TMDs with JLab12 and EIC

Harut Avakian (JLab)

INT Workshop on Orbital Angular Momentum in QCD February 10 2012

Outline

Transverse structure of the nucleon and partonic correlations

- •k_T-effects with unpolarized and polarized target data
- Studies of 3D PDFs at JLab at 6 GeV
- Studies of 3D structure of the nucleon at JLab12
- Measuring spin and azimuthal asymmetries with EIC
- From asymmetries to TMDs
- Summary

3D structure of the nucleon

Semi-Inclusive processes and transverse momentum distributions

Hard exclusive processes and spatial distributions of partons

$H^q(x,\xi,t)$	$ ilde{H}^q$	E^q	$ ilde{E}^q$
H_T^q	$ ilde{H}_T^q$	E_T^q	$ ilde{E}_T^q$

Wide kinematic coverage of large acceptance detectors allows studies of

exclusive (GPDs) and semi-inclusive (TMDs) processes providing

complementary information on transverse structure of nucleon

	U	L	T
U	H		\mathcal{E}_T
L		\widetilde{H}	
T	E		H_T, \widetilde{H}_T

(QCDSF)

SIDIS: partonic cross sections

$$\nu = (qP)/M$$

$$Q^2 = (k - k')^2$$

$$y = (qP)/(kP)$$

$$x = Q^2/2(qP)$$

$$z = (qP_h)/(qP)$$

Transverse momentum of hadrons in SIDIS provides access to orbital motion of quarks

Ji, Ma, Yuan Phys. Rev. D71:034005, 2005

$$d\sigma^h \propto \sum e_q^2 \int d^2\vec{k}_T d^2\vec{p}_T d^2\vec{l}_T f^{H\to q}(x, \mathbf{k}_T) D^{q\to h}(z, \mathbf{p}_\perp) S(\vec{l}_T) H(Q) \delta(z\vec{k}_T + \vec{p}_T + \vec{l}_T - \vec{P}_T)$$

Azimuthal moments in SIDIS

quark polarization $\frac{dz}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} =$ $\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \right\}$ $\overline{N/q}$ T $+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h F_{LU}^{\sin\phi_h}$ g_{1T} $+ S_{\parallel} \sqrt{2 \varepsilon (1 + \varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h}$ $+ S_{\parallel} \lambda_e \sqrt{1 - \varepsilon} F_{LL} \sqrt{2\varepsilon(1 - \varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h}$ **Higher Twist PDFs** + $|S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right]$ N/qh.e $\mathbf{h_L}, e_L$ $+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$ $h_T, e_T, h_T^{\perp}, e_T^{\perp}$ $\mathbf{g}_{\mathbf{T}}, g_{\mathbf{T}}^{\perp}$ $+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)}$ + $|S_{\perp}|\lambda_e \left| \sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_S F_{LT}^{\cos\phi_S} \right|$ Experiment for a given target

H. Avakian, INT. Feb 10

 $+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)F_{LT}^{\cos(2\phi_h-\phi_S)}$,

polarization measures all

moments simultaneously

Extracting the moments

Moments mix in experimental azimuthal distributions

azimuthal acceptance

Acceptance:

Moments/asymmetries:

Virtual photon angle:

$$\sin \theta_{\gamma} = \sqrt{\frac{4M^2x^2}{Q^2 + 4M^2x^2} \left(1 - y - \frac{M^2x^2y^2}{Q^2}\right)}$$

Simplest acceptance -> $1+A\cos\phi$

Correction to normalization

$$(1 + \alpha \cos \phi)(1 + A \cos \phi) \rightarrow 1 + A\alpha/2$$

$$(1 + \beta \lambda \Lambda + \gamma \lambda \Lambda \cos \phi)(1 + A \cos \phi)$$
$$\rightarrow 1 + (\beta + \gamma A/2)\lambda \Lambda$$

Correction to DSA

$$(1 + S_T \delta \sin \phi_S)(1 + A \cos \phi)$$

 $\rightarrow 1 + S_T/2\delta A(\sin \phi - \phi_S) + \dots$
Correction to SSA

$$\frac{1+\beta\lambda\Lambda}{1+a\cos\phi} \to 1-a\beta\lambda\Lambda\cos\phi$$
 Fake DSA $\cos\phi$

Simultaneous extraction of moments is important also because of correlations!

JLab Experimental Halls

P_⊤-dependence studies at Hall-C

H. Mkrtchyan(DIS2011)

Experiment E00-108

Beam energy 5.5 GeV

4 cm LH2 and LD2 targets

$$\mathbf{P_t} = \mathbf{p_t} + \mathbf{z}\mathbf{k_t}$$

$$\mathbf{b_{H}} = 5.44 \pm 0.36$$

$$\mathbf{b_{D}}^{-} = 5.35 \pm 0.26$$

$$b_{H}^{+} = 4.24 \pm 0.17$$

$$b_{D}^{+} = 4.64 \pm 0.17$$

Data (assuming only valence quarks and only two fragmentation functions contribute) indicate that k_T-width of u-quarks is larger than for d-quarks

Kotzinian-Mulders Asymmetries

³He Target Single-Spin Asymmetry in SIDIS

$$^{3}\text{He}^{\uparrow}(e, e'h), h = \pi^{+}, \pi^{-}$$

To extract information on neutron, one would assume:

3
He $^{\uparrow}$ = 0.865 · n $^{\uparrow}$ - 2 × 0.028 · p $^{\uparrow}$

Collins asymmetries for neutron are not large, except at x=0.34

Sivers agree with global fit, and lightcone quark model.

Hard Scattering Processes: Kinematics Coverage

- •Study of high x domain requires high luminosity, low x higher energies
- •Wide range in Q² is crucial to study the evolution
- •Overlap of EIC and JLab12 in the valence region will be crucial for the TMD program

SIDIS at JLab12

The Multi-Hall SIDIS Program at 12 GeV

- M. Aghasyan, K. Allada, H. Avakian, F. Benmokhtar, E. Cisbani, J-P. Chen, M. Contalbrigo,
- D. Dutta, R. Ent, D. Gaskell, H. Gao, K. Griffioen, K. Hafidi, J. Huang, X. Jiang, K. Joo,
- N. Kalantarians, Z-E. Meziani, M. Mirazita, H. Mkrtchyan, L.L. Pappalardo, A. Prokudin,
- A. Puckett, P. Rossi, X. Qian, Y. Qiang, B. Wojtsekhowski for the Jlab SIDIS working group

The complete mapping of the multi-dimensional SIDIS phase space will allow a comprehensive study of the TMDs and the transition to the perturbative regime.

<u>Flavor separation</u> will be possible by the use of different target nucleons and the detection of final state hadrons.

<u>Measurements with pions and kaons</u> in the final state will also provide important information on the hadronization mechanism in general and on the role of spin-orbit correlations in the fragmentation in particular.

<u>Higher-twist effects</u> will be present in both TMDs and fragmentation processes due to the still relatively low Q² range accessible at JLab, and can apart from contributing to leading-twist observables also lead to observable asymmetries vanishing at leading twist. These are worth studying in themselves and provide important information on quark-gluon correlations.

SIDIS at JLab12

SOLID A_{UL} on ³He

A_{UT} studies using SOLID

SoLID and polarized NH3(p) target

E12-07-107: Studies of Spin-Orbit Correlations with Longitudinally Polarized Target

$$rac{d\sigma}{dx dy d\phi_S d\phi_h dP_{h\perp}^2} \propto S_L \left[\sqrt{2\epsilon(1+\epsilon)} sin\phi_h F_{UL}^{sin\phi_h} + \epsilon sin(2\phi_h) F_{UL}^{sin(2\phi_h)}
ight] + S_L \lambda_e \left[\sqrt{1-\epsilon^2} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} cos(\phi_h) F_{LL}^{cos(\phi_h)}
ight] + S_L \lambda_e \left[\sqrt{1-\epsilon^2} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} cos(\phi_h) F_{LL}^{cos(\phi_h)}
ight]$$

p & d data required for P_T-dependence flavor decomposition

CLAS12 A_{UT} with transverse proton target

Quark distributions at large k_T: lattice

$$f_1^q(x, k_T) = f_1(x) \frac{1}{\pi \mu_0^2} \exp\left(-\frac{k_T^2}{\mu_0^2}\right)$$
$$g_1^q(x, k_T) = g_1(x) \frac{1}{\pi \mu_2^2} \exp\left(-\frac{k_T^2}{\mu_2^2}\right)$$

Higher probability to find a quark anti-aligned with proton spin at large k_T and b_T

B.Pasquini et al

Significant correlations of spin and transverse degrees of freedom predicted

A₁ P_T-dependence in SIDIS

•A_{LL} (π) sensitive to difference in k_T distributions for f_1 and g_1

•Wide range in P_T allows studies of transition from TMD to perturbative approach

J.Zhou, F.Yuan, Z Liang: arXiv:0909.2238

P_T and Q²-dependence of beam SSA

- •Study for SSA transition from non-perturbative to perturbative regime.
- •EIC will significantly increase the P_T range.
- •Study for Q² dependence of beam SSA allows to check the higher twist nature and access quark-gluon correlations.

Boer-Mulders Asymmetry with CLAS12 & EIC

Transversely polarized quarks in the unpolarized nucleon

$$sin(\phi_C) = cos(2\phi_h)$$

$$A_{\mathsf{U}\mathsf{U}}^{\cos2\phi}\propto h_{\mathsf{1}}^{\perp(\mathsf{1})}H_{\mathsf{1}}^{\perp}$$

$$\langle \cos 2\phi \rangle |_{P_{h\perp} \gg \Lambda_{\rm QCD}} \propto \frac{1}{P_{h\perp}^2}$$

Perturbative limit calculations available for $f_1(x, k_T), h_1^{\perp}(x, k_T)$

J.Zhou, F.Yuan, Z Liang: arXiv: 0909.2238

CLAS12 and EIC studies of transition from non-perturbative to perturbative regime will provide complementary info on spin-orbit correlations and test unified theory (Ji et al)

Pretzelosity @ EIC

•EIC measurement combined with CLAS12 will provide a complete kinematic range for pretzelosity measurements

Sivers effect: π + from EIC

 \sqrt{s} = 140 GeV, \sqrt{s} = 50 GeV and \sqrt{s} = 15 GeV EIC configurations, respectively. Event counts correspond to an integrated luminosity of 30 fb-1 **arXiv:1108.1713**

•Large acceptance and energy range of EIC makes it ideal place to study the contributions of sea quarks to Sivers asymmetry

Sivers effect: K+ from EIC

arXiv:1108.1713

• EIC Kaon are more sensitive to contribtions from sea Sivers.

Extracting Sivers function from asymmetries

$$A_{UT}^{\sin(\phi - \phi_S)} = \frac{\sum_q e_q^2 f_{1T}^{\perp q} D_1^q}{\sum_q e_q^2 f_1^q D_1^q}$$

 10^{-2}

EIC with energy setting of \sqrt{s} = 45 GeV and an integrated lumi of 4 fb-1

Extraction based on Gaussian Sivers, generated and then extracted with assumption of the same shape as used in generation (unclear systematics)

•At small x of EIC Kaon relative rates higher, combined with pions may provide precision measurements of Sivers asymmetries (in particular K-).

10⁻¹

•Combination with CLAS12 data will provide almost complete x-range.

 10^{-3}

Х

FAST-MC for CLAS12

SIDIS MC in 8D $(x,y,z,\phi,\phi_S,p_T,\lambda,\pi)$

Simple model with 10% difference between f1 (0.2GeV²) and g1 widths with a fixed width for D1 (0.14GeV²)

$$f_q(x, k_\perp) = f_q(x) \frac{1}{\pi \langle k_\perp^2 \rangle} e^{-k_\perp^2/\langle k_\perp^2 \rangle}$$

Events in CLAS12

Reasonable agreement of kinematic distributions with realistic LUND

21 = 15

BGMP: extraction of k_T-dependent PDFs

Need: project x-section onto Fourier mods in b_T-space to avoid convolution

Boer, Gamberg, Musch & Prokudin arXiv:1107.5294

•the formalism in b_T -space avoids convolutions \rightarrow easier to perform a model independent analysis

provides a model independent way to study kinematical dependences of TMD

BGMP: extraction of k_T-dependent PDFs

Need: project x-section onto Fourier mods in b_T-space to avoid convolution

Boer, Gamberg, Musch & Prokudin arXiv:1107.5294

$$\int_0^{2\pi} d\phi_h \sin \phi_h \int_0^{\infty} d|\mathbf{P}_{\mathbf{h}\perp}||\mathbf{P}_{\mathbf{h}\perp}| \frac{2J_1(|\mathbf{P}_{\mathbf{h}\perp}||\mathbf{b}_{\mathbf{T}}|)}{zM_h|\mathbf{b}_{\mathbf{T}}|} \left[\frac{d\sigma}{dxdydzd\phi_h|\mathbf{P}_{\mathbf{h}\perp}|d|\mathbf{P}_{\mathbf{h}\perp}|} \right]$$

$$\sum_{a} e_a^2 \tilde{e}^a(x, z^2 b_T^2) \tilde{H}_1^{\perp (1)a}(z, b_T^2) + \dots$$

$$\begin{split} & F_{UT,T}^{\sin(\phi_h-\phi_S)} = -x_B \sum_a e_a^2 \int \frac{d|b_T|}{(2\pi)} |b_T|^2 \, J_1(|b_T||P_{h\perp}|) \, Mz \, \, \tilde{f}_{1T}^{\perp(1)}(x,z^2b_T^2) \, \, \tilde{D}_1(z,b_T^2) \, \, , \\ & F_{LL} = x_B \sum_a e_a^2 \int \frac{d|b_T|}{(2\pi)} |b_T| \, J_0(|b_T||P_{h\perp}|) \, \, \tilde{g}_{1L}(x,z^2b_T^2) \, \, \tilde{D}_1(z,b_T^2) \, \, , \\ & F_{LT}^{\cos(\phi_h-\phi_S)} = x_B \sum_a e_a^2 \int \frac{d|b_T|}{(2\pi)} |b_T|^2 \, J_1(|b_T||P_{h\perp}|) \, Mz \, \, \, \tilde{g}_{1T}^{\perp(1)}(x,z^2b_T^2) \, \, \tilde{D}_1(z,b_T^2) \, \, , \\ & F_{UT}^{\sin(\phi_h+\phi_S)} = x_B \sum_a e_a^2 \int \frac{d|b_T|}{(2\pi)} |b_T|^2 \, J_1(|b_T||P_{h\perp}|) \, M_h z \, \, \tilde{h}_1(x,z^2b_T^2) \, \, \tilde{H}_1^{\perp(1)}(z,b_T^2) \, \, , \\ & F_{UU}^{\cos(2\phi_h)} = x_B \sum_a e_a^2 \int \frac{d|b_T|}{(2\pi)} |b_T|^3 \, J_2(|b_T||P_{h\perp}|) M M_h z^2 \, \, \tilde{h}_1^{\perp(1)}(x,z^2b_T^2) \, \, \tilde{H}_1^{\perp(1)}(z,b_T^2) \, \, , \\ & F_{UL}^{\sin(2\phi_h)} = x_B \sum_a e_a^2 \int \frac{d|b_T|}{(2\pi)} |b_T|^3 \, J_2(|b_T||P_{h\perp}|) M M_h z^2 \, \, \tilde{h}_{1L}^{\perp(1)}(x,z^2b_T^2) \, \, \tilde{H}_1^{\perp(1)}(z,b_T^2) \, \, , \\ & F_{UT}^{\sin(3\phi_h-\phi_S)} = x_B \sum_a e_a^2 \int \frac{d|b_T|}{(2\pi)} |b_T|^4 \, J_3(|b_T||P_{h\perp}|) \frac{M^2 M_h z^3}{4} \, \tilde{h}_{1T}^{\perp(2)}(x,z^2b_T^2) \, \, \tilde{H}_1^{\perp(1)}(z,b_T^2) \, \, . \end{split}$$

- With different Bessel weights BGMP provides a model independent way to extract k_T-dependences for all TMDs
- Jefferson Lat •requires wide range in hadron PT

Summary

- Measurements of azimuthal dependences of double and single spin asymmetries in SIDIS indicate that there are significant correlations between spin and transverse distribution of quarks.
- Studies of quark-gluon correlations and hadronization are important in studies of TMD PDFs.
- Precision data from JLab12 and EIC will provide a complete set of azimuthal moments in a wide range in x required for extraction of TMD PDFs in valence and sea regions, respectively
- k_T -dependent flavor decomposition procedure is required to extract the PDFs in multidimensional space in a model independent way (Bessel weighting?)