Experimental Study of Photodisintegration Cross Sections on ³He and ⁴He at Low Energies

Werner Tornow

Duke University & Triangle Universities Nuclear Laboratory

Outline

- ³He(γ ,pd) σ_{tot} between E_{γ} =7 and 16 MeV
- ⁴He(γ ,pt) σ_{tot} between E_{γ} =22 and 29.5 MeV
- ${}^{4}\text{He}(\gamma, {}^{3}\text{He})n \sigma_{tot}$ between $E_{\gamma} = 27 28 \text{ MeV}$
- ${}^{3}\text{He}(n,n){}^{3}\text{He} A_{v}(\theta)$ between $E_{n}=1.6$ and 5.4 MeV

Quasi monoenergetic γ -ray flux on target: >10⁸ s⁻¹

Tunable from 1 to 97 MeV 100% linear or circular polarization Energy resolution determined by Collimation; no need for tagging

Vladimir Litvinenko (1992)

HI_γS Facility at TUNL

³He(γ,pd)

Q=-5.49 MeV

National Institute of Advanced Industrial Science and Technology (AIST)

Tsukuba, Japan

Time projection chamber

as target as detector

We don't have a time-projection chamber

We used ³He-Xe high-pressure gas scintillators instead

Xe admixture ($\sim 5 - 10\%$) is needed :

a) to increase light output, *i.e.*, energy resolution
b) provide stopping power for the protons within scintillator volume (proton energies vary from 1.1 MeV at E_γ=7 MeV to 7.6 MeV at E_γ=16 MeV)

Construction

1 mm thick stainless steel

10 cm

1 cm thick glass window

Glue Maxos glass window into cap Araldit + Hardener

• MgO creates white film on gas cell walls

- Evaporate Diphenylstilbene (DPS) onto glass window and inside of gas cell
- DPS shifts the wavelength from 340 nm to 410 nm

- Fill cell with ³He (95%) and Xenon (5%)
 - (Xenon is also a wavelength shifter)
- Attach PMT to gas cell

• Pressure test cell bringing pressure to 1000 psi

- Response function is linear
- Light output is independent of particle type
- Energy resolution is energy dependent
- ³He-Xe gas scintillators have very good energy resolution (2-10%)

Experimental Setup

³He and Xe pressures used for ³He(γ ,pd) experiment

42 psi Xe & 458 psi ³He at 6.96 and 7.93 MeV 148 psi Xe & 602 psi ³He at 8.78, 9.85, 10.85 12.78 MeV 132 psi Xe & 528 psi 3He at 12 MeV 300 psi Xe & 450 psi ³He at 12.78 MeV 294 psi Xe & 442 psi ³He at 14, 15, 16 MeV

Edge Effects: Range of protons <1 cm

Photon Flux Determination

- 1) Move ³He Xe gas scintillator out of the photon beam
- 2) Reduce γ -ray flux to a few kHz rate
- 3) Move Nal scintillator of known efficiency into photon beam
- 4) Take data to determine ratio of Plastic Scintillator Paddle and Nal detector counts
- 5) Move Nal detector out of the photon beam
- 6) Move ³He Xe gas scintillator into the photon beam
- 7) Increase γ -ray flux to about 1 MHz
- 8) Take ³He(γ,pd) data
- 9) Use Plastic Scintillator Paddle yield and 4) to determine γ -rays used in 8)

Statistical Uncertainty: <1% Systematic Uncertainty: 4% (Nal detector efficiency)

Check on γ -ray flux via Compton scattering from a Cu plate into an off-axis HPGe detector at energies below 10 MeV

Check on γ -ray flux determination via activation: ¹⁹⁷Au(γ ,n)¹⁹⁶Au between 12 and 16 MeV

3 He(γ ,p) 2 H

Electromagnetic interactions of 4N systems

$$\gamma + {}^{4}\text{He} = {}^{3}\text{H} + p$$

$$\gamma + {}^{4}\text{He} = {}^{3}\text{He} + n$$

$$\gamma + {}^{4}\text{He} = d + d$$

$$\gamma + {}^{4}\text{He} = d + n + p$$

$$\gamma + {}^{4}\text{He} = n + p + n + p$$

 $Q=-19.81~{\rm MeV}$

$$Q = -20.58 \text{ MeV}$$

Q = -23.85 MeV (isospin forbidden)

$$Q = -26.07 \text{ MeV}$$

$$Q=-28.30~{\rm MeV}$$

⁴He(γ,pt)

Trento Group: G. Orlandini, W. Leidemann, S. Quaglioni, N. Barnea, V.D. Efros, Lorentz integral transform method, final-state interaction and Coulomb included, MTI-III

"New constraints on radiative decay of long lived particles in big bang nucleosynthesis with new 4He photodisintegration data" by M. Kusakabe et al., Phys. Rev. D 79, 123513 (2009)

Now using ⁴He-Xe gas scintillators

Photon Energy (MeV)	Xe (psi)	⁴He (psi)	Proton Energies (MeV)
22.0	50	700	1.3 - 1.9
22.5	50	700	
23.0	150	605	1.9 – 2.8
23.5	150	605	
24.0	150	605	2.6 - 3.6
24.5	200	400	
25.0	200	400	3.3 - 4.4
25.5	200	400	
26.0	250	500	3.9 – 5.2
26.5	250	500	
27.0	250	500	4.6 - 6.1
27.5	250	500	
28.0	350	400	5.3 – 6.9
28.5	350	400	
29.0	350	400	6.0 - 7.7
29.5	350	400	

Photon-induced reaction thresholds (in MeV) on xenon isotopes

Isotope	Nat. Abundance (%)	(y,p)	(γ,α)	(γ , n)	(y,2n)	$(\gamma,n\alpha)$
128	1.92	8.17	1.77	9.61	16.84	11.19
129	26.44	8.25	2.09	6.91	16.52	8.68
130	4.08	8.67	2.24	9.26	16.16	11.35
131	21.18	8.82	2.55	6.61	15.87	8.85
132	26.89	9.12	2.71	8.93	15.54	11.48
134	10.44	9.55	3.20	8.54	14.99	11.62
136	8.87	9.93	3.66	7.99	14.44	11.73

Photon-induced reaction thresholds (in MeV) on magnesium isotopes

Isotope	Nat. Abundance (%)	(y,p)	(γ,α)	(y,n)	(y,2n)	$(\gamma,n\alpha)$
24	78.99	11.69	9.31	16.53		
25	10.00	12.06	9.89	7.33		
26	11.01	14.15	10.61	11.09		

Photon-induced reaction thresholds (in MeV) on oxygen isotopes

Isotope	Nat. Abundance (%)	(y,p)	(γ,α)	(y,n)	(y,2n)	(γ,nα)
16	99.762	12.13	7.16	15.67		
17	0.038	13.78	6.36	4.14		
18	0.200	15.94	6.23	8.05		

Circles: old data of Shima et al. Dots: new data of Shima et al.

> W. Horiuchi Y. Suzuki K. Arai

Solid: AV8' Dashed: G3RS + 3NF (Tamagaki) Dotted: LIT with Malfliet Tjon

⁴He(γ,³He)n

Trento Group: G. Orlandini, W. Leidemann, S. Quaglioni, N. Barnea, V.D. Efros, Lorentz integral transform method, final-state interaction and Coulomb included, MTI-III

Circles: old data of Shima et al. Dots: new data of Shima et al. Triangles: Nilsson et al.

W. Horiuchi Y. Suzuki K. Arai

Solid: AV8' = 3NF Dashed: G3RS + 3NF Dotted: LIT Malfliet-Tjon

What's next?

³H(γ,p)2n

PHYSICAL REVIEW C 85, 064003 (2012)

Di-neutron and the three-nucleon continuum observables

H. Witała

M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland

W. Glöckle

Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany (Received 24 April 2012; published 25 June 2012)

We investigate how strongly a hypothetical ${}^{1}S_{0}$ bound state of two neutrons would affect observables in neutron-deuteron reactions. To that aim we extend our momentum-space scheme of solving the three-nucleon Faddeev equations and incorporate in addition to the deuteron also a ${}^{1}S_{0}$ di-neutron bound state. We discuss effects induced by a di-neutron on the angular distributions of the neutron-deuteron elastic scattering and deuteron breakup cross sections. A comparison to the available data for the neutron-deuteron total cross section and elastic scattering angular distributions cannot decisively exclude the possibility that two neutrons can form a ${}^{1}S_{0}$ bound state. However, strong modifications of the final-state-interaction peaks in the neutron-deuteron breakup reaction seem to disallow the existence of a di-neutron.

DOI: 10.1103/PhysRevC.85.064003

PACS number(s): 21.45.Bc, 25.10.+s, 25.40.Dn

TABLE I. The di-neutron binding energy ϵ_{nn} , the nn scattering length a_{nn} , and the effective range parameter r_{eff} for different factors λ by which the nn ${}^{1}S_{0}$ component of the CD Bonn potential was multiplied.

λ	ϵ_{nn} [MeV]	a_{nn} [fm]	r _{eff} [fm]
0.9	_	-8.25	3.12
1.0	_	-18.80	2.82
1.19	-0.099	+21.69	2.39
1.21	-0.144	+18.22	2.35
1.3	-0.441	+10.95	2.20
1.4	-0.939	+7.87	2.07

Changing Topics:

A_y(θ) in ³He(n,n)³He and Comparison to ³He(p,p)³He at Low Energies

FIG. 2 (color online). The differential cross section and proton analyzing power A_y at 2.25, 4.0, and 5.54 MeV proton lab energy. Results including the Coulomb interaction obtained with potentials CD Bonn (solid curves), AV18 (dashed curves), INOY04 (dashed-dotted curves), and N3LO (dotted curves) are compared. The data are from Refs. [22,32,33].

A. Deltuva and A. Fonseca (Lisbon)

Acknowledgments

J.H. Esterline M.W. Ahmed A.S. Crowell H.J. Karwowski J.H. Kelley R. Pywell R. Raut G. Rusev S.C. Stave A.P. Tonchev

and to all the theoreticians I had the pleasure to interact with.