Electroweak response of ⁴He and its level structure

Y. Suzuki (Niigata, RIKEN)

Outline

- ・**Spectrum of ⁴He: Correlated Gaussians**
- ・**Application of square-integrable basis to continuum problems**
- ・**Photoabsorption and spin-dipole response of ⁴He**

In collaboration with W. Horiuchi (Hokkaido) and K. Arai (Nagaoka)

INT workshop Nov.5-9 2012: Electroweak properties of light nuclei

Spectrum of ⁴He

- ・**The first excited state is 0⁺ but not a negative parity**
- ・**A variational calculation with realistic forces reproduces the spectrum fairly well**
- ・**Tensor force is crucial to account for the level splitting**
- ・**Most levels are broad resonances that can be excited by spin-dipole and electric-dipole operators Study of EW response is interesting**

W.Horiuchi, Y.S., PRC78 (2008)

Basis functions

LS coupling $\Psi_{JM_J,TM_T}^{\pi} = \sum C_{LS,T} \Phi_{(LS)JM_J,TM_T}^{\pi}$ LS $\Phi_{(LS)JM_J,TM_T}^{\pi} = \mathcal{A}\left[\phi_L^{\pi} \chi_S\right]_{JM_J} \eta_{TM_T}$ **Spin part**

$$
\chi_{(S_{12}S_{123...})SM_S} = [\dots[[\chi_{\frac{1}{2}}(1)\chi_{\frac{1}{2}}(2)]_{S_{12}}\chi_{\frac{1}{2}}(3)]_{S_{123}}\dots]_{SM_S}
$$

Orbital part

$$
\phi_{(L_1L_2)LM_L}^{\pi}(A, u_1, u_2) = \exp(-\tilde{x}Ax)[\mathcal{Y}_{L_1}(\tilde{u}_1x)\mathcal{Y}_{L_2}(\tilde{u}_2x)]_{LM_L}
$$

 $\mathbf{x} = (\mathbf{x}_i)$ A set of relative coordinates

$$
F_{\ell m}(\boldsymbol{r}) \approx \sum_{a} C_a \exp(-ar^2) r^{\ell} Y_{\ell m}(\hat{\boldsymbol{r}})
$$

\mathbf{X}_1 X_2 **x3**

Extension to N-particle system

Explicitly correlated Gaussian (ECG)

$$
\exp(-ar^2) \to \exp\left[-\sum_{i < j} a_{ij} (\mathbf{r}_i - \mathbf{r}_j)^2\right] = \exp(-\widetilde{\mathbf{x}} A \mathbf{x})
$$
\n
$$
\mathbf{r}_i - \mathbf{r}_j = c_{ij}^{(1)} \mathbf{x}_1 + \dots + c_{ij}^{(N-1)} \mathbf{x}_{N-1}
$$
\nS.F. Boys K. Singer
\n
$$
\widetilde{\mathbf{x}} A \mathbf{x} = \sum_{i,j} A_{ij} \mathbf{x}_i \cdot \mathbf{x}_j \qquad A_{ji} = A_{ij}
$$
\nSpherical motion

Proc. R. Soc. London, Ser. A258 (1960) spherical motion

Angular functions with global vectors (GV)

$$
\boldsymbol{r} \to u_1 \boldsymbol{x}_1 + u_2 \boldsymbol{x}_2 + \ldots + u_{N-1} \boldsymbol{x}_{N-1} = \widetilde{u} \boldsymbol{x}
$$

$$
r^{\ell} Y_{\ell m}(\hat{\boldsymbol{r}}) \to |\widetilde{u} \boldsymbol{x}|^L Y_{LM}(\widetilde{u} \hat{\boldsymbol{x}}) = \mathcal{Y}_{LM}(\widetilde{u} \hat{\boldsymbol{x}}) \qquad \text{parameters} \ \mathbf{A}_{ij} \ \mathbf{u}_i
$$

- **Y. S. and K. Varga,** *Stochastic variational approach to quantum-mechanical few-body problems***, Lecture Notes in Physics 54 (Springer, 1998).**
- **K. Varga and Y. S., Phys. Rev. C52, 2885 (1995).**

Number of citations by decade to the original works (Boys, 1960) and (Singer, 1960)

Theory and application of explicitly correlated Gaussians **submitted to RMP atomic, molecular, condensed matter, nuclear**

AV8' + Coulomb+3NF

 $V_q = \sum_{i < j} v^{(q)}(r_{ij}) \mathcal{O}_{ij}^{(q)}$ **q=4,6 OPEP** $1, \sigma_i \cdot \sigma_j, \tau_i \cdot \tau_j \left(\sigma_i \cdot \sigma_j \tau_i \cdot \tau_j \right)$ $S_{ij} \overline{\left(S_{ij} \tau_i \cdot \tau_j\right)} (L \cdot S)_{ij}, (L \cdot S)_{ij} \tau_i \cdot \tau_j$

Convergence with SVM

Number of basis

Phenomenological 3NF

 $0₁\rightarrow 0₂$ **Transition density & monopole ME**

$$
\rho_{tr}(r) = \frac{1}{4\pi} \langle \Psi(0_2^+) \rangle \Big| \sum_{i=1}^4 \frac{\delta(|r_i - x_4| - r)}{r^2} \Big| \Psi(0_1^+) \rangle
$$

$$
\int_0^\infty \rho_{tr}(r) r^2 dr = 0
$$

 $\mathbf{1}$

 $\mathbf 0$

 $\overline{2}$

3

 r [fm]

 $\overline{\mathcal{A}}$

5

6

contributed from $r \gtrsim 3$ fm

Spectroscopic amplitudes for (3N)+N decay

$$
\left\langle \left[\left[\Psi_{\frac{1}{2},\frac{1}{2}m_t}(3N) \phi_{\frac{1}{2},\frac{1}{2}-m_t}(N) \right]_I Y_{\ell}(\hat{\boldsymbol{R}}) \right]_{JM_J} \, \middle| \, \Psi_{JM_JT0}(^4\text{He}) \right\rangle
$$

The first excited 0⁺ state has 3N+N cluster structure

Spectroscopic amplitudes for P-wave decay of three lowest negative-parity states

3N+N cluster structure

Channel spin I=0 S-wave

Channel spin I=1 P-wave

Application of square-integrable basis to continuum problems

Problems including continuum states

Decay of resonance $A^* \longrightarrow B+b$, $C+d+e$

Strength (response) function due to perturbation W $A+W \longrightarrow A^*$, B+b, C+d+e

 \bullet **Radiative capture reactions** $A+a \longrightarrow C+\gamma$

(Inverse process (photodisintegration): $C+\gamma \longrightarrow A+a$)

Two-body scattering and reactions $A+a \longrightarrow B+b$

Four-nucleon scattering with ECG + MRM

(Microscopic R-matrix method)

0 - resonance is clearly seen but 2- resonance is not that clear

S.Aoyama, K.Arai, Y.S., P.Descouvemont, D.Baye, FBS52(2012)

Recombination of constituent particles

 10

AV8'

ZU63 \times

ME69

WI85

WE86

BA87 \cap

Photoabsorption cross section

Questions Experiments in discrepancy Peak position of the giant resonance E1 sum rules Charge symmetry breaking effects in (γ,p) and (γ,n) (**1 - T=1 states: 23.64MeV Γ=6.20MeV 25.95MeV Γ=12.66MeV**)

Photoabsorption cross section

$$
\sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^2}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})
$$

Strength function for E1

$$
S(E) = \mathcal{S}_{\mu f} |\langle \Psi_f | \mathcal{M}_{1\mu} | \Psi_0 \rangle|^2 \delta(E_f - E_0 - E)
$$

= $-\frac{1}{\pi} \text{Im} \sum_{\mu} \langle \Psi_0 | \mathcal{M}^{\dagger}_{1\mu} \frac{1}{E - H + E_0 + i\epsilon} \mathcal{M}_{1\mu} | \Psi_0 \rangle$

Continuum states are involved

Use of square-integrable basis to compute S(E)

 Lorentz integral transform method (Leidemann's talk) Complex scaling method (CSM)

Complex scaling method

$$
U(\theta) \qquad \mathbf{x} \to e^{i\theta}\mathbf{x} \qquad e^{i\mathbf{k}\cdot\mathbf{x}} \to e^{(-\sin\theta + i\cos\theta)\mathbf{k}\cdot\mathbf{x}}
$$

Continuum is made to damp asymptotically

$$
S(E) = -\frac{1}{\pi} \frac{1}{2J_i + 1} \sum_{M_i\mu} \text{Im}\langle \Psi_{J_iM_i} | \mathcal{M}^{\dagger}_{\lambda\mu} U^{-1}(\theta) R(\theta) U(\theta) \mathcal{M}_{\lambda\mu} | \Psi_{J_iM_i} \rangle
$$

\n
$$
R(\theta) = U(\theta) \frac{1}{E - H + i\varepsilon} U^{-1}(\theta) = \frac{1}{E - H(\theta) + i\varepsilon}
$$

\n
$$
= \sum_{\lambda} \frac{1}{E - E^{\lambda}(\theta) + i\varepsilon} |\Psi^{\lambda}(\theta)\rangle \langle \tilde{\Psi}^{\lambda}(\theta)| \qquad H(\theta) = U(\theta) H U^{-1}(\theta)
$$

$$
H(\theta)\Psi^{\lambda}(\theta) = E^{\lambda}(\theta)\Psi^{\lambda}(\theta)
$$

$$
\tilde{\Psi}^{\lambda}(\theta) = (\Psi^{\lambda}(\theta))^*
$$

H(θ) can be diagonalyzed in square-integrable basis Continuous strength function is obtained Stability of S(E) wrt θ is to be examined

Ab initio study of the photoabsorption

W.Horiuchi, Y.S., K.Arai, PRC85 (2012)

The same approach as the previous spectrum calculation

- **(1)Use realistic interactions**
- **(2)Consider final-state interactions as well as sum rule**
	- **in basis construction**
- **(3)Check CSM results with MRM radiative capture**

Photoabsorption and radiative capture Photoabsorption

 $\frac{v_1\sigma_{1\rightarrow 2}}{u_1\sigma_{2\rightarrow 1}} = \frac{v_2\sigma_{2\rightarrow 1}}{u_1\sigma_{2\rightarrow 1}}$ **Detailed balance** ρ_2 ρ_1

From radiative capture cross section to photoabsorption cross section

$$
\sigma_{\text{cap}}(E) = \frac{2J_f + 1}{(2I_1 + 1)(2I_2 + 1)} \frac{8\pi}{\hbar} \left(\frac{E_\gamma}{\hbar c}\right)^{2\lambda + 1} \frac{(\lambda + 1)}{\lambda(2\lambda + 1)!!^2}
$$

$$
\times \sum_{J_i I_i \ell_i} \frac{1}{(2\ell_i + 1)} \left| \langle \Psi^{J_f \pi_f} || \mathcal{M}_\lambda^E || \Psi^{J_i \pi_i}_{\ell_i I_i}(E) \rangle \right|^2,
$$

$$
\to \sigma_\gamma(E)
$$

 γ + ⁴**He** \rightarrow ³**H**+**p ³He+n ²H+p+n Radiative capture** 3 **H**+p \rightarrow ⁴**He**+γ **³He+n → ⁴He+γ ²H+p+n → ⁴He+γ (difficult to evaluate) calculable in MRM**

Comparison with experiment

Thin dotted curve: LIT with Malfliet-Tjon pot. (Quaglioni et al.)

Construction for continuum discretized basis

3N* + N cluster type (Final state asymptotics)

$$
\mathcal{A}[\Phi_0^{(4)}(i)\mathcal{Y}_1(\mathbf{r}_1 - \mathbf{x}_4)]_{1M} \eta_{T_{12}T_{123}10}^{(4)}
$$

$$
\mathcal{A}[\Phi_{J_3}^{(3)}(i) \exp(-a_3x_3^2) [\mathcal{Y}_1(\mathbf{x}_3)\chi_{\frac{1}{2}}(4)]_j]_{1M} [\eta_{T_{12}\frac{1}{2}}^{(3)}\eta_{\frac{1}{2}}(4)]_{10}
$$

Discretized E1 strength $B(E1, \lambda) = \sum |\langle \Psi_{\lambda}^{1M}(\theta=0) | \mathcal{M}_{1\mu} | \Psi_0 \rangle|^2$

Comparison between CSM and MRM

Comparison between CSM and experiment

cf. Bacca's talk

Good agreement with most data except for low-energy data of Shima et al. Possible to go to high E

Photonuclear sum rules

$$
m_{K}(E_{\text{max}}) = \int_{0}^{E_{\text{max}}} E_{\gamma}^{K} \sigma_{\gamma}(E_{\gamma}) dE_{\gamma} \qquad \sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^{2}}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})
$$

\n
$$
m_{-1}(\infty) = \mathcal{G} \left(Z^{2} \langle r_{p}^{2} \rangle - \frac{Z(Z-1)}{2} \langle r_{pp}^{2} \rangle \right) \qquad \mathcal{G} = 4\pi^{2} e^{2} / 3\hbar c
$$

\n
$$
m_{0}(\infty) = \mathcal{G} \frac{3N Z \hbar^{2}}{2A m_{N}} (1 + K)
$$

\n**TRK sum rule**
\n
$$
K = \sum_{q=1}^{8} K_{q} \qquad \text{Enhancement factor} \qquad \underbrace{\mathbb{E}}_{\mathbb{E}} \qquad \underbrace{\mathbb{E}}_{\mathbb{E}} \qquad \underbrace{m_{-1}}_{m_{0}(\times 10^{2})}
$$

\n
$$
K_{q} = \frac{2A m_{N}}{3N Z \hbar^{2} e^{2}} \frac{1}{2} \sum_{\mu} \langle \Psi_{0} | [\mathcal{M}_{1\mu}^{\dagger}, [V_{q}, \mathcal{M}_{1\mu}]] | \Psi_{0} \rangle
$$

\n
$$
\text{Value of K} \qquad \qquad 0.1
$$

\n1.11 AV8'} + 3NF (q=4,6 \rightarrow 93%)
\n1.29 AV14+UVII R. Schiavilla et al. (1987)
\n
$$
\text{Discretized strength gives}
$$

1.44 AV18+UIX D. Gazit et al. (2006)

Discretized strength gives good approx. at Emax=60 MeV

Spin-dipole excitations of ⁴He

$$
\sum_{i=1}^N \left[(\pmb{r}_i-\pmb{x}_N) \times \pmb{\sigma}_i\right]_{\pmb{\lambda} \mu} \begin{pmatrix} 1 \\ \tau_{0_i} \\ t_{\pm i} \end{pmatrix}
$$

Isoscalar (IS SD) Isovector (IV SD) Charge-exchange (IV SD)

Multipoles: $\lambda=0, 1, 2$ **T=0, 1**

Spin-dipole (SD) operators excite states with $J^{\pi}=\lambda^-$ **Response to SD operators are interesting for ν-nucleus reactions D. Gazit, N. Barnea, PRL98 (2007) Study akin to E1 is in progress using CSM W. Horiuchi, Y.S.**

IV SD strength functions

IS SD strength functions

Resonance properties of ⁴He

Calc. (Expt.)

Fair agreement is obtained BSA results are reasonable More realistic 3NF

Summary

The spectrum and response of ⁴He are studied on the same type of square-integrable basis functions Correlated Gaussians + Global vectors Complex scaling method presents virtually the same photoabsorption cross section as microscopic R-matrix method

More realistic 3NF has to be tested to see its effect on the resonance properties of ⁴He Experimental info on spin-dipole strength of ⁴He is desired E.g. NWESR for $\lambda=0,1,2 \rightarrow$ tensor correlation in the ground state

Stochastic variational method (SVM) Trial and error search of parameters

Increase of the basis dimension

Let A_k be the parameter set defining the kth basis function, and assume that the sets A_1, \ldots, A_{k-1} have already been selected. The next step is the following:

Competitive selection

- s1. A number *n* of different sets of $(A_k^1, ..., A_k^n)$ are generated randomly.
- s2. By solving the n eigenvalue problems of k -dimension, the corre- Select the best one sponding energies $(E_k^1, ..., E_k^n)$ are determined.
- s3. The parameter set A_k^m that produces the lowest energy from among the set $(E_k^1, ..., E_k^n)$ is selected to be the kth parameter set.
- s4. Increase k to $k+1$.

 $\mathbf{A}_1, \ldots, \mathbf{A}_{k-1}, \mathbf{A}_{k}^j$ **Generate randomly** and include it as A_k

Y. S. and K. Varga, *Stochastic variational approach to quantum-mechanical few-body problems***, Lecture Notes in Physics 54 (Springer, 1998). K. Varga and Y. S., Phys. Rev. C52, 2885 (1995).**

Unifying various types of correlations with ECG

Both types of correlations are describable in a single coordinate set Permutation also induces a linear transf. of coordinates No need of coord. transf. Only suitable choice of A and u is needed

Characteristics of ECG

Analytic evaluation of matrix elements Coordinate transf. & permutations keep ECG Versatility in describing different shapes Momentum rep. is again ECG ×**Uneconomical to cope with SR repulsion**

Both natural and unnatural parities

Single GV: $\mathcal{Y}_{LM}(\tilde{u}\mathbf{x}) \rightarrow$ Parity= $(-1)^L$ **Two GVs:** $[\mathcal{Y}_L(\tilde{u}\mathbf{x})\mathcal{Y}_1(\tilde{v}\mathbf{x})]_{LM} \rightarrow$ **Parity** = $(-1)^{L+1}$

Y.S., W.Horiuchi, M.Orabi, K.Arai, Few-Body Syst. 42 (2008) S.Aoyama, K.Arai, Y.S., P.Descouvemont, D.Baye, Few-Body Syst. 52 (2012)

Lorentz integral transform method

Lorentzian weight V.D.Efros, W.Leidemann, G.Orlandini, PLB338 (1994)

$$
\mathcal{L}(z) = \int_{E_{\min}}^{\infty} \frac{S(E)}{(E - z)(E - z^*)} dE = \int_{E_{\min}}^{\infty} \frac{S(E)}{(E - E_R)^2 + E_I^2} dE
$$

$$
z = E_R + iE_I
$$

$$
\mathcal{L}(z) = \frac{1}{2L + 1} \sum \langle \Psi_{M_i\mu}(z) | \Psi_{M_i\mu}(z) \rangle
$$

$$
\Psi_{M_i\mu}(z) = \frac{1}{H - E_i - z} \mathcal{M}_{\lambda\mu} \Psi_{J_iM_i} \qquad (H - E_i - z) \Psi_{M_i\mu}(z) = \mathcal{M}_{\lambda\mu} \Psi_{J_iM_i}
$$

L(z) is finite, hence the norm of Ψ(z) is finite Ψ(z) can be obtained in L² -integrable basis $L(z)$ has to be computed for many z values $(E_R \text{ varied}, E_I \text{ fixed})$ **to make the inversion possible**

The inversion from L(z) to S(E) requires some skill

Discretized E1 strength

Properties of the three main states

E1 transition density

$$
\langle \Psi_\lambda^{10-}(\theta=0) \big| \mathcal{M}_{10} | \Psi_0 \rangle = \sqrt{\frac{4\pi}{3}} e \int_0^\infty \rho_\lambda(r) r^2 \, dr
$$

$$
\rho_{\lambda}(r) = \left\langle \Psi_{\lambda}^{10-}(\theta=0) \right| \sum_{i=1}^{4} \frac{\delta(|\mathbf{r}_{i} - \mathbf{x}_{4}| - r)}{r^{2}} \mathcal{Y}_{10}(\mathbf{r}_{i} - \mathbf{x}_{4}) \frac{1 - \tau_{3_{i}}}{2} |\Psi_{0}\rangle
$$

Peak of r²ρ is at about 2 fm (much larger than 1.1 fm of that for $r^2 \rho_{g.s.}$) **Extend to large distances due to 3N+N configurations Constructive and destructive patterns in 2nd and 3rd states**

Contributions of V^q to the enhancement factor K (cf. Vq to the ground-state energy)

1.29 AV14+UVII R. Schiavilla et al. (1987) 1.44 AV18+UIX D. Gazit et al. (2006)

IV SD strengths of ⁴He *Preliminary*

Mechanism for splitting two 0⁻states with different isospin

$$
\Psi_{JM_J,TM_T}^{\pi} = \sum_{LS} C_{LS,T} \Phi_{(LS)JM_J,TM_T}^{\pi} \qquad \Psi_{00,T0}^{\top} = C_{1T} \Psi_{(11)00,T0}^{\top} + C_{2T} \Psi_{(22)00,T0}^{\top}
$$

TABLE III: The Hamiltonian matrix elements, given in MeV, for the 0^-0 and 0^-1 states of ⁴He. The column-row of the matrix is labeled by the channel (L^{π}, S) , which is arranged in the order of $(1^-,1)$ and $(2^-,2)$. The C_{LT}^2 values are C_{10}^2 =0.945, C_{20}^2 =0.055 for 0⁻0 and C_{11}^2 =0.963, C_{21}^2 =0.037 for 0^-1 . AV8'+TNF potential is used.

Coupling due to tensor force!

$\text{PWE} \quad e^{-a_1x_1^2 - a_2x_2^2 - a_3x_3^2 - \dots} \quad [[[\mathcal{Y}_{L_1}(x_1) \times \mathcal{Y}_{L_2}(x_2)]_{L_{12}} \times \mathcal{Y}_{L_3}(x_3)]_{L_{123}} \dots]_{LM}$

(Product form of 's.p.' orbits Rearrangement channels must be included)

	Potential Method	MN GVR	G3RS		AV8'		
			GVR	PWE	GVR	PWE	ref. [26]
${}^{3}H(\frac{1}{2}^{+})$ P(L, S) (%)	E	-8.38	-7.73	-7.72	-7.76	-7.76	-7.767
	$\langle T \rangle$	27.21	40.24	40.22	47.59	47.57	47.615
	$\langle V_{\rm c} \rangle$	-35.59	-26.80	-26.79	-22.50	-22.49	-22.512
	$\langle V_{\rm t} \rangle$		-21.13	-21.13	-30.85	-30.84	-30.867
	$\langle V_{\rm b} \rangle$		-0.03	-0.03	-2.00	-2.00	-2.003
	$\langle r^2\rangle$	1.71	1.79	1.79	1.75	1.75	
	$P(0,\frac{1}{2})$	100	92.95	92.94	91.38	91.37	91.35
	$P(2,\frac{3}{2})$		7.01	7.02	8.55	8.57	8.58
	$P(1,\frac{1}{2})$		0.03	0.03	0.04	0.04	0.07
	$P(1,\frac{3}{2})$		0.02	0.02	0.02	0.02	
${}^{4}He(0^{+})$	E_{\rm}	-29.94	-25.29	-25.29	-25.09	-25.05	
	$\langle T \rangle$	58.08	86.93	86.90	101.62	101.41	
	$\langle V_{\rm c} \rangle$	-88.86	-66.24	-66.19	-54.93	-54.76	
	$\langle V_{\rm Coul} \rangle$	0.83	0.76	0.76	0.77	0.77	
	$\langle V_{\rm t} \rangle$		-46.62	-46.65	-67.89	-67.82	
	$\langle V_{\rm b} \rangle$		-0.13	-0.12	-4.66	-4.66	
	$\langle r^2 \rangle$	1.41	1.51	1.51	1.49	1.49	
	P(0,0)	100	88.46	88.45	85.76	85.79	
	P(2,2)		11.30	11.30	13.88	13.85	
	P(1,1)		0.25	0.24	0.36	0.36	

Y.S., W.Horiuchi, M.Orabi, K. Arai, FBS42(2008)