisfy
a relation with exactly the structure of (109).

As expected, the general structure of the relation
in (101) and in (109) is different. Note that due to the
Wilson line contribution to the T-odd TMDs, the prefac-
tor on the RHS in (101) contains couplings which do not
appear in (109). Moreover, the relative power of (1− x)
between the moments of the TMDs and of the GPDs
differs for both types of relations.

Evaluating (109) for three specific values of n one finds

h⊥q (0)
1T (x) =

3

(1 − x)2
H̃q

T (x, 0, 0) , (110)

h⊥q (1/2)
1T (x) =

8

(2π)2 (1 − x)2
H̃q (1/2)

T (x) , (111)

h⊥q (1)
1T (x) =

1

(2π) (1 − x)2
H̃q (1)

T (x) . (112)

Equations (110)–(112) are the counterparts of the rela-
tions of second type in (104)–(106).

Keeping in mind the discussion in Sec. III C [see in par-
ticular (76)] one may wonder if the relation of third type
in (109) can be rewritten such that the second deriva-
tive of the impact parameter distribution H̃q

T shows up.
This is indeed possible for arbitrary values of n. Instead
of providing a general formula we limit this discussion
to the particular case n = 1 in which the most compact
and appealing result follows. To this end we exploit the
model-independent identity

∫

d2"bT

"b 2
T

2M2
2

(

H̃q
T (x,"b 2

T )

)′′

= −π

∫ ∞

0
db2

T
1

2M2
2

(

H̃q
T (x,"b 2

T )

)′

=
π

M2
H̃q

T (x, 0)

=
1

(2π) (1 − x)2
H̃q (1)

T (x) . (113)

In (113) integration by parts is used in order to perform
the first step. Combining now Eqs. (112) and (113) one
immediately obtains

h⊥q (1)
1T (x) =

∫

d2"kT

"k 2
T

2M2
h⊥q

1T (x,"k 2
T )

=

∫

d2"bT

"b 2
T

2M2
2

(

H̃q
T (x,"b 2

T )

)′′

. (114)

Note that this relation has a strong similarity to the re-
lations of first type in Eqs. (61)–(63). Exactly the same
result holds for the relation of third type containing the
gluon distributions [see (76)], i.e.,

h⊥g (1)
1 (x) =

∫

d2"kT

"k 2
T

2M2
h⊥g

1 (x,"k 2
T )

=

∫

d2"bT

"b 2
T

2M2
2

(

Eg
T (x,"b 2

T ) + 2H̃g
T (x,"b 2

T )

)′′

. (115)

E. Relation of fourth type

Eventually, the relation of fourth type indicated in (77)
and (85) is considered. In the framework of the quark
target model calculation at lowest order such a relation
is satisfied because both the TMD h⊥g

1T and the GPD
H̃g

T vanish [see Eqs. (B18) and (B30)]. In order to ob-
tain nonzero results for those distributions higher order
diagrams have to be studied. At present one can say nei-
ther if higher order results obey a relation of fourth type
nor how the specific form of such a relation could look
like. One can only speculate that a possible relation of
fourth type may be similar to the relation of second type
because in both cases a T-odd TMD enters.

F. Higher order diagrams

As already pointed out above so far nontrivial relations
between GPDs and TMDs are only established if the

Burkardt, Hwang, PRD69 (04)
Lu, Schmidt, PRD75 (07)
A.B., F. Conti, M. Radici, PRD 78 (08)

f⊥(0)a
1T (x;Q2

L) = −3MCF αS

2(1− x)
Ea(x, 0, 0;Q2

L)
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tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)
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where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2
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f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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pose a way to constrain the angular momentum Ja of
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Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]
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∫ 1
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(
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)
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(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule
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∫ 1

0
dxEqv (x, 0, 0) = κ, (2)
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Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
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and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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At the starting scale Q0, we use the following unpolarized
distribution and fragmentation functions

fa
1 (x, p

2
T ;Q

2
0) =

fa
1 (x;Q

2
0)

π〈p2T 〉
e−p2

T /〈p2
T 〉, (5)

Da
1(z, k

2
T ;Q

2
0) =

Da
1(z;Q

2
0)

πz2〈k2T 〉
e−k2

T /〈k2
T 〉, (6)

where z is the fraction of the energy of the fragment-
ing parton a carried by the detected hadron. For fa

1 (x)
we use the MSTW08LO set [17], for Da

1(z) we use the
DSS LO set [18]. We fix the width of the transverse-
momentum distributions for initial and fragmenting par-
tons, respectively, as

〈p2T 〉 = 0.14 GeV2, z2〈k2T 〉 = 0.42 z0.54(1− z)0.37 GeV2.
(7)

These parameters have been implemented in the HER-
MES gmc trans Monte Carlo generator and are known
to give a good description of the HERMES data [19]. In
principle, these functions should be evolved according to
TMD evolution [20]. However, we choose here to imple-
ment only the evolution of their collinear part.

Neglecting the contribution of heavier c, b, t flavors, we
parametrize the Sivers function in the following way (in-
spired by [15]):

f⊥a
1T (x, p2T ;Q

2
0) = f⊥(0)a

1T (x;Q2
0)

M2
1 + 〈p2T 〉

πM2
1 〈p2T 〉

e−p2
T /M2

1 e−p2
T /〈p2

T 〉
(8)

where M1 is a free parameter related to the width of the
transverse-momentum distribution, and

f⊥(0)qv
1T (x;Q2

0) = Cqv
√
2e

MM1

M2
1 + 〈p2T 〉

1− x/αqv

|αqv − 1| (1− x)fqv
1 (x;Q2

0),

(9)

f⊥(0)q̄
1T (x;Q2

0) = C q̄
√
2e

MM1

M2
1 + 〈p2T 〉

(1− x) f q̄
1 (x;Q

2
0).

(10)

Note that atQ0 we establish a relation between the Sivers
function for the combinations qv, q̄, and the correspond-
ing unpolarized PDF, at variance with what has been
done in the literature [15, 16]. This will turn out to be im-
portant when establishing a relation with the anomalous
magnetic moment, since it guarantees that the valence
Sivers function is integrable at any scale. We multiply
the unpolarized PDF by (1− x) to respect the predicted
high-x behavior of the Sivers function [21]. We intro-
duce the free parameter αqv to allow for the presence of
a node in the Sivers function at x = αqv , as suggested by
diquark model calculations [9, 10] and phenomenological
studies [22] (see the discussion in Ref. [23]). We imposed
constraints on the parameters Ca in order to respect the
positivity bound for the Sivers function [24], neglecting

the contribution of the helicity distribution g1(x) (as in
Ref. [15]).
Also for f⊥

1T , we neglect the effect of TMD scale

evolution [25]. We assume that f⊥(0)
1T (x;Q2) evolves

in the same way as f1(x;Q2), based on the results of
Refs. [26, 27] (note however that a slightly different re-
sult has been obtained in Ref. [28]).
In conclusion, we describe the SIDIS Sivers asymmetry

in the following way:

Asin(φh−φS)
UT (x, z, P 2

h⊥, Q
2) = −M2

1 (M
2
1 + 〈p2T 〉)

〈P 2
Siv〉2

Ph⊥
M

z3
(
1 +

〈k2T 〉
〈p2T 〉

)3

e
− P2

h⊥
〈P2

Siv〉

∑
a e

2
a f⊥(0)a

1T (x;Q2) Da
1(z;Q

2)∑
a e

2
a fa

1 (x;Q
2) Da

1(z;Q
2)

,

(11)

where

〈P 2
Siv〉 = z2M2

1

(
1 +

〈k2T 〉
〈p2T 〉

)(
1 +

〈k2T 〉
〈p2T 〉

+
〈k2T 〉
M2

1

)
, (12)

and Ph⊥ is the modulus of the transverse momentum of
the detected final hadron in the lab frame.
For the lensing function we assume the following

Ansatz

L(x) =
K

(1− x)η
. (13)

The choice of this form is guided by model calcula-
tions [6–10], by the large-x limit of the GPD E [21],
and by the phenomenological analysis of the GPD E pro-
posed in Ref. [29]. We checked a posteriori that there is
no violation of the positivity bound on the GPD Eqv as
expressed in Ref. [30], again neglecting the contribution
of g1(x). The nucleon anomalous magnetic moments are
computed as

κp =

∫ 1

0

dx

3

[
2Euv (x, 0, 0)− Edv (x, 0, 0)− Esv (x, 0, 0)

]
,

κn =

∫ 1

0

dx

3

[
2Edv (x, 0, 0)− Euv (x, 0, 0)− Esv (x, 0, 0)

]
.

(14)

We perform a combined χ2 fit to 105 HERMES proton
data [31], to 104 COMPASS deuteron data [32], and to
8 JLab neutron data [33], of the Sivers asymmetry with
identified hadrons. We sum the statistical and systematic
errors in quadrature and neglect the experimental nor-
malization uncertainty. Since the HERMES and COM-
PASS data are presented as three projections of the same
data set (binned in three different ways: in x, z, Ph⊥),
we consider all three projections but we multiply their
statistical errors by a factor

√
3 and we divide by 3 the

number of these bins (105 and 104) when counting the
number of degrees of freedom. The anomalous magnetic
moments are known to a precision of 10−7 or higher [34].
However, given the typical uncertainties on PDF extrac-
tions, our computation of κ is affected by a theoretical
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Data fitting
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Some details on the fit

• 221 SIDIS data points + 2 anomalous magnetic moments

• 10 parameters

•χ2/dof=1.32

• no TMD evolution
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Best-fit parameters

3

Cuv Cdv Cū C d̄

−0.229± 0.002 1.591± 0.009 0.054± 0.107 −0.083± 0.122

M1 [GeV] K [GeV] η αuv

0.346± 0.015 1.888± 0.009 0.392± 0.040 0.783± 0.001

TABLE I: Best-fit values of the 8 free parameters for the case
Csv = C s̄ = 0. The final χ2/dof is 1.323. The errors are
statistical and correspond to ∆χ2 = 1

error of the order of 10−3. Therefore, for our present pur-
poses we take κp = 1.793± 0.001, κn = −1.913± 0.001.

We started from considering 15 free parameters. They
are C q̄, Cqv ,αqv , with q = u, d, s, the gluon coefficient
Cg, M1, the lensing parameters K and η, and the scales
Q0 andQL. However, after some explorations, we made a
common set of assumptions in all attempted fits. Namely,
in all cases we fixed αdv,sv = 0 (no nodes in the va-
lence down and strange Sivers functions, as suggested in
Refs. [9, 10, 22, 23]). We also set Cg = 0 (the influence
of the gluon Sivers function through evolution is anyway
limited). Finally, all fits indicated that Q0 = QL = 1
GeV was an acceptable choice. Therefore, the actual
number of free parameters is at most 10. In this frame-
work, we conclude that it is possible to give a simulta-
neous description of the SIDIS data and of the nucleon
anomalous magnetic moments assuming the relation in
Eq. (3).

We explored several scenarios focusing in particular
on different choices of the parameters related to the
strange quark. We considered fits with fixed C s̄ = 0,
or with fixed Csv = 0, or with both parameters free (but
constrained within positivity limits), or with both fixed
Csv = C s̄ = 0. In all cases, we obtained very good values
of χ2 per degree of freedom (χ2/dof) between 1.323 and
1.347. All fits lead to a negative Sivers function for uv

and large and positive for dv, in agreement with previ-
ous studies [13–16] and with some models [35–37]. The
data are compatible with vanishing sea-quark contribu-
tions (with large uncertainties). However, large Sivers
functions for ū and d̄ are excluded, as well as large and
negative for s̄. The Sivers function for sv is essentially
unconstrained. The parameter M1 is quite stable around
0.34 GeV, as well as the strength of the lensing function
K around 1.86 GeV. The parameter η is typically around
0.4 but can oscillate between 0.03 and 2. The node αuv

appears only above x ≈ 0.78.
We now discuss in detail the case with fixed Csv =

C s̄ = 0, because it gives the best χ2/dof (1.323) and
proves that it is possible to fit the present SIDIS data for
Sivers asymmetries in kaon emission without the strange
contribution to the Sivers function. The best-fit values
of the parameters are listed in Tab. I together with their
statistical errors corresponding to ∆χ2 = 1.

In Fig. 1, we show the corresponding outcome for

xf⊥(1)a
1T (x;Q2

0) with a = u, d, ū, d̄. The Sivers functions
for s, s̄ vanish identically. The uncertainty bands are pro-

x f
1 T
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FIG. 1: The function xf⊥(1)a
1T (x;Q2

0) (see text) as a function
of x at the scale Q0 = 1 GeV for a = u, d, ū, d̄ from top panel
to bottom, respectively. The uncertainty bands are produced
by the statistical errors on the fit parameters listed in Tab. I.

duced by propagation of the statistical errors of the fit
parameters including their correlations, and correspond
to ∆χ2 = 1. Our results are comparable with other ex-
tractions of the Sivers function [13, 15, 16]. They are also
qualitatively similar to the forward limit of the GPD E
extracted from experiments [29, 30, 38, 39].
We can now compute the contribution to the anoma-

lous magnetic moment of each valence quark flavor qv
using Eqs. (14). We obtain

κuv = 1.673± 0.003+0.011
−0.000, κdv = −2.033± 0.002+0.011

−0.000,

κsv = 0+0.011
−0.000.

The first symmetric error is statistical and comes again
from the errors of the fit parameters (∆χ2 = 1). The
second asymmetric error is purely theoretical. It is com-
puted by considering the other possible scenarios (cor-
responding to different choices for Csv and C s̄) which
give good χ2 fits as well. However, a precise estimate of
this error can be obtained only by performing a neural
network fit [40]. The strange contribution to the anoma-
lous magnetic moment is negligible, because the positiv-
ity bounds severely limit the Sivers function for s and, in
turn, also Esv and κsv . Our results are similar to other
estimates of the strange Pauli form factor [41, 42] and
lattice QCD calculations [43, 44].

L(x) =
K

(1− x)η

f⊥qv

1T (x, p2
T ) ∝ Cqv (1− x/αqv ) (1− x)fqv

1 (x) e−p2
T /M2

1 e−p2
T /〈p2

T 〉
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Fit vs. data (example)
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Resulting Sivers function
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Resulting Sivers function

Δχ2=1
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FIGURE 1. Fit of HERMES data [6] for pion (left panel) and kaon production (right panel).
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FIGURE 2. Fit of COMPASS deuteron data [3] for pion (left panel) and kaon production (right panel).
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FIGURE 1. Fit of HERMES data [6] for pion (left panel) and kaon production (right panel).
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FIGURE 2. Fit of COMPASS deuteron data [3] for pion (left panel) and kaon production (right panel).
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Resulting E(x,0,0) function
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Results on angular momenta
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4

turn, also Esv and κsv . Our results are similar to other
estimates of the strange Pauli form factor [42, 43] and
lattice QCD calculations [44, 45].

Using Eq. (1), we can compute the total longitudinal
angular momentum carried by each flavor q and q̄ at our
initial scale Q2

L = 1 GeV2. Using the standard evolution
equations for the angular momentum (at leading order,
with 3 flavors only, and ΛQCD = 257 MeV), we obtain
the following results at Q2 = 4 GeV2:

Ju = 0.229± 0.002+0.008
−0.012, J ū = 0.015± 0.003+0.001

−0.000,

Jd = −0.007± 0.003+0.020
−0.005, J d̄ = 0.022± 0.005+0.001

−0.000,

Js = 0.006+0.002
−0.006, J s̄ = 0.006+0.000

−0.005.

As before, the first symmetric error is statistical and re-
lated to the errors on the fit parameters, while the sec-
ond asymmetric error is theoretical and reflects the un-
certainty introduced by the other possible scenarios. In
the present approach, we cannot include the (probably
large) systematic error due to the rigidity of the func-
tional form in Eqs. (8)-(10), (13). The bias induced by
the choice of the functional form may affect in particu-
lar the determination of the sea quark angular momenta,
since they are not directly constrained by the values of
the nucleon anomalous magnetic moments. Our present
estimates (at Q2 = 4 GeV2) agree well with other anal-

yses [30, 31, 39, 40, 46, 47]. It indicates a total contri-
bution to the nucleon spin from quarks and antiquarks
of 0.271± 0.007+0.032

−0.028, of which 85% is carried by the up
quark.

In summary, we have presented a determination of
the quark angular momentum assuming a connection be-
tween the collinear limit of the generalized parton dis-
tribution E and the Sivers transverse-momentum distri-
bution. We have shown that it is possible to fit at the
same time the nucleon anomalous magnetic moments and
data for semi-inclusive single-spin asymmetries produced
by the Sivers effect. Several different scenarios produce
equally good χ2 fits. Our strategy opens a plausible way
to quantifying the quark angular momentum, and im-
poses additional constraints on the Sivers function.
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Extractions and lattice QCD
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Other versions of the plot

Figure 4.2. The isosinglet moment Bu+d
20 (t) as a function of simulated pion mass and t [604].

Figure 4.3. Lattice results for Ju and Jd compared with various models [582, 701, 605, 702] and
constraints derived from experiment (colored bands)

2. The difference between the two sheets gives the variation of HBChPT fits. However, it
would be safer to only use ensembles with squared pion masses belowm2

π ≤ 0.25GeV2,
where ChPT is rather well under control, which was obviously not possible with the
ensembles available for this analysis.

3. One is especially interested in the t = 0 limit of B20 in view of Ji’s sum rule,

〈
J3
q

〉
=

1

2
[Aq

2,0(0) +Bq
2,0(0)] .

Already today lattice simulations give rather precise results for the total angular
momentum carried by the different quark species in a nucleon, see Fig. 4.3. In future
these results will further improve, e.g. due to the use of twisted boundary conditions
to realize proton momenta different from the natural ones on a lattice, i.e. different
from pj =

2π
L nj.

Thus, much has been done already, and much more will be done in future. Extrapolating
the progress of recent years to the time an EIC will start operation it seems realistic to expect
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Experimental effort just beginning! 

For the moment analysis highly model dependent .... 
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Conclusions

• The data are compatible with our assumptions

• We obtain results for the Sivers function and for quark 
angular momenta in agreement with other extractions

• We can estimate also sea-quark angular momenta

• More work is needed, especially to assess the (probably 
large) errors due to the choice of functional form.

• Our approach can complement GPD studies
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