Electroweak response of ⁴He and its level structure

Y. Suzuki (Niigata, RIKEN)

Outline

- Spectrum of ⁴He: Correlated Gaussians
- Application of square-integrable basis to continuum problems
- Photoabsorption and spin-dipole response of ⁴He

In collaboration with W. Horiuchi (Hokkaido) and K. Arai (Nagaoka)

INT workshop Nov.5-9 2012: Electroweak properties of light nuclei

Spectrum of 4He

- The first excited state is 0⁺ but not a negative parity
- •A variational calculation with realistic forces reproduces the spectrum fairly well
- Tensor force is crucial to account for the level splitting
- Most levels are broad resonances that can be excited by spin-dipole and electric-dipole operators Study of EW response is interesting

W.Horiuchi, Y.S., PRC78 (2008)

Basis functions

LS coupling $\Psi_{JM_{J},TM_{T}}^{\pi} = \sum_{LS} C_{LS,T} \Phi_{(LS)JM_{J},TM_{T}}^{\pi}$ $\Phi_{(LS)JM_{J},TM_{T}}^{\pi} = \mathcal{A} \left[\phi_{L}^{\pi} \chi_{S} \right]_{JM_{J}} \eta_{TM_{T}}$ **Spin part**

$$\chi_{(S_{12}S_{123}\dots)SM_S} = [\dots [[\chi_{\frac{1}{2}}(1)\chi_{\frac{1}{2}}(2)]_{S_{12}}\chi_{\frac{1}{2}}(3)]_{S_{123}}\dots]_{SM_S}$$

Orbital part

 $\phi_{(L_1L_2)LM_L}^{\pi}(A, u_1, u_2) = \exp(-\tilde{x}Ax)[\mathcal{Y}_{L_1}(\tilde{u}_1x)\mathcal{Y}_{L_2}(\tilde{u}_2x)]_{LM_L}$

 $x = (x_i)$ A set of relative coordinates

$$F_{\ell m}(\boldsymbol{r}) \approx \sum_{a} C_a \exp(-ar^2) r^{\ell} Y_{\ell m}(\hat{\boldsymbol{r}})$$

X₁ X₂ X₃

Extension to N-particle system

Explicitly correlated Gaussian (ECG)

$$\exp(-ar^{2}) \rightarrow \exp\left[-\sum_{i < j} a_{ij}(\boldsymbol{r}_{i} - \boldsymbol{r}_{j})^{2}\right] = \exp\left(-\widetilde{\boldsymbol{x}}A\boldsymbol{x}\right)$$

$$\boldsymbol{r}_{i} - \boldsymbol{r}_{j} = c_{ij}^{(1)}\boldsymbol{x}_{1} + \dots c_{ij}^{(N-1)}\boldsymbol{x}_{N-1}$$

$$\widetilde{\boldsymbol{x}}A\boldsymbol{x} = \sum_{i,j} A_{ij}\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j} \quad A_{ji} = A_{ij}$$
S.F. Boys K. Singer
Proc. R. Soc. London, Ser. A258 (1960)
spherical motion

Angular functions with global vectors (GV)

$$oldsymbol{r} o u_1 oldsymbol{x}_1 + u_2 oldsymbol{x}_2 + \ldots + u_{N-1} oldsymbol{x}_{N-1} = \widetilde{u} oldsymbol{x}$$

 $r^{\ell} Y_{\ell m}(\hat{oldsymbol{r}}) o |\widetilde{u} oldsymbol{x}|^L Y_{LM}(\widehat{\widetilde{u}} oldsymbol{x}) = \mathcal{Y}_{LM}(\widetilde{u} oldsymbol{x})$ parameters $oldsymbol{A}_{ij} oldsymbol{u}_i$

Y. S. and K. Varga, *Stochastic variational approach to quantum-mechanical few-body problems*, Lecture Notes in Physics 54 (Springer, 1998).
K. Varga and Y. S., Phys. Rev. C52, 2885 (1995). Number of citations by decade to the original works (Boys, 1960) and (Singer, 1960)

Theory and application of explicitly correlated Gaussians submitted to RMP atomic, molecular, condensed matter, nuclear

AV8' + Coulomb+3NF

 $V_{q} = \sum_{i < j} v^{(q)}(r_{ij}) \mathcal{O}_{ij}^{(q)} \qquad \mathbf{q=4,6}$ OPEP $1, \sigma_{i} \cdot \sigma_{j}, \tau_{i} \cdot \tau_{j} (\sigma_{i} \cdot \sigma_{j}\tau_{i} \cdot \tau_{j})$ $S_{ij} (S_{ij}\tau_{i} \cdot \tau_{j}) (L \cdot S)_{ij}, (L \cdot S)_{ij}\tau_{i} \cdot \tau_{j}$ Phenomenological 3NF

 $0_1 \rightarrow 0_2$ Transition density & monopole ME

$$\rho_{\rm tr}(r) = \frac{1}{4\pi} \langle \Psi(0_2^+) \Big| \sum_{i=1}^4 \frac{\delta(|\mathbf{r}_i - \mathbf{x}_4| - r)}{r^2} \Big| \Psi(0_1^+) \rangle$$
$$\int_0^\infty \rho_{\rm tr}(r) r^2 dr = 0$$

Convergence with SVM

Spectroscopic amplitudes for (3N)+N decay

$$\left\langle \left[\left[\Psi_{\frac{1}{2},\frac{1}{2}m_{t}}(3N)\phi_{\frac{1}{2},\frac{1}{2}-m_{t}}(N) \right]_{I}Y_{\ell}(\hat{\boldsymbol{R}}) \right]_{JM_{J}} \middle| \Psi_{JM_{J}T0}(^{4}\text{He}) \right\rangle$$

The first excited 0⁺ state has 3N+N cluster structure

Spectroscopic amplitudes for P-wave decay of three lowest negative-parity states

3N+N cluster structure

Channel spin I=0 S-wave

Channel spin I=1 P-wave

Application of square-integrable basis to continuum problems

Problems including continuum states

●Decay of resonance A* → B+b, C+d+e

Strength (response) function due to perturbation W
 A+W → A*, B+b, C+d+e

• Radiative capture reactions A+a \longrightarrow C+ γ

(Inverse process (photodisintegration): $C+\gamma \longrightarrow A+a$)

● Two-body scattering and reactions
 A+a → B+b

Four-nucleon scattering with ECG + MRM

(Microscopic R-matrix method)

0⁻ resonance is clearly seen but **2**⁻ resonance is not that clear

S.Aoyama, K.Arai, Y.S., P.Descouvemont, D.Baye, FBS52(2012)

Recombination of constituent particles

AV8'

 \times ZU63

ME69

WI85

WE86

BA87

10

– – - G3RS

----- MN

 \wedge

S-factor [keV-b]

Photoabsorption cross section

Questions

Experiments in discrepancy Peak position of the giant resonance E1 sum rules Charge symmetry breaking effects in (γ,p) and (γ,n) (1⁻T=1 states: 23.64MeV Γ=6.20MeV

25.95MeV Γ=12.66MeV)

Photoabsorption cross section

$$\sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^2}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})$$

Strength function for E1

$$S(E) = \mathcal{S}_{\mu f} |\langle \Psi_f | \mathcal{M}_{1\mu} | \Psi_0 \rangle|^2 \delta(E_f - E_0 - E)$$

= $-\frac{1}{\pi} \operatorname{Im} \sum_{\mu} \langle \Psi_0 | \mathcal{M}_{1\mu}^{\dagger} \frac{1}{E - H + E_0 + i\epsilon} \mathcal{M}_{1\mu} | \Psi_0 \rangle$

Continuum states are involved

Use of square-integrable basis to compute S(E)

Lorentz integral transform method (Leidemann's talk) Complex scaling method (CSM)

Complex scaling method

$$U(\theta) \quad \boldsymbol{x} \to e^{i\theta} \boldsymbol{x} \quad e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \to e^{(-\sin\theta + i\cos\theta)\boldsymbol{k}\cdot\boldsymbol{x}}$$

Continuum is made to damp asymptotically

$$S(E) = -\frac{1}{\pi} \frac{1}{2J_i + 1} \sum_{M_i \mu} \operatorname{Im} \langle \Psi_{J_i M_i} | \mathcal{M}_{\lambda \mu}^{\dagger} U^{-1}(\theta) R(\theta) U(\theta) \mathcal{M}_{\lambda \mu} | \Psi_{J_i M_i} \rangle$$

$$R(\theta) = U(\theta) \frac{1}{E - H + i\varepsilon} U^{-1}(\theta) = \frac{1}{E - H(\theta) + i\varepsilon}$$

$$= \sum_{\lambda} \frac{1}{E - E^{\lambda}(\theta) + i\varepsilon} | \Psi^{\lambda}(\theta) \rangle \langle \tilde{\Psi}^{\lambda}(\theta) | \qquad H(\theta) = U(\theta) H U^{-1}(\theta)$$

$$H(\theta)\Psi^{\lambda}(\theta) = E^{\lambda}(\theta)\Psi^{\lambda}(\theta)$$

$$\tilde{\Psi}^{\lambda}(\theta) = (\Psi^{\lambda}(\theta))^*$$

 $H(\theta)$ can be diagonalyzed in square-integrable basis Continuous strength function is obtained Stability of S(E) wrt θ is to be examined

Ab initio study of the photoabsorption

W.Horiuchi, Y.S., K.Arai, PRC85 (2012)

The same approach as the previous spectrum calculation

- (1)Use realistic interactions
- (2)Consider final-state interactions as well as sum rule
 - in basis construction
- (3) Check CSM results with MRM radiative capture

Photoabsorption and radiative capture

Detailed balance $\frac{v_1 \sigma_{1 \to 2}}{\rho_2} = \frac{v_2 \sigma_{2 \to 1}}{\rho_1}$

From radiative capture cross section to photoabsorption cross section

$$\sigma_{\rm cap}(E) = \frac{2J_f + 1}{(2I_1 + 1)(2I_2 + 1)} \frac{8\pi}{\hbar} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2\lambda + 1} \frac{(\lambda + 1)}{\lambda(2\lambda + 1)!!^2} \\ \times \sum_{J_i I_i \ell_i} \frac{1}{(2\ell_i + 1)} \left| \langle \Psi^{J_f \pi_f} | | \mathcal{M}^E_{\lambda} | | \Psi^{J_i \pi_i}_{\ell_i I_i}(E) \rangle \right|^2,$$

 $\rightarrow \sigma_{\gamma}(E)$

Photoabsorption $\gamma + {}^{4}\text{He} \rightarrow {}^{3}\text{H} + p$ ${}^{3}\text{He} + n$ ${}^{2}\text{H} + p + n$ Radiative capture ${}^{3}\text{H} + p \rightarrow {}^{4}\text{He} + \gamma$ ${}^{3}\text{He} + n \rightarrow {}^{4}\text{He} + \gamma$ ${}^{2}\text{H} + p + n \rightarrow {}^{4}\text{He} + \gamma$ (difficult to evaluate) calculable in MRM

Comparison with experiment

Thin dotted curve: LIT with Malfliet-Tjon pot. (Quaglioni et al.)

Construction for continuum discretized basis

3N + N cluster type
 3N* + N cluster type

 (Final state asymptotics)

$$\mathcal{A}\Big[\Phi_{0}^{(4)}(i)\mathcal{Y}_{1}(\boldsymbol{r}_{1}-\boldsymbol{x}_{4})\Big]_{1M}\eta_{T_{12}T_{123}10}^{(4)}$$
$$\mathcal{A}\Big[\Phi_{J_{3}}^{(3)}(i)\exp\left(-a_{3}x_{3}^{2}\right)[\mathcal{Y}_{1}(\boldsymbol{x}_{3})\chi_{\frac{1}{2}}(4)]_{j}\Big]_{1M}\Big[\eta_{T_{12}\frac{1}{2}}^{(3)}\eta_{\frac{1}{2}}(4)\Big]_{10}$$

Discretized E1 strength

Comparison between CSM and MRM

Comparison between CSM and experiment

cf. Bacca's talk

Good agreement with most data except for low-energy data of Shima et al. Possible to go to high E

Photonuclear sum rules

$$m_{\kappa}(E_{\max}) = \int_{0}^{E_{\max}} E_{\gamma}^{\kappa} \sigma_{\gamma}(E_{\gamma}) dE_{\gamma} \qquad \sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^{2}}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})$$

$$m_{-1}(\infty) = \mathcal{G}\left(Z^{2}\langle r_{p}^{2} \rangle - \frac{Z(Z-1)}{2}\langle r_{pp}^{2} \rangle\right) \qquad \mathcal{G} = 4\pi^{2}e^{2}/3\hbar c$$

$$m_{0}(\infty) = \mathcal{G}\frac{3NZ\hbar^{2}}{2Am_{N}}(1+K)$$
TRK sum rule

$$K = \sum_{q=1}^{8} K_{q} \qquad \text{Enhancement factor}$$

$$K_{q} = \frac{2Am_{N}}{3NZ\hbar^{2}e^{2}} \frac{1}{2} \sum_{\mu} \langle \Psi_{0} | [\mathcal{M}_{1\mu}^{\dagger}, [V_{q}, \mathcal{M}_{1\mu}]] | \Psi_{0} \rangle$$
Value of K 1.11 AV8'+3NF (q=4,6 \rightarrow 93\%) 1.29 AV14+UVII R. Schiavilla et al. (1987)

$$\sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^{2}}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})$$

1.44 AV18+UIX D. Gazit et al. (2006)

Discretized strength gives good approx. at E_{max} =60 MeV

Spin-dipole excitations of ⁴He

$$\sum_{i=1}^{N} \left[(oldsymbol{r}_i - oldsymbol{x}_N) imes oldsymbol{\sigma}_i
ight]_{\lambda \mu} egin{pmatrix} 1 \ au_{0_i} \ t_{\pm_i} \end{pmatrix}$$

Isoscalar (IS SD) Isovector (IV SD) Charge-exchange (IV SD)

Multipoles: λ =0, 1, 2 T=0, 1

Spin-dipole (SD) operators excite states with $J^{\pi}=\lambda^{-}$ Response to SD operators are interesting for v-nucleus reactions D. Gazit, N. Barnea, PRL98 (2007) Study akin to E1 is in progress using CSM W. Horiuchi, Y.S.

IV SD strength functions

IS SD strength functions

Resonance properties of ⁴He

	⁴ He		
$J^{\pi}T$	E_R	Γ	
$0^{-}0$	21.21(21.01)	0.8 (0.84)	
$2^{-}0$	22.94(21.84)	3.1(2.01)	
$1^{-}0$	25.34(24.25)	9.5(6.10)	
2^{-1}	23.99 (23.33)	5.6(5.01)	
$1_{1}^{-}1$	24.24(23.64)	7.15 (6.20)) 🔶 SD
$0^{-}1$	25.59(25.28)	9.95(7.97))
$1^{-}_{2}1$	26.20(25.95)	13.4 (12.66	<u>6)</u> ← E1

Calc. (Expt.)

Fair agreement is obtained BSA results are reasonable More realistic 3NF

Summary

The spectrum and response of ⁴He are studied on the same type of square-integrable basis functions Correlated Gaussians + Global vectors Complex scaling method presents virtually the same photoabsorption cross section as microscopic R-matrix method

More realistic 3NF has to be tested to see its effect on the resonance properties of ⁴He
Experimental info on spin-dipole strength of ⁴He is desired
E.g. NWESR for λ=0,1,2 → tensor correlation in the ground state

Stochastic variational method (SVM) Trial and error search of parameters

Increase of the basis dimension

Let A_k be the parameter set defining the kth basis function, and assume that the sets A_1, \ldots, A_{k-1} have already been selected. The next step is the following:

Competitive selection

- s1. A number n of different sets of $(A_k^1, ..., A_k^n)$ are generated randomly.
- s2. By solving the *n* eigenvalue problems of *k*-dimension, the correscience sponding energies $(E_k^1, ..., E_k^n)$ are determined. Select the best one and include it as A_k
- s3. The parameter set A_k^m that produces the lowest energy from among the set $(E_k^1, ..., E_k^n)$ is selected to be the kth parameter set.
- s4. Increase k to k+1.

 $A_1, ..., A_{k-1}, A_k^J$

Generate randomly

^{Y. S. and K. Varga,} *Stochastic variational approach to quantum-mechanical few-body problems*, Lecture Notes in Physics 54 (Springer, 1998).
K. Varga and Y. S., Phys. Rev. C52, 2885 (1995).

Unifying various types of correlations with ECG

Both types of correlations are describable in a single coordinate set Permutation also induces a linear transf. of coordinates No need of coord. transf. Only suitable choice of A and u is needed

Characteristics of ECG

Analytic evaluation of matrix elements
 Coordinate transf. & permutations keep ECG
 Versatility in describing different shapes
 Momentum rep. is again ECG
 × Uneconomical to cope with SR repulsion

Both natural and unnatural parities

Single GV: $\mathcal{Y}_{LM}(\tilde{u}\boldsymbol{x}) \to \operatorname{Parity} = (-1)^L$ Two GVs: $[\mathcal{Y}_L(\tilde{u}\boldsymbol{x})\mathcal{Y}_1(\tilde{v}\boldsymbol{x})]_{LM} \to \operatorname{Parity} = (-1)^{L+1}$

Y.S., W.Horiuchi, M.Orabi, K.Arai, Few-Body Syst. 42 (2008) S.Aoyama, K.Arai, Y.S., P.Descouvemont, D.Baye, Few-Body Syst. 52 (2012)

Lorentz integral transform method

Lorentzian weight

V.D.Efros, W.Leidemann, G.Orlandini, PLB338 (1994)

 $z = E_{R} + iE_{I}$

$$\mathcal{L}(z) = \int_{E_{\min}}^{\infty} \frac{S(E)}{(E-z)(E-z^*)} dE = \int_{E_{\min}}^{\infty} \frac{S(E)}{(E-E_R)^2 + E_I^2} dE$$

$$\mathcal{L}(z) = \frac{1}{2J_i + 1} \sum_{M_i\mu} \langle \Psi_{M_i\mu}(z) | \Psi_{M_i\mu}(z) \rangle$$
$$\Psi_{M_i\mu}(z) = \frac{1}{H - E_i - z} \mathcal{M}_{\lambda\mu} \Psi_{J_iM_i} \qquad (H - E_i - z) \Psi_{M_i\mu}(z) = \mathcal{M}_{\lambda\mu} \Psi_{J_iM_i}$$

 $\begin{array}{l} L(z) \mbox{ is finite, hence the norm of } \Psi(z) \mbox{ is finite} \\ \Psi(z) \mbox{ can be obtained in } L^2\mbox{-integrable basis} \\ L(z) \mbox{ has to be computed for many z values } (E_R \mbox{ varied, } E_I \mbox{ fixed}) \\ \mbox{ to make the inversion possible} \end{array}$

The inversion from L(z) to S(E) requires some skill

Discretized E1 strength

Properties of the three main states

E	AV8' + 3NF					
	23.96	27.05	33.02			
$\langle H \rangle$	-4.46	-1.38	4.60			
$\langle T \rangle$	51.21	54.78	43.71			
$\langle V_1 \rangle$	6.42	6.37	4.44			
$\langle V_2 \rangle$	-3.41	-3.68	-1.61			
$\langle V_3 \rangle$	-2.17	-2.15	-1.65			
$\langle V_4 \rangle$	-23.83	-24.04	-16.09			
$\langle V_5 \rangle$	0.22	0.22	0.14			
$\langle V_6 \rangle$	-30.60	-30.51	-22.71			
$\langle V_7 \rangle$	4.79	4.77	3.55			
$\langle V_8 \rangle$	-6.76	-6.73	-4.96			
$\langle V_{\rm 3NF} \rangle$	-0.74	-0.86	-0.55			
$\langle V_{\rm Coul} \rangle$	0.42	0.45	0.32			
P(1, 0)	87.18	84.58	82.70			
P(1, 1)	4.76	7.47	7.59			
P(2, 1)	0.16	0.25	0.22			
P(1, 2)	0.89	0.74	4.56			
P(2, 2)	2.17	1.99	1.40			
P(3, 2)	4.85	4.97	3.53			

E1 transition density

$$\left\langle \Psi_{\lambda}^{10-}(\theta=0) \middle| \mathcal{M}_{10} \middle| \Psi_0 \right\rangle = \sqrt{\frac{4\pi}{3}} e \int_0^\infty \rho_{\lambda}(r) r^2 \, dr$$

$$\rho_{\lambda}(r) = \left\langle \Psi_{\lambda}^{10-}(\theta = 0) \right| \sum_{i=1}^{4} \frac{\delta(|\mathbf{r}_{i} - \mathbf{x}_{4}| - r)}{r^{2}} \mathcal{Y}_{10}(\mathbf{r}_{i} - \mathbf{x}_{4}) \frac{1 - \tau_{3_{i}}}{2} |\Psi_{0}\rangle$$

Peak of $r^2 \rho$ is at about 2 fm (much larger than 1.1 fm of that for $r^2 \rho_{g.s.}$) Extend to large distances due to 3N+N configurations Constructive and destructive patterns in 2nd and 3rd states

Contributions of V_q to the enhancement factor K (cf. V_q to the ground-state energy)

q	$\mathcal{O}_{ij}^{(q)}$	AV8′ +	3NF	G3RS +	G3RS + 3NF		
		$\langle V_q angle$	K_q	$\langle V_q \rangle$	K_q		
1	1	17.39	0	1.07	0		
2	$\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j$	-9.59	0	-8.75	0		
3	$\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j$	-5.22	0.011	-9.11	0.059		
4	$\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j$	-59.42	0.460	-51.80	0.474		
		(-12.51)	(0.187)	(-12.50)	(0.191)		
5	S_{ij}	0.75	0	-0.93	0		
6	$S_{ij}\boldsymbol{\tau}_i\cdot\boldsymbol{\tau}_j$	-70.93	0.574	-47.16	0.484		
		(-68.65)	(0.667)	(-59.37)	(0.610)		
7	$(\boldsymbol{L} \cdot \boldsymbol{S})_{ij}$	11.09	0	5.53	0		
8	$(\boldsymbol{L}\cdot\boldsymbol{S})_{ij}\boldsymbol{\tau}_i\cdot\boldsymbol{\tau}_j$	-15.93	0.061	-5.65	0.025		
	Total	-131.9	1.11	-116.8	1.04		

1.29 AV14+UVII R. Schiavilla et al. (1987) 1.44 AV18+UIX D. Gazit et al. (2006)

IV SD strengths of ⁴He

Preliminary

Mechanism for splitting two 0⁻states with different isospin

$$\Psi^{\pi}_{JM_J,TM_T} = \sum_{LS} C_{LS,T} \Phi^{\pi}_{(LS)JM_J,TM_T} \qquad \Psi^{-}_{00,T0} = C_{1T} \Psi^{-}_{(11)00,T0} + C_{2T} \Psi^{-}_{(22)00,T0}$$

TABLE III: The Hamiltonian matrix elements, given in MeV, for the 0⁻⁰ and 0⁻¹ states of ⁴He. The column-row of the matrix is labeled by the channel (L^{π}, S) , which is arranged in the order of $(1^-, 1)$ and $(2^-, 2)$. The C_{LT}^2 values are $C_{10}^2=0.945$, $C_{20}^2=0.055$ for 0⁻⁰ and $C_{11}^2=0.963$, $C_{21}^2=0.037$ for 0⁻¹. AV8'+TNF potential is used.

$0^{-}0$	Н		T		$V_c + V_{ m Coul}$	
	3.99	-45.00	51.16	0.0	-24.96	0.0
i i	-45.00	179.4	0.0	200.6	0.0	-13.58
	V_t		V_b		V_{TNF}	
	-20.67	-44.19	-0.22	-0.81	-1.31	0.0
	-44.19	12.46	-0.81	-18.65	0.0	-1.49
$0^{-}1$	H		T		$V_c + V_{Cou}$	ıl
0^{-1}	$\frac{H}{3.89}$	-35.27	$\frac{T}{39.64}$	0.0	$\frac{V_c + V_{\text{Cou}}}{-21.25}$	ul 0.0
0^{-1}	$\frac{H}{3.89}$ -35.27	-35.27 177.8	T 39.64 0.0	0.0 189.5	$\frac{V_c + V_{\text{Cot}}}{-21.25}$ 0.0	$rac{10}{0.0} -10.13$
0^{-1}	$rac{H}{3.89} \\ -35.27 \\ V_t$	-35.27 177.8	T 39.64 0.0 V_b	0.0 189.5	$ \frac{V_c + V_{\text{Cot}}}{-21.25} $ 0.0 $ V_{\text{TNF}} $	$0.0 \\ -10.13$
0^{-1}	$ \begin{array}{r} H \\ 3.89 \\ -35.27 \\ V_t \\ -13.39 $	-35.27 177.8 -34.83	$T \\ 39.64 \\ 0.0 \\ V_b \\ -0.23$	0.0 189.5 -0.45	$ \frac{V_c + V_{\rm Cot}}{-21.25} \\ 0.0 \\ \frac{V_{\rm TNF}}{-0.88} $	

Coupling due to tensor force!

PWE $e^{-a_1 x_1^2 - a_2 x_2^2 - a_3 x_3^2 - \dots} [[[\mathcal{Y}_{L_1}(x_1) \times \mathcal{Y}_{L_2}(x_2)]_{L_{12}} \times \mathcal{Y}_{L_3}(x_3)]_{L_{123}} \dots]_{LM}$

(Product form of 's.p.' orbits Rearrangement channels must be included)

	Potential Method	MN	G3RS		AV8′		
		GVR	GVR	PWE	GVR	PWE	ref. [26]
${}^{3}\mathrm{H}(\frac{1}{2}^{+})$	Ε	-8.38	-7.73	-7.72	-7.76	-7.76	-7.767
(2)	$\langle T \rangle$	27.21	40.24	40.22	47.59	47.57	47.615
	$\langle V_{\rm c} \rangle$	-35.59	-26.80	-26.79	-22.50	-22.49	-22.512
	$\langle V_{\rm t} \rangle$	_	-21.13	-21.13	-30.85	-30.84	-30.867
	$\langle V_{ m b} angle$	_	-0.03	-0.03	-2.00	-2.00	-2.003
	$\sqrt{\langle r^2 \rangle}$	1.71	1.79	1.79	1.75	1.75	
D(I, C)	$P(0,\frac{1}{2})$	100	92.95	92.94	91.38	91.37	91.35
$^{(L,S)}$	$P(2,\frac{3}{2})$	_	7.01	7.02	8.55	8.57	8.58
(%)	$P(1,\frac{1}{2})$	_	0.03	0.03	0.04	0.04	10.07
	$P(1,\frac{3}{2})$	_	0.02	0.02	0.02	0.02	}0.07
4 He(0 ⁺)	Ε	-29.94	-25.29	-25.29	-25.09	-25.05	
	$\langle T \rangle$	58.08	86.93	86.90	101.62	101.41	
	$\langle V_{ m c} angle$	-88.86	-66.24	-66.19	-54.93	-54.76	
	$\langle V_{\rm Coul} \rangle$	0.83	0.76	0.76	0.77	0.77	
	$\langle V_{ m t} angle$	_	-46.62	-46.65	-67.89	-67.82	
	$\langle V_{ m b} angle$	_	-0.13	-0.12	-4.66	-4.66	
	$\sqrt{\langle r^2 \rangle}$	1.41	1.51	1.51	1.49	1.49	
	P(0,0)	100	88.46	88.45	85.76	85.79	
	P(2,2)	_	11.30	11.30	13.88	13.85	
	P(1,1)	_	0.25	0.24	0.36	0.36	

Y.S., W.Horiuchi, M.Orabi, K. Arai, FBS42(2008)