Parity-Violation in Neutron Deuteron Scattering in Pionless Effective Field Theory

Jared Vanasse

Duke University

Parity Violation

Parity violation in weak force proposed by Lee and Yang to explain A-puzzle

$$\tau \to \pi^- + \pi^0 + \pi^0$$

$$\theta \to \pi^- + \pi^0$$

Madame Wu discovered parity-violation in the beta decay of ⁶⁰Co

$${}^{60}_{27}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + \text{e}^- + \bar{\nu}_{\text{e}}$$

DDH Potential

$$\mathcal{H}_{\rm st} = ig_{\pi NN}\bar{N}\gamma_5\tau\cdot\pi N + g_\rho\bar{N}\left(\gamma_\mu + i\frac{\chi_\rho}{2M_N}\sigma_{\mu\nu}k^\nu\right)\tau\cdot\rho^\mu N + g_\omega\bar{N}\left(\gamma_\mu + i\frac{\chi_\omega}{2M_N}\sigma_{\mu\nu}k^\nu\right)\omega^\mu N$$

$$\begin{aligned} \mathcal{H}_{\rm wk} = & i \frac{h_{\pi}}{\sqrt{2}} \bar{N} (\tau \times \pi)_3 N + \bar{N} \left(h_{\rho}^0 \tau \cdot \rho^{\mu} + h_{\rho}^1 \rho_3^{\mu} + \frac{h_{\rho}^2}{2\sqrt{6}} (3\tau_3 \rho_3^{\mu} - \tau \cdot \rho^{\mu}) \right) \gamma_{\mu} \gamma_5 N \\ &+ \bar{N} (h_{\omega}^0 \omega^{\mu} + h_{\omega}^1 \tau_3 \omega^{\mu}) \gamma_{\mu} \gamma_5 N - h_{\rho}^{'1} \bar{N} (\tau \times \rho^{\mu})_3 \frac{\sigma_{\mu\nu} k^{\nu}}{2M_N} \gamma_5 N \end{aligned}$$

$$\begin{split} V_{DDH}^{PV}(\vec{\mathbf{r}}) =& i \frac{f_{\pi}g_{\pi NN}}{\sqrt{2}} \left(\frac{\tau_1 \times \tau_2}{2}\right)_z (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \left[\frac{\vec{\mathbf{p}}_1 - \vec{\mathbf{p}}_2}{2M_N}, w_{\pi}(r)\right] \\ &- g_{\rho} \left(h_{\rho}^0 \tau_1 \cdot \tau_2 + h_{\rho}^1 \left(\frac{\tau_1 + \tau_2}{2}\right)_z + h_{\rho}^2 \frac{(3\tau_1^z \tau_2^z - \tau_1 \cdot \tau_2)}{2\sqrt{6}}\right) \\ &\times \left((\vec{\sigma}_1 - \vec{\sigma}_2) \cdot \left\{\frac{\vec{\mathbf{p}}_1 - \vec{\mathbf{p}}_2}{2M_N}, w_{\rho}(r)\right\} \\ &+ i(1 + \chi_V) \vec{\sigma}_1 \times \vec{\sigma}_2 \cdot \left[\frac{\vec{\mathbf{p}}_1 - \vec{\mathbf{p}}_2}{2M_N}, w_{\rho}(r)\right]\right) \\ &- g_{\omega} \left(h_{\omega}^0 + h_{\omega}^1 \left(\frac{\tau_1 + \tau_2}{2}\right)_z\right) \\ &\times \left((\vec{\sigma}_1 - \vec{\sigma}_2) \cdot \left\{\frac{\vec{\mathbf{p}}_1 - \vec{\mathbf{p}}_2}{2M_N}, w_{\omega}(r)\right\} \\ &+ i(1 + \chi_S) \vec{\sigma}_1 \times \vec{\sigma}_2 \cdot \left[\frac{\vec{\mathbf{p}}_1 - \vec{\mathbf{p}}_2}{2M_N}, w_{\omega}(r)\right]\right) \\ &- \left(g_{\omega} h_{\omega}^1 - g_{\rho} h_{\rho}^1\right) \left(\frac{\tau_1 - \tau_2}{2}\right)_z (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \left\{\frac{\vec{\mathbf{p}}_1 - \vec{\mathbf{p}}_2}{2M_N}, w_{\rho}(r)\right\} \\ &- g_{\rho} h_{\rho}^{1'} i \left(\frac{\tau_1 \times \tau_2}{2}\right)_z (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \left[\frac{\vec{\mathbf{p}}_1 - \vec{\mathbf{p}}_2}{2M_N}, w_{\rho}(r)\right] \end{split}$$

Low Energy Nucleon-Nucleon Parity-Violation

Conservation of angular momentum, and possible isospin transitions tell us

EFT Ingredients

- Identity degrees of freedom
- Write down all possible operators that obey symmetry of underlying theory using degrees of freedom
- Obtain power counting scheme to order terms in powers of (p/Λ)ⁿ
- Calculate all terms up to a given order $(p/\Lambda)^N$

The Lagrangian for Pionless EFT is

$$\mathcal{L}_{2} = -C_{0}^{(^{3}S_{1})}(N^{T}P_{i}N)^{\dagger}(N^{T}P_{i}N)$$
$$+C_{2}^{(^{3}S_{1})}\frac{1}{8}\left[(N^{T}P_{i}N)^{\dagger}(N^{T}P_{i}\overleftrightarrow{\nabla}^{2}N) + h.c.\right]$$
$$-\frac{1}{16}C_{4}^{(^{3}S_{1})}\left(N^{T}P_{i}\overleftrightarrow{\nabla}^{2}N\right)^{\dagger}\left(N^{T}P_{i}\overleftrightarrow{\nabla}^{2}N\right)$$

The Lagrangian can be rewritten in the more useful form

$$\mathcal{L}_{PC}^{d} = N^{\dagger} \left(i\partial_{0} + \frac{\vec{\nabla}^{2}}{2M_{N}} \right) N - t_{i}^{\dagger} \left(i\partial_{0} + \frac{\vec{\nabla}^{2}}{4M_{N}} - \Delta_{(-1)}^{(3} - \Delta_{(0)}^{(3})} \right) t_{i} + y_{t} \left[t_{i}^{\dagger} N^{T} P_{i} N + h.c. \right]$$

$$-s_a^{\dagger} \left(i\partial_0 + \frac{\vec{\nabla}^2}{4M_N} - \Delta_{(-1)}^{(1S_0)} - \Delta_{(0)}^{(1S_0)} \right) s_a + y_s \left[s_a^{\dagger} N^T \bar{P}_a N + h.c. \right]$$

Spin and Isospin Projectors are

$$P_i = \frac{1}{\sqrt{8}}\sigma_2\sigma_i\tau_2 \qquad \qquad \bar{P}_a = \frac{1}{\sqrt{8}}\sigma_2\tau_2\tau_a$$

Effective Range Expansion

Partial wave expansion gives

$$f = \sum_{\ell} (2\ell+1) f_{\ell} P_{\ell}(\cos(\theta)) = \sum_{\ell} \frac{1}{k \cot(\delta_{\ell}(k)) - ik} (2\ell+1) P_{\ell}(\cos(\theta))$$

Effective range expansion (ERE) is

$$k \cot(\delta_0(k)) = -\frac{1}{a} + \frac{1}{2}rk^2 + sk^4 + \dots$$

Reexpanding about deuteron pole ERE becomes

$$k \cot(\delta_0(k)) = -\gamma_t + \frac{1}{2}\rho_t(k^2 + \gamma_t^2) + w_0(k^2 + \gamma_t)^2 + \cdots$$

Dressed deuteron propagator is

Single nucleon bubble gives

$$i\Sigma(p) = -i\frac{y_t^2 M_N}{4\pi} \left(\mu - \sqrt{\frac{1}{4}\vec{\mathbf{p}}^2 - M_N p_0 - i\epsilon}\right)$$

Resulting dressed deuteron propagator is

$$i\Delta_t(p_0, \vec{\mathbf{p}}) = -\frac{4\pi i}{M_N y_t^2} \frac{1}{\frac{4\pi\Delta_{(-1)}^{(3S_1)}}{M_N y_t^2} - \mu + \sqrt{\frac{\vec{\mathbf{p}}^2}{4} - M_N p_0 - i\epsilon}}$$

Matching onto the ERE we find

$$\frac{y_t^2}{\Delta_{(-1)}^{(3S_1)}} = -\frac{4\pi}{M_N} \frac{1}{\gamma_t - \mu} \qquad i\Delta_t(p_0, \vec{\mathbf{p}}) = -\frac{4\pi i}{M_N y_t^2} \frac{1}{-\gamma_t + \sqrt{\frac{\vec{\mathbf{p}}^2}{4} - M_N p_0 - i\epsilon}}$$

Parity Conserving nd Scattering

Deuteron has spin 1 and neutron is spin ½, thus nd scattering has a Quartet and Doublet channel

$$1\otimes 1/2 = 1/2 \oplus 3/2$$

At LO and infinite sum of diagrams in needed in the Quartet channel

Quartet Channel

After projection integral equation is

$$\begin{split} t_{0q}^{(l)}(k,p) &= -\frac{y_t^2 M_N}{pk} Q_l \left(\frac{p^2 + k^2 - M_N E - i\epsilon}{pk} \right) - \\ &- \frac{2}{\pi} \int_0^\infty dq q^2 t_{0q}^{(l)}(k,q) \frac{1}{\sqrt{\frac{3q^2}{4} - M_N E - i\epsilon} - \gamma_t} \frac{1}{qp} Q_l \left(\frac{p^2 + q^2 - M_N E - i\epsilon}{pq} \right) \end{split}$$

Where $Q_{i}(a)$ is related to Legendre polynomial of second kind up to

factor (-1)
$$Q_l(a) = \frac{1}{2} \int_{-1}^1 \frac{P_l(x)}{x+a} dx$$

Doublet Channel

Parity-Violation in EFT

The parity-violating Lagrangian contains five terms and is given by

$$\begin{aligned} \mathcal{L}_{PV}^{d} &= -\left[g^{(^{3}S_{1}-^{1}P_{1})}t_{i}^{\dagger}\left(N^{T}\sigma_{2}\tau_{2}i\overleftrightarrow{\nabla}_{i}N\right)\right. \\ &+ g^{(^{1}S_{0}-^{3}P_{0})}s_{a}^{\dagger}\left(N^{T}\sigma_{2}\vec{\sigma}\cdot\tau_{2}\tau_{a}i\overleftrightarrow{\nabla}N\right) \\ &+ g^{(^{1}S_{0}-^{3}P_{0})}\epsilon^{3ab}\left(s^{a}\right)^{\dagger}\left(N^{T}\sigma_{2}\vec{\sigma}\cdot\tau_{2}\tau^{b}\overleftrightarrow{\nabla}N\right) \\ &+ g^{(^{1}S_{0}-^{3}P_{0})}\mathcal{I}^{ab}\left(s^{a}\right)^{\dagger}\left(N^{T}\sigma_{2}\vec{\sigma}\cdot\tau_{2}\tau^{b}i\overleftrightarrow{\nabla}N\right) \\ &+ g^{(^{3}S_{1}-^{3}P_{1})}\epsilon^{ijk}\left(t^{i}\right)^{\dagger}\left(N^{T}\sigma_{2}\sigma^{k}\tau_{2}\tau_{3}\overleftrightarrow{\nabla}^{j}N\right)\right] + h.c.\end{aligned}$$

Parity-Violating nd Scattering

Focus on single diagram

Diagram is given by

$$i\frac{2\sqrt{2}M_{N}\pi}{\gamma_{t}y_{t}}\int\frac{d^{3}q}{(2\pi)^{3}}\int\frac{d^{3}\ell}{(2\pi)^{3}}\left(it_{Nt\rightarrow Nt}^{ki}(\vec{\mathbf{k}},\vec{\mathbf{q}})\right)_{\alpha a}^{\gamma c}\left(it_{Nt\rightarrow Nt}^{jl}(\vec{\mathbf{p}},\vec{\ell})\right)_{\delta d}^{\beta b}$$

$$\frac{1}{\sqrt{\frac{3\vec{\mathbf{q}}^{2}}{4}-M_{N}E-i\epsilon}-\gamma_{t}}\frac{1}{\sqrt{\frac{3\vec{\ell}^{2}}{4}-M_{N}E-i\epsilon}-\gamma_{t}}$$

$$\frac{1}{\vec{\mathbf{q}}^{2}+\vec{\mathbf{q}}\cdot\vec{\ell}+\vec{\ell}^{2}-M_{N}E-i\epsilon}\left(K_{PV}^{11}{}^{lk}\right)_{\gamma c}^{\delta d}(\vec{\mathbf{q}},\vec{\ell})$$

where

$$\begin{split} \left(K_{PV}^{11}{}^{lk}\right)_{\gamma c}^{\delta d}(\vec{\mathbf{q}},\vec{\ell}) &= g^{^{3}\!S_{1}-^{1}\!P_{1}}(\sigma^{l})_{\gamma}^{\delta}\delta_{c}^{d}(\vec{\mathbf{q}}+2\vec{\ell})^{k} + ig^{^{3}\!S_{1}-^{3}\!P_{1}}\epsilon^{ijk}(\sigma^{j}\sigma^{l})_{\gamma}^{\delta}(\tau_{3})_{c}^{d}(\vec{\mathbf{q}}+2\vec{\ell})^{i} \\ &+ g^{^{3}\!S_{1}-^{1}\!P_{1}}(\sigma^{k})_{\gamma}^{\delta}\delta_{c}^{d}(2\vec{\mathbf{q}}+\vec{\ell})^{l} - ig^{^{3}\!S_{1}-^{3}\!P_{1}}\epsilon^{ijl}(\sigma^{k}\sigma^{j})_{\gamma}^{\delta}(\tau_{3})_{c}^{d}(2\vec{\mathbf{q}}+\vec{\ell})^{i} \end{split}$$

Partial wave series is

$$t_{PV}(\vec{\mathbf{k}},\vec{\mathbf{p}}) = \sum_{J=0}^{\infty} \sum_{M=-J}^{M=J} \sum_{L=|J-S|}^{J+S} \sum_{L'=|J-S'|}^{J+S'} \sum_{S,S'} 4\pi t_{L'S',LS}^{JM}(k,p) \mathscr{Y}_{J,L'S'}^{M}(\hat{\mathbf{p}}) \left(\mathscr{Y}_{J,LS}^{M}(\hat{\mathbf{k}})\right)$$

Where the spin angle functions are given by

$$\mathscr{Y}_{J,LS}^{M}(\hat{\mathbf{k}}) = \sum_{m_L,m_S} C_{L,S;J}^{m_L,m_S,M} Y_L^{m_L}(\hat{\mathbf{k}}) \chi_S^{m_S}$$

Terms are projected out by

$$t_{L'S',LS}^{JM}(k,p) = \frac{1}{4\pi} \int d\Omega_k \int d\Omega_p \left(\mathscr{Y}_{J,L'S'}^M(\hat{\mathbf{p}}) \right)^* t_{PV}(\vec{\mathbf{k}},\vec{\mathbf{p}}) \mathscr{Y}_{J,LS}^M(\hat{\mathbf{k}})$$

Projecting amplitude leads to integral

$$\frac{1}{4\pi} \int d\Omega_k \int d\Omega_p \left(\mathscr{Y}^M_{J,L'S'}(\hat{\boldsymbol{\ell}}) \right)^* \frac{1}{a + \hat{\mathbf{q}} \cdot \hat{\boldsymbol{\ell}}} \left(\mathcal{K}^{11}_{PV}{}^{lk} \right)^{\delta d}_{\gamma c}(\vec{\mathbf{q}}, \vec{\boldsymbol{\ell}}) \mathscr{Y}^M_{J,LS}(\hat{\mathbf{q}})$$

where

$$a = \frac{\vec{\mathbf{q}}^2 + \vec{\boldsymbol{\ell}}^2 - M_N E - i\epsilon}{|\vec{\mathbf{q}}||\vec{\boldsymbol{\ell}}|}$$

Focusing on first term we find

$$\frac{1}{4\pi} \sum_{m_L,m_S} \sum_{m_{L'},m_{S'}} \sum_{m_1,m_2} \sum_{m_1',m_2'} C_{L,S,J}^{m_L,m_S,M} C_{L',S',J}^{m_{L'},m_{S'},M} C_{1,1/2,S}^{m_1,m_2,m_S} C_{1,1/2,S'}^{m_1',m_2',m_{S'}} \int d\Omega k \int d\Omega p \frac{1}{a + \hat{\mathbf{q}} \cdot \hat{\boldsymbol{\ell}}} \sqrt{\frac{4\pi}{3}} \left(q Y_1^{m_1}(\hat{\mathbf{q}}) + 2\ell Y_1^{m_1}(\hat{\boldsymbol{\ell}}) \right) Y_L^{m_L}(\hat{\mathbf{q}}) \left(Y_{L'}^{m_{L'}}(\hat{\boldsymbol{\ell}}) \right)^* (-1)^{m_1'} \langle 1/2, m_2' | \sigma^{-m_1'} | 1/2, m_2 \rangle$$

Expression has simple solution

$$-4\pi\sqrt{3}(-1)^{3/2+2S+L-J}\delta_{S'1/2}\sqrt{\bar{S}\bar{L}}C_{L,1,L'}^{0,0,0}\left\{\begin{array}{ccc}1/2&1&S\\L&J&L'\end{array}\right\}(qQ_{L'}(a)+2\ell Q_L(a))$$

Beam Asymmetry nd Scattering

Target Asymmetry nd Scattering

nd Spin Rotation

Griesshammer, Schindler, and Springer

Vanasse

Asymmetry Results

Spin Rotation Results

Spin rotation

$$\frac{1}{N}\frac{d\phi}{dz} = \sum_{n=1}^{5} c_n^{Gir} I_n^{Gir}$$

 $1.83\times10^{-8}~\mathrm{rad~cm^{-1}}$ to $1.84\times10^{-8}~\mathrm{rad~cm^{-1}}$

Comparison of different results for spin rotation

I_n^{Gir}	EFT_{π} -I/AV18		EFT_{π} -I/AV18+UIX		$\mathrm{EFT}_{ otag}$	
n =	Song	Schiavilla	Song	Schiavilla	LO	NLO
1	61.6	65.6	60.0	63.2	129.3 - 135.7	98.5 - 120.3
2	60.6	62.3	58.8	57.8	35.0 - 57.1	33.4 - 51.9
4	-76.1	-77.9	-75.7	-75.2	-59.677.2	-48.267.2
5	-9.46	-9.89	-6.62	-6.12	7.168.66	-1.8510.6

Future Directions

- Resolve factor of two
- Carry calculation to higher orders
- Calculate pd scattering
- Ay puzzle
- ³He photodisintegration

Summary

- We can calculate nd scattering PV amplitudes to LO.
- Estimates for the PV LEC's can be obtained by matching onto DDH estimates.
- Using LEC estimates and PV amplitudes we can predict any PV observable in nd scattering.

Thank You

Numerical Techniques

Integrals are discretized using quadrature. Gives set of linear equations to solve.

$$t_i = B_i + \sum_j w_j K_{ij} t_j \qquad t_i = \left(\delta_{ij} - \sum_j w_j K_{ij}\right)^{-1} B_j$$

In order to avoid singularities amplitude is evaluated along path C'B.

Girlanda Reduction

Girlanda showed nucleon-nucleon parity-violation is described by only five LEC's.

There are twelve possible unique relativistic parity-violating nucleon-nucleon terms

Using Fierz identities and equations of motion one can find six relations between operators

$$\mathcal{O}_3 = \mathcal{O}_1 \qquad \qquad \tilde{\mathcal{O}}_2 + \tilde{\mathcal{O}}_4 = M_N(\mathcal{O}_2 + \mathcal{O}_4)$$
$$\mathcal{O}_2 - \mathcal{O}_4 = 2\mathcal{O}_6 \qquad \qquad \tilde{\mathcal{O}}_2 - \tilde{\mathcal{O}}_4 = -2M_N\mathcal{O}_6 - \tilde{\mathcal{O}}_6$$
$$\tilde{\mathcal{O}}_3 + 3\tilde{\mathcal{O}}_1 = 2M_N(\mathcal{O}_1 + \mathcal{O}_3) \qquad \qquad \tilde{\mathcal{O}}_5 = M_N\mathcal{O}_5$$

Taking the non-relativistic reduction we find two operators are the same and get Lagrangian

$$\mathcal{L}_{PV}^{Gir} = \mathcal{G}_1(N^{\dagger}\vec{\sigma}N \cdot N^{\dagger}i \overleftrightarrow{\nabla} N - N^{\dagger}NN^{\dagger}i \overleftrightarrow{\nabla} \cdot \vec{\sigma}N) - \tilde{\mathcal{G}}_1\epsilon_{ijk}N^{\dagger}\sigma_i N\nabla_j(N^{\dagger}\sigma_k N) - \mathcal{G}_2\epsilon_{ijk}[N^{\dagger}\tau_3\sigma_i N\nabla_j(N^{\dagger}\sigma_k N) + N^{\dagger}\sigma_i N\nabla_j(N^{\dagger}\tau_3\sigma_k N)] - \tilde{\mathcal{G}}_5\mathcal{I}_{ab}\epsilon_{ijk}N^{\dagger}\tau_a\sigma_i N\nabla_j(N^{\dagger}\tau_b\sigma_k N) + \mathcal{G}_6\epsilon_{ab3} \overrightarrow{\nabla} (N^{\dagger}\tau_a N) \cdot N^{\dagger}\tau_b\vec{\sigma}N$$

LEC Estimates

$$g_{1} = -\frac{M_{N}(\frac{1}{a_{t}} - \mu)}{8\sqrt{2}\pi} \left[\frac{g_{\omega}\chi_{\omega}}{M_{N}m_{\omega}^{2}}h_{\omega}^{0} - \frac{3g_{\rho}\chi_{\rho}}{M_{N}m_{\rho}^{2}}h_{\rho}^{0} \right] \sim 1.75 \times 10^{-10} \mathrm{MeV^{-1}}$$

$$g_{2} = \frac{M_{N}(\frac{1}{a_{t}} - \mu)}{8\sqrt{2}\pi} \left[\frac{g_{\pi NN}}{\sqrt{2}M_{N}m_{\pi}^{2}}f_{\pi} + \frac{g_{\rho}}{M_{N}m_{\rho}^{2}}h_{\rho}^{1} - \frac{g_{\omega}}{M_{N}m_{\omega}^{2}}h_{\omega}^{1} \right] \sim -6.34 \times 10^{-10} \mathrm{MeV^{-1}}$$

$$g_{3} = \frac{M_{N}(\gamma_{s} - \mu)}{8\sqrt{2}\pi} \left[\frac{g_{\omega}(2 + \chi_{\omega})}{M_{N}m_{\omega}^{2}} h_{\omega}^{0} + \frac{g_{\rho}(2 + \chi_{\rho})}{M_{N}m_{\rho}^{2}} h_{\rho}^{0} \right] \sim 1.50 \times 10^{-10} \mathrm{MeV^{-1}}$$

$$g_{4} = \frac{M_{N}(\gamma_{s} - \mu)}{8\sqrt{2}\pi} \left[\frac{g_{\rho}(2 + \chi_{\rho})}{M_{N}m_{\rho}^{2}} h_{\rho}^{1} + \frac{g_{\omega}(2 + \chi_{\omega})}{M_{N}m_{\omega}^{2}} h_{\omega}^{1} \right] \sim 1.47 \times 10^{-11} \mathrm{MeV^{-1}}$$

$$g_{5} = \frac{M_{N}(\gamma_{s} - \mu)}{8\sqrt{2}\pi} \left[\frac{g_{\rho}(2 + \chi_{\rho})}{\sqrt{6}M_{N}m_{\rho}^{2}} h_{\rho}^{2} \right] \sim 4.39 \times 10^{-11} \mathrm{MeV^{-1}}$$

