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- The “Exotic” Spectrum

- Observables that test the molecular hypothesis in

X(3872), Y, Z, ...
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• Newton’s laws

• Thermodynamics

• Fluid Dynamics

• Gravity

• Quantum Electrodynamics

• Standard Model of Nuclei and Particles

Examples of Effective Theories



Attributes of Effective Field Theories (EFTs)

Utilize separation of scales => create small parameter

Based upon underlying (perhaps approximate) symmetries

Reliable error estimates from order of calculation

Systematically improvable

Typically contain unknown (by the EFT) coefficients that 
have to be fixed via experiment or other means

May be used to probe unknown underlying theory

May be used to simplify calculations in known theories

Typically valid only in a limited energy window

Coefficient fixed from any exp for which EFT is valid true 
for *all* observables in that EFT



An Effective Quantum Field Theory
for low energy light-light scattering

Scales: me � 511 keV E� << me

Symmetry: Lorentz invariance
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In the absence of a 
solution to QCD, use EFT 
=> contains predictions 

of QCD as a subset

↵s

↵s ⌧ 1
.

↵s ⇠ 1
- Symmetry (group) structure

works for ground states,
but we need dynamics for

excited states
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Limits of QCD where symmetries are enhanced

0� mu < md < ms || mc < mb < mt �⇥
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Lheavy
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Collect into Supermultiplets
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K. Seth, Prog. Part. Phys 67 (2012) 390.
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JPC 1��
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QCD Sum Rules

Non-relativistic QCD

X-EFT

Tetraquark

Molecule

Heavy Hadron Chiral Perturbation Theory

Heavy Quark Effective Theory
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Molecules: do the constituents retain their identify as hadrons?
(more details in the X(3872) section)

X(3872) D
0
D⇤0

X(3915) D
⇤0

D⇤0 + D⇤+D⇤� BGL
Y (4140) D⇤+

s D⇤�
s BGL

Z(4430)+ D⇤+D
0
1 LMNN/BGL

X(4630)  (2S)f0(980) GHHM

Y (4660)  (2S)f0(980) GHM

BGL=Branz,Gutsche,Lyubovitskij
AN=Albuquerque,NielsenTKGO=Torres,Kehmchandari,Gamermann,Oset

LMNN=Lee,Miharo,Navarro,Nielsen

GH(H)M=Guo,(Haidenbauer),Hanhart,Meissner
R=RosnerQ=Qiao YWM=Yuan,Wang,Mo

Y (4260) AN, TKGOD0D
⇤
, (2S)f0(980)

⇤c⇤c,�c0⇢,�c1!, D1D Q,LZL,YWM,R

LZL=Liu,Zeng,Li



X(3872) as molecule
1p
2

�
D0D̄0⇤ + D̄0D0⇤�

Isospin issue:
Belle 2011

BaBar 2010
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++
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�+ multipole question

S-wave

Hanhart et al 1111.6241

mD0D̄0⇤ �mX(3872) = 0.16± 0.33 MeV
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PRD 84, 052004  

X(3872)� J/⇥� ⇥ C = +
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� < 1.2 MeV



= + + + ...

a(1S0) ⇥ � 1
8 MeV

a(3S1) � 1
36 MeV

Like the Deuteron?  Systematic NN treatment: NN-EFT (no pions)

Both S-wave scattering lengths anomalously large => momentum 
expansion fails => reorganize to treat C’s nonperturbatively
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EM effects easily included
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M
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1
2
(a3 � a2r0)p2 + · · · ] does not converge

Only now it is an infinite sum of (DD⇤ + cc) or (B
⇤
B(⇤) + cc) etc.

NN system:



Evidence that pionless EFT works in strong and EM sector
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FIG. 1. The phase shift δ0 as a function of the center of mass momentum |k|. The dashed

curve corresponds to δ(0)
0 , the dotted curve corresponds to δ(0)

0 + δ(1)
0 , the solid curve corresponds to

δ(0)
0 + δ(1)

0 + δ(2)
0 , and the dot-dashed curve is the Nijmegen partial wave analysis [35].
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=
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, (2.8)

and is reproduced by a Lagrange density involving the nucleon field N with the time-
dependent phase corresponding to the nucleon mass removed,

L = N †

[

i∂0 +
∇2

2MN
−

∂2
0

2MN

]

N + ... . (2.9)

In the EFT(π/) we treat the third term in eq. (2.9) as a perturbation and it is not resummed
into the nucleon propagator. In order to recover the usual nonrelativistic expansion of
the two-point function, a field redefinition is employed followed by use of the equations of
motion [36], e.g.

N ′ =

(
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4M2
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)

N , (2.10)
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]
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It is somewhat inconvenient to use this second form of the Lagrangean due to the fact that
the field redefinition in eq. (2.10) must be performed on all terms in the Lagrange density
describing the NN systems including the multi-nucleon interactions.
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NN scattering phase shift:
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FIG. 3. The form factor A(q2) as a function of |q| =
√

−q2. The dashed curve corresponds to
the leading order prediction, the dotted curve corresponds to the next-to-leading order prediction,
and the solid curve corresponds to the next-to-next-to-leading order prediction, in EFT(π/).
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Despite the fact that π/L2 is numerically small, it is important to realize that the effective
range expansion for the deuteron magnetic moment is not formally valid beyond leading
order (where µM = e

2MN
(κp + κn)). At NLO, there is a counterterm that is allowed by the

symmetries of the theory and it is expected to be of natural size, which in EFT(π/) is set by
the pion mass. Given that there is a counterterm at NLO, we do not pursue this calculation
to higher orders, even though it is straightforward.

It is combinations of the electric, magnetic and quadrupole form factors that are mea-
sured in elastic electron-deuteron scattering. The differential cross section for unpolarized
elastic electron-deuteron scattering is given by
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∣

∣

∣

∣

Mott

[

A(q2) + B(q2) tan2

(

θ

2

)]
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where A and B are related to the form factors that appear in eq. (3.16) by [49]
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2

3
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8
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Q ,
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4

3
η(1 + η)F 2

M , (3.35)

with η = −q2/4M2
d . In order to compare with data, we take our analytic results for the form

factors and expand the expression eq. (3.35) in powers of Q. At the order we are working,
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Chen,Rupak,Savage nucl-th/9902056v4

:EM form factor of deuteron



X(3872)
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X-Effective Field Theory:

Factorization theorems: Braaten/Kusunoki/Lu

Fleming, Kusunoki, Mehen, van Kolck

(phase space)
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�
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Universal shallow-bound-state properties from effective range 
theory: Braaten/Voloshin...

 DD⇤(r) / e��r

r
B =

1
2µD⇤Da2
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a ⇠ 10 fm

hri ⇠ 12 fm
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FIG. 2: Integral equation for scattering of a particle S (single line) off the X(3872) (double line).

The dashed line indicates the particle S̄ complementary to S as explained in the text.

integral equation shown in Fig. 2. The X and the scattered meson, denoted by S, are
represented by a double line and a single line, respectively. If an S particle is scattered, a
second complementary particle type, S̄ (represented by a dashed line in Fig. 2) appears in
the loops. The masses of the S and S̄ particles are different. For a given scattered particle
S, the corresponding particle S̄ complementary to S can be read off the flavor wave function
of the X(3872) in Eq. (1). For example, if S = D0 then S̄ = D̄∗0.

We now formulate the scattering problem in the center-of-mass frame of the SX system.
With k the relative momentum of S and X, the total energy is

E =
k2

2µSX

− BX , (10)

where µSX = mSMX/(MX+mS) is the reduced mass of the SX system and S = D0, D∗0, D̄0,
or D̄∗0. The resulting integral equation for the off-shell SX scattering amplitude is
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(
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, (11)

where k and p are the relative momenta in the incoming and outgoing SX system, respec-
tively. Performing a partial wave decomposition of T (k,p),

T (k,p) =
∑

l

(2l + 1)Tl(k, p)Pl(cos θkp) , (12)

where θkp is the angle between k and p and Pl(cos θkp) is a Legendre polynomial, and
projecting onto the l-th partial wave, we obtain
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⌅
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Results depend only on scattering length

a�1 �
�

2µXBX

aD0X = �9.7a aD�0X = �16.6a

IF

Integral equation:

mX = (3871.68± 0.17) MeV BX = (0.16± 0.36) MeV

X(3872)�D(⇤) scattering Canham/Hammer/RPS
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FIG. 4: Total cross section for scattering of D0 and D∗0 mesons off the X(3872) for S-waves (l = 0)
and including higher partial waves with l < 7, in units of the scattering length a. The cross section

is the same for the scattering of particles as it is for the scattering of antiparticles.

mπ = 135 MeV. The range of the one-pion exchange interaction is set by the smaller scale µ =
√

∆2 − m2
π ≈ 45 MeV. The mass difference ∆ appears in the propagator of the exchanged

pion because it carries energy q0 = ∆, leading to the one-pion exchange amplitude for the
D0D̄∗0 interaction [38]:

g2

2f 2
π

ε∗ · q ε · q
q2 − µ2

, (20)

where g is the D-meson axial transition coupling, fπ the pion decay constant, ε and ε∗ the
polarization vectors of the incoming and outgoing D0∗ mesons, and q the three-momentum of
the exchanged pion. However, the work of Ref. [38] shows that, in part because of the small
size of the axial coupling, this contribution to NLO effects is very small; contact corrections
will dominate, bringing us back to an estimate of the effective range of r0 ∼ 1/mπ ∼ 1.5
fm (Λb ∼ mπ). Since the leading corrections to our results are of order kr0 and r0γ, we
expect the errors to remain less than 20% even at momenta close to breakup (using the
central value of the binding energy of the X(3872) in Eq. (3)). For larger momenta, the
error is dominated by the kr0 correction and will increase to 35% at momenta of order 45
MeV. Compared to the errors from effective range corrections the effects from the charged
D meson channel can safely be neglected; they only enter at much higher momenta since the
energy difference between the neutral and charged thresholds of about 8 MeV corresponds
to typical momenta of order 130 MeV or 6γ.

To observe the three body interactions described here requires identifying an experimental
process where, for example, two D0 mesons and one D̄∗0 are produced very near each other
in space and time. One possibility is provided by the decay of the Bc particle. The Bc

was discovered through its decays into J/ψ in Run I at CDF [48, 49]. Particle Data Book
(2007) averages are: mBc

= (6.286 ± 0.005) GeV and τBc
= (0.46 ± 0.07) × 10−12 s. Several

8

LHC possibilities:  Bc � 107 per week

BB

�(bb) � 0.4 mb �(bbbb) � 5 fb
final state interactions

Three body cross section vs scattering length
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factorization

XEFT + HBChPT

Hu,Mehen

Guo et al., 0907.0521

Mehen/RPS
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X(3872) as 2�+ : ↵ = 0.08





⇥(4040)� X(3872)�

E� � 165 MeV

from width of  (4040)

g2 ! g̃2; c1 ! c̃1
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Suppose g-like terms dominate:
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from quark model hep-ph/0511179

⇠ (0.005� 0.02) MeV

|M(X)|2 > 0.09 GeV3
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An example of possible “exotics ” that appear not to be  
molecules



Open Charm

0� 1� 0+JP 1+ 1+ 2+
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------------------------------------------------------------

------------------------------------------------------------
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D
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____

D
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******

*****quark model
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“exotic” ____
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++++++
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mc �⇥

mu, md, ms � 0

D(0,+)
1 Ds1 D(0,+)

2 Ds2

D(0,+)
0 Ds0 D�(0,+)

1 D�
s1

D(0,+) Ds D�(0,+) D�
s

1+, 2+

0+, 1+

0�, 1�

Corrections :
(mq, p)

(��, mQ)

D� �D ⇥ D�
s �Ds ⇥ D⇥

s1 �Ds0 ⇥ 140MeV

SU(3)?



Electromagnetic Decays of 0+
s and 1+

s

1+

1�

0�

0+ (CLEO)

Ds0(2317)� D�
s�

Ds0(2317)� Ds⇥0
< 0.059

D⇥
s1(2460)� D�
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< 0.16

D⇥
s1(2460)⇥ Ds�

D⇥
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s⇥0
= 0.55� 0.38

0.38� 0.27

(Belle)

(BaBar)

Lem =
e

4
�̃ [HaSb⇥

µ⇥Fµ⇥Q⇤
ba]

Q� =
1
2
(�Q�† + �†Q�)

corrections :
�QCD

mc
� ms

��
� 30%



Ds0, D�
s1 as molecules?

K

D(�)

�

D(�)
s D(�)

sD(�)

K �

�(Ds1 � D�
s⇥) =

8g2�2

3f2
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s

m3
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|⇥D�K(0)|2E�
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4g2�2

3f2

mD�mDs

m3
Ds1

|⇥D�K(0)|2E�

�(Ds0 � D�
s⇥) =

4g2�2

f2

mDmD�
s

m3
Ds0

|⇥DK(0)|2E�

mQ �⇥ 2 : 1 : 3 phase space 1.57 : 1 : R�1.58
cf. to exp. limits



Strong Decay of Molecules

�(Ds0 � Ds⇥
0) =

3(mK + E�0)2

4⇥f4
�2 mDmDs

m3
Ds0

|⇥DK(0)|2|�p�0 |

Ds1 � D�
s�

Ds1 � D�
s⇥0

= 3.23

Ds1 � Ds�

Ds1 � D�
s⇥0

= 2.21

Ds0 � D�
s�

Ds0 � Ds⇥0
= 2.96

(exp < 0.16)

(exp < 0.059)

(exp � 0.44)

Predicts (±30%) :

problem ratios

� molecular hypothesis

disfavored

�(Ds1 � D�
s⇥0) =

3(mK + E�0)2

4⇥f4
�2 mD�mD�

s

m3
Ds1

|⇥D�K(0)|2|�p�0 |



b Exotics above threshold - Belle 1103.3419

Eidelman, Heltsley, Hernandez-Rey, Navas, Patrignani 1205.4189

hybrid bbg

disturbed ⌥(5S)

molecule

Yb(1
��

) ⇠ Y (4260) analog

Zb(10610)+ 10607.2± 2.0 18.4± 2.4 1+ ⌥(5S)! ⇡�(⇡+[bb])

Zb(10650)+ 10652.2± 1.5 11.5± 2.2 1+ ⌥(5S)! ⇡�(⇡+[bb])

Yb(10888) 10888.4± 3.0 30.7+8.9
�7.7 1�� e+e� ! (⇡+⇡�⌥(nS))



Zb as a molecule

Ha = Pa + ~V · ~� now B(⇤)
multiplet rather than D(⇤)

multiplet

Leff = · · · +

Molecule treatment predicts decay ratios among them (Mehen/Powell)

HQET predicts additional states (Voloshin. . . )
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Summary

X(3872) may be a molecular bound state of the D0
and D

0⇤
mesons.

If so, it must have JPC
= 1

++

b. polarization of  (2S) in decay

c. polarization of X(3872) in creation

a. D0(⇤), D
0(⇤) scattering enhancement

Measurements needed to check molecular hypothesis:

Many new “exotic” unexpected particles discovered at B factories

Possible analogues seen in bottomonium-like system

Again, additional data needed to prove or disprove character

LHC, BESIII, . . . exciting times ahead for heavy quark spectroscopy

and our ability to understand bound states of QCD

Will this “cleaner” system shed light on nuclear bound states?
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Amplitudes

|M|2 = g2
2�2F1(�, E�) + g2�c1F2(�, E�) + c2

1F3(E�)

|M(⌦⇥⇥)|2 =
�
2g2

2�2A2E4
� + 4g2�c1ACE2

� + 2c2
1C

2
⇥
|k̂ · ⌦⇥⇥|2

+
�
g2
2�2B2E4

� � 2g2�c1BCE2
� + c2

1C
2
⇥
|k̂ ⇤ ⌦⇥⇥|2

� � 142 MeV; E� � 181 MeV



Hadrocharmonium
J/ , (2S), ...even ⌥? a�nity for light hadronic matter

small QQ

light (excited) hadronic matter

Y (4260)! ⇡⇡J/ 

Y (4360)! ⇡+⇡� (2S)

Z1(4050)+ ! ⇡+�c1(1P )

Z2(4250)+ ! ⇡+�c1(1P )

Z(4430)+ ! ⇡+ (2S)
Y (4660)! ⇡+⇡� (2S)

Y 0s are 1��

widths (MeV)
82+51
�55

177+321
�72

107+113
�71

48± 15
look for J/ with baryons; b analogs

95± 14
74± 18



L = N†(i⇧0 + ⌃�2

2M )N � 1
8C

(1S0)
0 (NT ⇥2⇥a�2N)†(N⇥2⇥a�2N)

� 1
8C

(3S1)
0 (NT ⇥2�2�iN)†(N⇥2�2�iN) + . . . ,

L = N†
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⇥
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4M
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⇥

Strong Interaction Terms

Pa(1S0) =
1�
8
⇥2⇥a�2 ; Pi(3S1) =

1�
8
⇥2�2�i

“dibaryon”
treatment


