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which is evaluated as
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The first of the anomalous self-energy is
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Introduction



Towards a unified description of nuclei

SR and MR energy density functionals

Shell model

Ab-initio approaches (CC, SCGF, IM-SRG)

“Exact” methods (NCSM, GFMC, ...) 

[Erler et al. 2009]



Towards a unified description of nuclei

Main challenges:

✔ Good nuclear Hamiltonians

✘ Extension to open-shell systems

✔ Proper treatment of continuum

✘ Connection to reactions



Medium-mass ab-initio nuclear structure

✺ Configuration interaction techniques become unfeasible in large spaces

• Coupled-cluster [Dean, Hagen, Hjorth-Jensen, Papenbrock, ...]

• In-medium similarity renormalization group [Bogner, Hergert, Schwenk, Tsukiyama,...]

• Self-consistent Dyson-Green’s function [Barbieri, Dickhoff, ...]

➟ Solution of the nuclear many-body problem has to be approximated

➟ But limited to to doubly-closed-shell ± 1 and ± 2 nuclei

✺ Ab-initio approaches to medium-mass nuclei

➟ No core, all nucleons active

➟ Only inputs are NN & NNN interactions

✺ Examples:

➟ Rely on a controlled expansion



Timeliness of the open-shell endeavor

✺ Beams of exotic isotopes becoming available worldwide

✺ Nuclear interactions from chiral EFT

✺ Renormalization group techniques for NN and 3N forces

➟ Consistent many-body forces
➟ A way to quantify theoretical errors

➟ Many-body problem more perturbative

➟ Predictive theoretical models needed

✺ Benchmarks for more phenomenological methods
➟ Non-empirical EDF, (microscopic) shell model, ...



Gorkov-Green’s function approach



Going open-shell: Gorkov’s idea

✺ Auxiliary many-body state

➟ Introduce a “grand-canonical” potential

4

tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (15)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (16)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (17)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (19)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (20)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (21a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (21b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (21c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (21d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
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minimizes under the constraint

➟ Mixes various particle numbers

➟ Formulate the expansion scheme around a Bogoliubov vacuum

✺ Address explicitly the non-perturbative formation of Cooper pairs

➟ Breaking of particle-number conservation (eventually restored)

➟

➟ Observables of the N system
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FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-

dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.
Let us make the hypothesis that ideal one-nucleon pick-

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

S�
a (!) ⌘
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��h A�1
k |aa| A

0 i
��2 �(! � (EA

0 � EA�1
k )) =

1
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ImGaa(!) (16)
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X

k

h A
0 |aa| A+1

k ih A+1
k |a†a| A

0 i
! � (EA+1

k � EA
0 ) + i⌘

+
X

k

h A
0 |a†a| A�1

k ih A�1
k |aa| A

0 i
! � (EA

0 � EA�1
k )� i⌘

(17)

| 0i ⌘
evenX

A

cA | A
0 i (18)
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⌦ = H � µA (19)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (20)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (21)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (20) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (22)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (23a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (23b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the

kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].

Equation (21) demonstrates that the centroid matrix
is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (21); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.

On the practical side, Eq. (21) underlines that the av-
eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (25) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (25) with a density matrix
reflecting the presence of correlations in the system.

Using that the even-even ground state the one-nucleon
transfer is performed on is a J⇧ = 0+ state, Wigner-
Eckart’s theorem allows one to obtain the explicit de-
pendence of spectroscopic amplitudes on mp and Mµ,
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to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +
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X

rstv

V̄ 3N
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⌘ h1 , (23)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (24a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (24b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (22) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (22); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (22) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (26) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (26) with a density matrix
reflecting the presence of correlations in the system.
Using that the even-even ground state the one-nucleon
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⌦ = H � µA (19)

A = h 0|A| 0i (20)

⌦0 =
X
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|cA0 |2 ⌦A0

0 ⇡ EA
0 � µA (21)
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p (~r�⌧) and ecentp are
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denote one- and two-body density matrices of the corre-
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kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
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On the practical side, Eq. (24) underlines that the av-

eraged information contained in ESPEs only requires the
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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B. Hamiltonian
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∑
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†
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1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
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1

(3!)2
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abcdef

V̄ NNN
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†
aa

†
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†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
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tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (21)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (26a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (26b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (26c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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′)
}

|Ψ0〉 , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
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self-consistency characterizing the method.
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agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the

Gorkov equations

6

normal and anomalous irreducible self-energies. Working
in the energy representation the latter read

Σ̃ab(ω) ≡





Σ̃11
ab(ω) Σ̃12

ab(ω)

Σ̃21
ab(ω) Σ̃22

ab(ω)



 , (33)

which can be divided into a proper part and a contribu-
tion coming from the auxiliary potential, i.e.

Σ̃ab(ω) ≡ Σab(ω)−Uab . (34)

Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G
(0)
ac (ω)Σ

!
cd(ω)Gdb(ω) . (35)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where
the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(30) has a one-body character, i.e. it acts as a mean

field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
ab

Ũab −tab + µab − Uab

)

. (36)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (15)
into Eq. (21a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(22)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗NcN〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2〈ψN
0 |aa(t)a†b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

|cN |2〈ψN
0 |a†b(t

′)aa(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ 〈ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t 〈ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 〉 . (37)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that

Ω|ψN±1
k 〉 = [H − µN ]|ψN±1

k 〉
= [EN±1

k − µ(N ± 1)]|ψN±1
k 〉 (38)
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FIG. 2: (Color online) Same as Fig. ?? for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure ??, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (??)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (??), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful def-
inition of ESPEs does exist and goes back to French [?
] and Baranger [? ]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. ??). E↵ective single-particle
energies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

S�
p (!) ⌘

X

k

��h A�1
k |ap| A

0 i
��2 �(!�(EA

0 �EA�1
k )) (16)

Equation (??) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (??) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion ?? might not be exhausted.
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FIG. 1: (Color online) Left. One of the diagrams included in the correlated self-energy, Σ̃(ω). Arrows up (down) refer to quasiparticle
(quasihole) states, the Π(ph) propagators include collective ph and charge-exchange resonances, and the gII include pairing between two
particles or two holes. The FRPA method sums analogous diagrams, with any numbers of phonons, to all orders [21, 25]. Right. Single-
particle spectral distribution for neutrons in 56Ni, obtained from FRPA. Energies above (below) EF are for transitions to excited states of
57Ni (55Ni). The quasiparticle states close to the Fermi surface are clearly visible. Integrating over r [Eq. (4)] gives the SFs reported in Tab. I.

poles give the experimental energy transfer for nucleon pickup
(knockout) to the excited states of the systems with A+1 (A-1)
particles. The propagator (2) is obtained by solving the Dyson
equation [g(ω) = g(0)(ω) + g(0)(ω) Σ"(ω) g(ω)], where
g(0)(ω) propagates a free nucleon. The information on nuclear
structure is included in the irreducible self-energy, which was
split into two contributions:

Σ"(r, r′;ω) = ΣMF (r, r′;ω) + Σ̃(r, r′;ω) . (3)

The term ΣMF (ω) includes both the nuclear mean field (MF)
and diagrams describing two-particle scattering outside the
model space, generated using a G-matrix resummation [24].
As a consequence, it acquires an energy dependence which
is induced by SRC among nucleons [23]. The second term,
Σ̃(ω), includes the LRC. In the present work, Σ̃(ω) is calcu-
lated in the so-called Faddeev random phase approximation
(FRPA) of Refs. [21, 25]. This includes diagrams for particle-
vibration coupling at all orders and with all possible vibration
modes, see Fig. 1, as well as low-energy 2p1h/2h1p configu-
rations. Particle-vibration couplings play an important role in
compressing the single-particle spectrum at the Fermi energy
to its experimental density. However, a complete configura-
tion mixing of states around the Fermi surface is still missing
and would require SM calculations.
Each spectroscopic amplitude ψA±1(r) appearing in Eq. (2)

has to be normalized to its respective SF as

Zα =
∫

dr |ψA±1α (r)|2 = 1

1 − ∂Σ"
α̂α̂
(ω)

∂ω

∣

∣

∣

∣

∣

∣

∣

∣

ω=±(EA±1α −EA0 )

, (4)

where Σ"
α̂α̂
(ω) ≡< ψ̂α|Σ

"(ω)|ψ̂α > is the matrix element of
the self-energy calculated for the overlap function itself but
normalized to unity (

∫

dr |ψ̂α(r)|2 = 1). By inserting Eq. (3)
into (4), one distinguishes two contributions to the quenching
of SFs. For model spaces sufficiently large, all low-energy
physics is described by Σ̃(ω). Then, the derivative of ΣMF (ω)

accounts for the coupling to states outside the model space
and estimates the effects of SRC alone [33].
In general, the SC self-energy (3) is a functional of the one-

body propagator itself, Σ" = Σ"[g]. Hence the FRPA equa-
tions for the self-energy and the Dyson equation have to be
solved iteratively. The mean-field part, ΣMF [g], was calcu-
lated exactly in terms of the fully fragmented propagator (2).
For the FRPA, this procedurewas simplified by employing the
Σ̃[gIPM] obtained in terms of a MF-like propagator

gIPM(r, r′;ω) =
∑

n /∈F

(φn(r))∗ φn(r′)
ω − εIMPn + iη

+
∑

k∈F

φk(r) (φk(r′))∗

ω − εIMPk − iη
,

(5)
which is updated at each iteration to approximate Eq. (2) with
a limited number of poles. Eq. (5) defines a set of undressed
single-particle states that can be taken as a basis for SM ap-
plications. This feature will be used below to estimate the im-
portance of configuration mixing effects on the quenching of
spectroscopic factors. The present calculations employed the
N3LO interaction from chiral perturbation theory [26] with a
modification of the tensor monopoles to correct for missing
three-nucleon interactions [27].
Results.— The calculated single-particle spectral function

[S 56Ni(r,ω) = 1
π
|g(r = r′;ω)|2] is shown in Fig. 1 for the case

of neutron transfer on 56Ni. This picture puts in evidence the
quasiparticle and quasihole states associated with valence or-
bits in the 0p1 f shell. The corresponding SFs are reported
in Tab. I, including both protons and neutrons. The first col-
umn is obtained by including only the derivative of ΣMF (ω)
when calculating Eq. (4). Since N3LO is rather soft com-
pared to other realistic interactions the effect of SRC is rela-
tively small. From other models one could expect a quenching
up to about 10% [16], as confirmed by recent electron scatter-
ing experiments [14, 15, 28]. This difference would not affect
sensibly the conclusions below. The complete FRPA result for
SFs is given in the second column. For the transition between
the 56Ni and 57Ni ground states, our result agrees with knock-

[Barbieri 2009]

56Ni
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FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (21), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

S�
a (!) ⌘

X

k

��h A�1
k |aa| A

0 i
��2 �(!�(EA

0 �EA�1
k )) =

1

⇡
ImGaa(!)

(16)
Equation (14) ensures that  cent

p (~r�⌧) and ecentp are
consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (15) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion 10 might not be exhausted.
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(t, t
′) =

∫
dω

2π
e−iω(t−t′) Gab(ω) (12)

〈Ô〉 =
∑

ab

∫
dω

2π
Oab(ω)Gab(ω) (13)

〈T̂ 〉 =
∑

ab

∫
dω

2π
tab Gab(ω) (14)

〈Ĥ〉 = E0 =
∑

ab

∫
dω

2π
[tab + ω δab] Gab(ω) (15)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (16a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (16b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

ΣR(ω) (17)

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ"

cd(ω)Gdb(ω) (18)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.
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FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (21), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

S�
a (!) ⌘

X

k

��h A�1
k |aa| A

0 i
��2 �(!�(EA

0 �EA�1
k )) =

1

⇡
ImGaa(!)

(16)
Equation (14) ensures that  cent

p (~r�⌧) and ecentp are
consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (15) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion 10 might not be exhausted.
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FIG. 2: (Color online) Same as Fig. 1 for a correlated system.
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Eventually, standard Dyson’s equation is generalized as
set of coupled equations involving the two types of prop-
agators and self-energies. These are known as Gorkov’s
equations [45] and read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G(0)
ac (ω) Σ̃cd(ω)Gdb(ω) . (34)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
one-body normal and anomalous Green’s functions in
terms of unperturbed ones. If the method is self-
consistent, the final result does not depend on the choice
of the auxiliary potential, which disappears from the
equations once the propagators are dressed with the cor-
responding self-energies. From a practical point of view
it is useful to track where the auxiliary potential enters
and how its cancelation is eventually worked out. This
point is addressed in Section IVA, where the solution of
Gorkov’s equations is discussed. In particular, and since
such a solution is to be found through an iterative pro-
cedure, one is eventually interested in choosing a good
auxiliary potential as a starting point.

Let us further remark that, as the auxiliary potential
(29) has a one-body character, i.e. it acts as a mean field,
the search for the ground state of ΩU corresponds to solv-

ing a Bogoliubov-like problem, as becomes evident when
writing the unperturbed grand potential in its Nambu’s
form

[ΩU ]ab =

(

Tab + Uab − µ δab Ũ †
ab

Ũab −Tab − Uab + µ δab

)

.

(35)
In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
(HFB) problem and then uses the resulting propagators
GHFB

ab as the unperturbed ones. Notice that the self-
energy corresponding to this solution, ΣHFB , eventually
differs from the first-order self-energy Σ(1) as soon as
higher orders are included in the calculation because of
the associated self-consistent dressing of the one-body
propagators.

G. Lehmann representation

Let us consider a complete set of normalized eigen-
states of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (36)

and which span the Fock space F . Inserting the corre-
sponding completeness relation, G11(t, t′) becomes

G11
ab(t, t

′) = −iθ(t− t′)
∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉 ei[Ω0−Ωk](t−t′) + iθ(t′ − t)
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉 e−i[Ω0−Ωk](t−t′) .

Using the integral representation of the theta function
and reading out the Fourier transform, one obtains the
propagator in energy representation under the form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (37)

One can proceed similarly for the other three Gorkov-
Green’s functions and obtain the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Uk
a Uk∗

b

ω − ωk + iη
+

V̄k∗
a V̄k

b

ω + ωk − iη

}

, (38a)

G12
ab(ω) =

∑

k

{
Uk
a Vk∗

b

ω − ωk + iη
+

V̄k∗
a Ūk

b

ω + ωk − iη

}

, (38b)

G21
ab(ω) =

∑

k

{
Vk
a Uk∗

b

ω − ωk + iη
+

Ūk∗
a V̄k

b

ω + ωk − iη

}

, (38c)

G22
ab(ω) =

∑

k

{
Vk
a Vk∗

b

ω − ωk + iη
+

Ūk∗
a Ūk

b

ω + ωk − iη

}

. (38d)

with Gorkov’s spectroscopic amplitudes defined as

Uk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (39a)

Vk∗
a ≡ 〈Ψk|āa|Ψ0〉 , (39b)

and

Ūk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (40a)

V̄k∗
a ≡ 〈Ψk|aa|Ψ0〉 , (40b)

from which follows that2

Ūk
a = +ηa Uk

ã , (41a)

V̄k
a = −ηa Vk

ã . (41b)

The poles of the propagators3 are given by ωk ≡ Ωk−Ω0.
The relation of such poles to separation energies between

2 Similarly to Eq. 5, we may equivalently write Eq. 41 as Ūk
a =

+Uk
ā and V̄k

a = −Vk
ā .

3 As discussed later on, eigensolutions of Gorkov’s equations come
in pairs (ωk ,−ωk) such that one should only sum on positive
solutions in Eq. 39.
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Ũab −Tab − Uab + µ δab

)

.

(35)
In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
(HFB) problem and then uses the resulting propagators
GHFB

ab as the unperturbed ones. Notice that the self-
energy corresponding to this solution, ΣHFB , eventually
differs from the first-order self-energy Σ(1) as soon as
higher orders are included in the calculation because of
the associated self-consistent dressing of the one-body
propagators.

G. Lehmann representation

Let us consider a complete set of normalized eigen-
states of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (36)

and which span the Fock space F . Inserting the corre-
sponding completeness relation, G11(t, t′) becomes

G11
ab(t, t

′) = −iθ(t− t′)
∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉 ei[Ω0−Ωk](t−t′) + iθ(t′ − t)
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉 e−i[Ω0−Ωk](t−t′) .

Using the integral representation of the theta function
and reading out the Fourier transform, one obtains the
propagator in energy representation under the form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (37)

One can proceed similarly for the other three Gorkov-
Green’s functions and obtain the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Uk
a Uk∗

b

ω − ωk + iη
+

V̄k∗
a V̄k

b

ω + ωk − iη

}

, (38a)

G12
ab(ω) =

∑

k

{
Uk
a Vk∗

b

ω − ωk + iη
+

V̄k∗
a Ūk
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where the symmetry quantum number denoting the par-
ticle number has been singled out. The label µ collects
a principal quantum number nµ, total angular momen-
tum Jµ, the projection of the latter along the z axis Mµ,
parity ⇧µ and isospin projection along the z axis Tµ of
the many-body state of interest. Use of the Greek label
µ will be made to denote the subset of quantum num-
bers µ ⌘ (⇧µ, Jµ, Tµ). Due to rotational invariance of
the nuclear Hamiltonian, eigenenergies EA

µ ⌘ EA
nµµ

are
independent of Mµ.

In the following, we consider a spherical single-
particle basis {a†p} appropriate to discussing the spher-

ical shell structure. Basis states are labelled by p ⌘
{np,⇡p, jp,mp, ⌧p} ⌘ {np,mp,↵p}, where np represents
the principal quantum number, ⇡p the parity, jp the total
angular momentum, mp its projection along the z-axis,
and ⌧p the isospin projection along the same axis.

We also consider the direct-product basis {b†~r�⌧},
where ~r is the position vector, � the projection of the
nucleon spin along the z axis, and ⌧ its isospin projec-
tion.

A. Spectroscopic amplitudes

The physical processes providing information on the
single-particle shell structure are one-nucleon transfer re-
actions. Although the discussion can be carried out for
the transfer on any initial [13]. many-body state, we
restrict ourselves in the following to the transfer on the
ground state | A

0 i of an even-even system, i.e. a J⇡ = 0+

state. Furthermore, we consider this nucleus to be of dou-
bly closed-shell character2.

In this context, let us introduce Uµ (V⌫) as the ampli-
tude to reach a specific eigenstate | A+1

µ i (| A-1
⌫ i) of the

A+1 (A-1) system by adding (removing) a nucleon in a
specific single-particle state to (from) the ground state of
the A-body system | A

0 i. Such spectroscopic amplitudes
can be defined through their representation in any given
single-particle basis. In basis {a†p}, they read

Up
µ ⌘ h A+1

µ |a†p| A
0 i⇤ , (2a)

V p
⌫ ⌘ h A-1

⌫ |ap| A
0 i⇤, (2b)

whereas their representation in basis {b†~r�q} provides the
associated wave functions or overlap functions

Uµ(~r�⌧) ⌘ h A+1
µ |b†~r�⌧ | A

0 i⇤ , (3a)

V⌫(~r�⌧) ⌘ h A-1
⌫ |b~r�⌧ | A

0 i⇤. (3b)

An important property regarding the asymptotic be-
haviour of overlap functions derives from their equation

2 Such a notion relates to the filling of shells in the uncorrelated,
e.g. Hartree-Fock, picture.

of motion given by [18]

[h1 + ⌃(!)]!=E+
µ
Uµ = E+

µ Uµ , (4)

and similarly for (V⌫ , E�
⌫ ), where (observable) one-

nucleon separation energies are defined through

E+
µ ⌘ EA+1

µ � EA
0 , (5a)

E�
⌫ ⌘ EA

0 � EA-1
⌫ . (5b)

The energy-dependent potential ⌃(!) denotes the dynam-

ical part of the irreducible self-energy [18] that naturally
arises in self-consistent Green’s-function theory and that
is to be evaluated at the eigensolution E+

µ in Eq. (4).
The static field h1 is defined in Eq. (18) and contains
both the kinetic energy and the energy-independent part
of the one nucleon self-energy. One can show from Eq. (4)
that the long-distance behaviour of the radial part of the
overlap function is governed by the corresponding one-
nucleon separation energy, e.g. for E+

µ < 0

Uµ(r�⌧) �!
r!+1 A+

µ
e�&+µ r

&+µ r
, (6)

where A+
µ denotes the so-called asymptotic normalization

coe�cient (ANC) while the decay constant is given by
&+µ ⌘ (�2mE+

µ /~2)1/2, where m is the nucleon mass3.
A similar result can, of course, be obtained for V⌫(r�⌧)
whose decay constant &�⌫ relates to E�

⌫ .
From spectroscopic amplitudes one defines addition S+

µ

and removal S�
⌫ spectroscopic probability matrices asso-

ciated with states | A+1
µ i and | A-1

⌫ i, respectively. Their
matrix elements read in basis {a†p}

S+pq
µ ⌘ h A

0 |ap| A+1
µ ih A+1

µ |a†q| A
0 i (7a)

= Up
µ Uq ⇤

µ ,

S�pq
⌫ ⌘ h A

0 |a†q| A-1
⌫ ih A-1

⌫ |ap| A
0 i (7b)

= V p ⇤
⌫ V q

⌫ ,

such that their diagonal parts, when expressed in the co-
ordinate space basis, are nothing but transition densities

for the one-nucleon transfer from | A
0 i to | A+1

µ i and
| A-1

⌫ i, respectively.
Tracing the two spectroscopic probability matrices

over the one-body Hilbert space H1 gives access to spec-
troscopic factors

SF+
k ⌘

X

a2H1

��h k|a†a| 0i
��2 =

X

a2H1

��Uk
a

��2 , (8a)

SF�
k ⌘

X

a2H1

|h k|aa| 0i|2 =
X

a2H1

��Vk
a

��2 , (8b)

3 Subtracting the center-of-mass motion would lead to using the
reduced mass of the added/removed nucleon.
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FIG. 2: (Color online) Same as Fig. ?? for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure ??, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (??)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (??), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
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which, as already pointed out before, is not the case of
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FIG. 2: (Color online) Same as Fig. 1 for a correlated system.
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pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
as solid double lines and are labelled by two indices and
an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C9a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C9b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C9c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C9d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C13)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C14)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)
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V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k
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where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been introduced. Summing the two terms one has

Σ11 (2′+2′′)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + 2Pk1k2k3
b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b + 2Qk1k2k3
b )

ω + Ek1k2k3 − iη

}

, (94)

which can be written, using properties (90) and (91), as

Σ11 (2)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

=
1

6

∑

k1k2k3

{

(Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a ) (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη

}

+
1

6

∑

k1k2k3

{

(N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a )† (N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

Σ11
ab(ω) =

∑

k1k2k3

{

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

†Dk1k2k3
b

ω + Ek1k2k3 + iη

}

, (95)

with the definitions

Ck1k2k3
a ≡ 1√

6

[

Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a

]

, (96a)

Dk1k2k3
a ≡ 1√

6

[

N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a

]

. (96b)

One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain

Σ12 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

}

, (97a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

}

, (97b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (97c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (67) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

(99a)

ωk Vk
a =

∑

b

[

−(tab − µ δab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

(99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk






U
V
W
Z






k

=







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E












U
V
W
Z






k

≡ Ξ






U
V
W
Z






k

(100)
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




U
V
W
Z






k

=







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E












U
V
W
Z






k

≡ Ξ






U
V
W
Z






k

(100)

✺ 2nd order ➟ energy-dependent self-energy

36

convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads
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where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
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Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
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=
1
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=
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where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f
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(C25)

which reads

✺ Gorkov equations

10

substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

energy dependent eigenvalue problem

9

the propagator in the energy representation under the
form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (52)

One can proceed similarly for the other Gorkov Green’s
functions and obtain eventually the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Ūk
a Ūk∗

b

ω − ωk + iη
+

Vk∗
a Vk

b

ω + ωk − iη

}

, (53a)

G12
ab(ω) =

∑

k

{
Ūk
a V̄k∗

b

ω − ωk + iη
+

Vk∗
a Uk

b

ω + ωk − iη

}

, (53b)

G21
ab(ω) =

∑

k

{
V̄k
a Ūk∗

b

ω − ωk + iη
+

Uk∗
a Vk

b

ω + ωk − iη

}

, (53c)

G22
ab(ω) =

∑

k

{
V̄k
a V̄k∗

b

ω − ωk + iη
+

Uk∗
a Uk

b

ω + ωk − iη

}

, (53d)

where the Gorkov spectroscopic amplitudes are defined
as

Uk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (54a)

Vk∗
a ≡ 〈Ψk|aa|Ψ0〉 , (54b)

and

Ūk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (55a)

V̄k∗
a ≡ 〈Ψk|āa|Ψ0〉 , (55b)

from which follows that Ūk
a = ηa Uk

ā and V̄k
a = ηa Vk

ā , and
where excitation energies are defined as

ωk ≡ Ωk − Ω0 . (56)

Such energies are a generalization of the separation en-
ergies introduced in Eq. (41). In contrast with the lat-
ter, the ωk lack of a transparent physical interpretation.
They generalize the quasiparticle energy spectrum of the
HFB problem obtained when self-energy contributions
are computed at first order only. In the limit of a non
superfluid system ωk gives back the standard separation
energy (41).
In analogy to Eq. (42) generalized spectroscopic fac-

tors can be defined through

S+
k ≡

∑

a

∣
∣〈ψk|a†a|ψ0〉

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
, (57a)

S−
k ≡

∑

a

|〈ψk|aa|ψ0〉|2 =
∑

a

∣
∣Vk

a

∣
∣
2
. (57b)

Notice that, as states |Ψ0〉 and |Ψk〉 are not characterized
by a definite particle number, such spectroscopic factors
do not have the sharp physical interpretation of the ones
introduced in Eq. (42). However, similarly to what dis-
cussed in Sec. III C, while S+

k (S−
k ) contains contribu-

tions from the addition (removal) of a nucleon to (from)
systems with different particle number, the dominating
term remains the one involving the targeted system.
One can finally introduce a Nambu representation for

the Lehmann form of the propagators by defining the row
and column vectors

X
k†
a ≡ 〈Ψk|A†

a|Ψ0〉 =
(

Ūk∗
a V̄k∗

a

)

, (58a)

Y
k†
a ≡ 〈Ψk|Aa|Ψ0〉 =

(

Vk∗
a

Uk∗
a

)

, (58b)

where A and A† have been introduced in Eq. (26), and
by writing

Gab(ω) =
∑

k

{

Xk
a X

k†
b

ω − ωk + iη
+

Yk†
a Yk

b

ω + ωk − iη

}

. (59)

V. SOLUTION OF GORKOV’S EQUATIONS

A. Calculation of single-particle propagators

Let us now proceed further to a form of the equations allowing for a direct numerical implementation. One can
derive an eigenvalue equation for the amplitudes U and V , together with a normalization condition, whose solution
results in a matrix diagonalization. Starting from Gorkov’s equations (34), extracting the pole at ω = −ωk through
the limit

lim
ω→−ωk

{

(ω + ωk)

[

Gab(ω) = G
(0)
ab (ω) +

∑

cd

G
(0)
ac (ω) Σ̃cd(ω)Gdb(ω)

]}

, (60)

30

which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āec̄f V̄d̄ḡb̄h̄ G22
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d Ūk2

f V̄k2∗
h V̄k3

g Ūk3∗
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Vk2∗
f Uk2

h Uk3∗
g Vk3

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)
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Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′′′) δ(ω − ω′ − ω′′ + ω′′′)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′ + ω′′ − ω) . (C13)

The integrations over the two energy variables are performed in this case using two successive applications of the
formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E − (f2 − b1)− iη

}

. (C14)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to
the integral (C13) we obtain

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f Ūk2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d Ūk2

f Ūk2∗
g Vk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Vk2

g Ūk3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

. (C15)

With the same technique we can evaluate all other terms contributing to the second order self-energy. We have

Σ11 (2′′)
ab (ω) = ↑ ω′

d ḡ

c f

↑ ω′′′↑ ω′′

b

a

h̄

e

(C16)

which reads

Σ11 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dḡbh̄ G11
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C17)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d Ūk2

f V̄k2∗
h Uk3∗

g Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Uk2

h V̄k3
g Ūk3∗

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The two diagrams of the other normal self-energy Σ22 are respectively

Σ22 (2′)
ab (ω) = ↑ ω′ ↓ ω′′′

d̄ ḡ

↑ ω′′

c̄ f̄

b̄

ā

h̄

ē

, (C18)
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for what concerns the first contribution, which reads

Σ12 (2′)
ab (ω) =

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄hb̄gd̄ G12
cd(ω′)G11

eg(ω′′)G11
hf (ω′ + ω′′ − ω) (C23)

=

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2
e Ūk2∗

g

ω′′ − ωk2
+ iη

+
Vk2∗

e Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
f

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3

f

ω′ + ω′′ − ω + ωk3
− iη

}

= −
∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d Ūk2
e Ūk2∗

g Vk3∗
h Vk3

f

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
e Vk2

g Ūk3

h Ūk3∗
f

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

and

Σ12 (2′′)
ab (ω) =

c f

← ω′

↓ ω′′′

h̄ b̄

↖ ω′′

e
a

d̄ḡ

, (C24)

yielding

Σ12 (2′′)
ab (ω) =

1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf Vh̄b̄ḡd̄ G12
cd(ω′)G12

fg(ω
′′)G21

he(ω
′ + ω′′ − ω) (C25)

=
1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2
g

ω′′ + ωk2
− iη

} {

V̄k3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

= −1

2

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d Ūk2

f V̄k2∗
g Uk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
f Vk2

g V̄k3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

Finally

Σ21 (2′)
ab (ω) =

g d

↑ ω′′ ↓ ω′′′

ā e

c̄

b

↑ ω′′′

h

f

, (C26)



Scaling of Gorkov’s problem

✺ Transformed into an energy independent eigenvalue problem

15

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E













Uk

Vk

Wk

Zk







= ωk







Uk

Vk

Wk

Zk







(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

Coupling to 2p1h / 2h1p Coupling to 3qp

36

convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads

36

convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads

30

which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āec̄f V̄d̄ḡb̄h̄ G22
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d Ūk2

f V̄k2∗
h V̄k3

g Ūk3∗
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Vk2∗
f Uk2

h Uk3∗
g Vk3

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)
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Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′′′) δ(ω − ω′ − ω′′ + ω′′′)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′ + ω′′ − ω) . (C13)

The integrations over the two energy variables are performed in this case using two successive applications of the
formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E − (f2 − b1)− iη

}

. (C14)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to
the integral (C13) we obtain

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f Ūk2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d Ūk2

f Ūk2∗
g Vk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Vk2

g Ūk3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

. (C15)

With the same technique we can evaluate all other terms contributing to the second order self-energy. We have

Σ11 (2′′)
ab (ω) = ↑ ω′

d ḡ

c f

↑ ω′′′↑ ω′′

b

a

h̄

e

(C16)

which reads

Σ11 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dḡbh̄ G11
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C17)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d Ūk2

f V̄k2∗
h Uk3∗

g Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Uk2

h V̄k3
g Ūk3∗

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The two diagrams of the other normal self-energy Σ22 are respectively

Σ22 (2′)
ab (ω) = ↑ ω′ ↓ ω′′′

d̄ ḡ

↑ ω′′

c̄ f̄

b̄

ā

h̄

ē

, (C18)
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for what concerns the first contribution, which reads

Σ12 (2′)
ab (ω) =

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄hb̄gd̄ G12
cd(ω′)G11

eg(ω′′)G11
hf (ω′ + ω′′ − ω) (C23)

=

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2
e Ūk2∗

g

ω′′ − ωk2
+ iη

+
Vk2∗

e Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
f

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3

f

ω′ + ω′′ − ω + ωk3
− iη

}

= −
∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d Ūk2
e Ūk2∗

g Vk3∗
h Vk3

f

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
e Vk2

g Ūk3

h Ūk3∗
f

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

and

Σ12 (2′′)
ab (ω) =

c f

← ω′

↓ ω′′′

h̄ b̄

↖ ω′′

e
a

d̄ḡ

, (C24)

yielding

Σ12 (2′′)
ab (ω) =

1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf Vh̄b̄ḡd̄ G12
cd(ω′)G12

fg(ω
′′)G21

he(ω
′ + ω′′ − ω) (C25)

=
1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2
g

ω′′ + ωk2
− iη

} {

V̄k3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

= −1

2

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d Ūk2

f V̄k2∗
g Uk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
f Vk2

g V̄k3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

Finally

Σ21 (2′)
ab (ω) =

g d

↑ ω′′ ↓ ω′′′

ā e

c̄

b

↑ ω′′′

h

f

, (C26)



Scaling of Gorkov’s problem

✺ Transformed into an energy independent eigenvalue problem

✺ Numerical scaling

27

and using Eqs. (145), (147), (148), (150), (158), one can write Eqs. (99) as

ωk Unk

na [α] =
∑

nb

[

(t[α]nanb
− µ δnanb

+ Λ[α]
nanb

)Unk

nb [α] + h̃[α]
nanb

Vnk

nb [α]

]

+
∑

nk1nk2nk3

∑

κ1κ2κ3

∑

J

[

Cnk1nk2nk3

na [ακ3κ1κ2] J
Wnk1nk2nk3

nk [κ3κ1κ2] J
−Dnk1nk2nk3

na [ακ3κ1κ2] J

†Znk1nk2nk3

nk [κ3κ1κ2] J

]

, (161a)

ωk Vnk

na [α] =
∑

nb

[

−(t[α]nanb
− µ δnanb

+ Λ[α]
nanb

)Vnk

nb [α] + h̃[α] †
nanb

Unk

nb [α]

]

+
∑

nk1nk2nk3

∑

κ1κ2κ3

∑

J

[

−Dnk1nk2nk3

na [ακ3κ1κ2] J

†Wnk1nk2nk3

nk [κ3κ1κ2] J
+ Cnk1nk2nk3

na [ακ3κ1κ2] J
Znk1nk2nk3

nk [κ3κ1κ2] J

]

. (161b)

The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
is a JΠ = 0+ state. Note that pole energies ωk only depend on nk and κ, i.e. they display a degeneracy with respect
to the magnetic quantum number mk.

H. Numerical solution and scaling of
block-diagonal Gorkov’s equations

Eqs. (160) and (161) can also be written in the ma-
trix form (100). Their numerical solution, i.e. the di-
agonalization of the corresponding matrix Ξ, requires a
severe computational effort. In the present section the
calculation procedure is outlined, in particular address-
ing the scaling of the method with both the number of
basis states Nb and the number of iterations Nit. Let
us consider the form of the matrix Ξ after the first iter-
ation, depicted in Fig. 4. As mentioned in Sec. VF

Mp

︷ ︸︸ ︷

mp

︷ ︸︸ ︷

Np







Nb

{

h h̃ C −D†



















Ntot

h̃† −h −D† C

C† −D E 0

−D C† 0 −E

FIG. 4. Scheme of the matrix Ξ.

the propagator, which has an initial number of poles
Np = 2Nb, generates at the first iteration a matrix ΞHFB

of the same dimension Np and a matrix Ξ(2) of dimension
Mp,1 = 2mp,1, where

mp,1 ≈
(

Nb

3

)

∝ N3
b

6
. (162)

The total dimension of the matrix to be diagonalized is
then Ntot,1 = Np + Mp,1 ≈ N3

b . Proceeding similarly
for the second iteration one realizes that the matrix Ξ(2)

assumes a dimension Mp,2 ≈ N3
tot,1, hence the total di-

mension of Ξ becomes Ntot,2 = Np + Mp,2 ≈ N9
b . In

general, at the nth iteration the dimension raises to

Ntot,n = Np +Mp,n ≈ N3n
b . (163)

Current computational resources can not afford such a
scaling and an alternative solution method has to be de-
veloped.
In the present work the following computational

method based on the Lanczos algorithm is employed. At
each iteration, the Lanczos procedure is applied to the
matrix E (of dimension mp) yielding a matrix E′ of di-
mension m′

p << mp. The resulting matrix Ξ′, of dimen-
sion N ′

tot = Np+2m′
p << Ntot is then diagonalized with

standard techniques. This procedure allows to restrain
the exponential growth of the matrix which has to be
diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
solutions.
The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:

1. Nb pivots {p1, ..., pNb
} are created.

2. An order-one Krylov subspace for the matrix E,
i.e. K1 = span {p1, E p1, p2, E p2, ..., pNb

, E pNb
}, is

generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
tained orthonormal vectors instead of the initial
ones.

After NL Lanczos iterations, the resulting orthonormal
vectors form an orthonormal basis in the Krylov subspace
KNL and a transformation matrix QNL for E′

E′ = Q∗
NL

EQNL . (164)
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and using Eqs. (145), (147), (148), (150), (158), one can write Eqs. (99) as

ωk Unk

na [α] =
∑

nb

[

(t[α]nanb
− µ δnanb

+ Λ[α]
nanb

)Unk

nb [α] + h̃[α]
nanb

Vnk

nb [α]

]

+
∑

nk1nk2nk3

∑

κ1κ2κ3

∑

J

[

Cnk1nk2nk3

na [ακ3κ1κ2] J
Wnk1nk2nk3

nk [κ3κ1κ2] J
−Dnk1nk2nk3

na [ακ3κ1κ2] J

†Znk1nk2nk3

nk [κ3κ1κ2] J

]

(161a)

ωk Vnk

na [α] =
∑

nb

[

−(t[α]nanb
− µ δnanb

+ Λ[α]
nanb

)Vnk

nb [α] + h̃[α] †
nanb

Unk

nb [α]

]

+
∑

nk1nk2nk3

∑

κ1κ2κ3

∑

J

[

−Dnk1nk2nk3

na [ακ3κ1κ2] J

†Wnk1nk2nk3

nk [κ3κ1κ2] J
+ Cnk1nk2nk3

na [ακ3κ1κ2] J
Znk1nk2nk3

nk [κ3κ1κ2] J

]

. (161b)

The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
is a JΠ = 0+ state. Note that pole energies ωk only depend on nk and κ, i.e. they display a degeneracy with respect
to the magnetic quantum number mk.

H. Numerical solution and scaling of
block-diagonal Gorkov’s equations

Eqs. (160) and (161) can also be written in the ma-
trix form (100). Their numerical solution, i.e. the di-
agonalization of the corresponding matrix Ξ, requires a
severe computational effort. In the present section the
calculation procedure is outlined, in particular address-
ing the scaling of the method with both the number of
basis states Nb and the number of iterations Nit. Let
us consider the form of the matrix Ξ after the first iter-
ation, depicted in Fig. 4. As mentioned in Sec. VF

M′

p

︷ ︸︸ ︷

m′

p

︷ ︸︸ ︷

Np







Nb

{

h h̃ C′ −D′†



















N ′
tot

h̃† −h −D′† C′

C′† −D′ E′ 0

−D′ C′† 0 −E′

FIG. 4. Scheme of the matrix Ξ.

the propagator, which has an initial number of poles
Np = 2Nb, generates at the first iteration a matrix ΞHFB

of the same dimension Np and a matrix Ξ(2) of dimension
Mp,1 = 2mp,1, where

m′
p,1 ≈

(

Nb

3

)

∝ N3
b

6
. (162)

The total dimension of the matrix to be diagonalized is
then Ntot,1 = Np + Mp,1 ≈ N3

b . Proceeding similarly

for the second iteration one realizes that the matrix Ξ(2)

assumes a dimension Mp,2 ≈ N3
tot,1, hence the total di-

mension of Ξ becomes Ntot,2 = Np + Mp,2 ≈ N9
b . In

general, at the nth iteration the dimension raises to

Ntot,n = Np +Mp,n ≈ N3n
b . (163)

Current computational resources can not afford such a
scaling and an alternative solution method has to be de-
veloped.
In the present work the following computational

method based on the Lanczos algorithm is employed. At
each iteration, the Lanczos procedure is applied to the
matrix E (of dimension mp) yielding a matrix E′ of di-
mension m′

p << mp. The resulting matrix Ξ′, of dimen-
sion N ′

tot = Np+2m′
p << Ntot is then diagonalized with

standard techniques. This procedure allows to restrain
the exponential growth of the matrix which has to be
diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
solutions.
The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:

1. Nb pivots {p1, ..., pNb
} are created.

2. An order-one Krylov subspace for the matrix E,
i.e. K1 = span {p1, E p1, p2, E p2, ..., pNb

, E pNb
}, is

generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
tained orthonormal vectors instead of the initial
ones.

After NL Lanczos iterations, the resulting orthonormal
vectors form an orthonormal basis in the Krylov subspace
KNL and a transformation matrix QNL for E′

E′ = Q∗
NL

EQNL . (164)
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and using Eqs. (145), (147), (148), (150), (158), one can write Eqs. (99) as

ωk Unk

na [α] =
∑

nb

[

(t[α]nanb
− µ δnanb

+ Λ[α]
nanb

)Unk

nb [α] + h̃[α]
nanb

Vnk

nb [α]

]

+
∑

nk1nk2nk3

∑

κ1κ2κ3

∑

J

[

Cnk1nk2nk3

na [ακ3κ1κ2] J
Wnk1nk2nk3

nk [κ3κ1κ2] J
−Dnk1nk2nk3

na [ακ3κ1κ2] J

†Znk1nk2nk3

nk [κ3κ1κ2] J

]

(161a)

ωk Vnk

na [α] =
∑

nb

[

−(t[α]nanb
− µ δnanb

+ Λ[α]
nanb

)Vnk

nb [α] + h̃[α] †
nanb

Unk

nb [α]

]

+
∑

nk1nk2nk3

∑

κ1κ2κ3

∑

J

[

−Dnk1nk2nk3

na [ακ3κ1κ2] J

†Wnk1nk2nk3

nk [κ3κ1κ2] J
+ Cnk1nk2nk3

na [ακ3κ1κ2] J
Znk1nk2nk3

nk [κ3κ1κ2] J
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. (161b)

The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
is a JΠ = 0+ state. Note that pole energies ωk only depend on nk and κ, i.e. they display a degeneracy with respect
to the magnetic quantum number mk.

H. Numerical solution and scaling of
block-diagonal Gorkov’s equations

Eqs. (160) and (161) can also be written in the ma-
trix form (100). Their numerical solution, i.e. the di-
agonalization of the corresponding matrix Ξ, requires a
severe computational effort. In the present section the
calculation procedure is outlined, in particular address-
ing the scaling of the method with both the number of
basis states Nb and the number of iterations Nit. Let
us consider the form of the matrix Ξ after the first iter-
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the propagator, which has an initial number of poles
Np = 2Nb, generates at the first iteration a matrix ΞHFB

of the same dimension Np and a matrix Ξ(2) of dimension
Mp,1 = 2mp,1, where
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∝ N3
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The total dimension of the matrix to be diagonalized is
then Ntot,1 = Np + Mp,1 ≈ N3

b . Proceeding similarly

for the second iteration one realizes that the matrix Ξ(2)

assumes a dimension Mp,2 ≈ N3
tot,1, hence the total di-

mension of Ξ becomes Ntot,2 = Np + Mp,2 ≈ N9
b . In

general, at the nth iteration the dimension raises to n

Ntot,n = Np +Mp,n ≈ N3n
b . (163)

Current computational resources can not afford such a
scaling and an alternative solution method has to be de-
veloped.
In the present work the following computational

method based on the Lanczos algorithm is employed. At
each iteration, the Lanczos procedure is applied to the
matrix E (of dimension mp) yielding a matrix E′ of di-
mension m′

p << mp. The resulting matrix Ξ′, of dimen-
sion N ′

tot = Np+2m′
p << Ntot is then diagonalized with

standard techniques. This procedure allows to restrain
the exponential growth of the matrix which has to be
diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
solutions.
The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:

1. Nb pivots {p1, ..., pNb
} are created.

2. An order-one Krylov subspace for the matrix E,
i.e. K1 = span {p1, E p1, p2, E p2, ..., pNb

, E pNb
}, is

generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
tained orthonormal vectors instead of the initial
ones.

After NL Lanczos iterations, the resulting orthonormal
vectors form an orthonormal basis in the Krylov subspace
KNL and a transformation matrix QNL for E′

E′ = Q∗
NL
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The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
is a JΠ = 0+ state. Note that pole energies ωk only depend on nk and κ, i.e. they display a degeneracy with respect
to the magnetic quantum number mk.
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Eqs. (159) and (160) can also be written in the matrix
form (99). Their numerical solution, i.e. the diagonaliza-
tion of the corresponding matrix Ξ, requires a severe com-
putational effort. In the present section the calculation
procedure is outlined, in particular addressing the scal-
ing of the method with both the number of basis states
Nb and the number of iterations Nit. Let us consider the
form of the matrix Ξ after the first iteration, depicted in
Fig. 4. As mentioned in Sec. VF the propagator, which
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generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
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After NL Lanczos iterations, the resulting orthonormal
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diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
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The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
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p << Ntot is then diagonalized with
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diagonalized at each iteration, enabling a large number
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The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:
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The new matrix E′ constitutes the orthogonal projection
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
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∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E












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



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= ωk






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Zk







(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)
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



Uk

Vk

Wk

Zk







= ωk







Uk

Vk

Wk

Zk







(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

Lanczos

E

-E

E′

-E′

➟ Conserves moments of spectral functions

➟ Equivalent to exact diagonalization
    for NL → dim(E)

We do not...

Instead, Lanczos projection of Gorkov matrix

How do we select the poles?



Test Lanczos projection
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Results



Benchmark with coupled cluster method

➟ GGF and CC quantitatively similar

➟ GGF(3) expected to reach Λ-CCSD(T) accuracy

(CC results courtesy of G. Hagen)
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Spectral strength distribution

Dyson 1st order (HF) Gorkov 1st order (HFB)

Dyson 2nd order Gorkov 2nd order
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Shell structure evolution

[Baranger 1970, Duguet and Hagen. 2011]
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✺ ESPE collect fragmentation of “single-particle” strengths from both N±1

4

III. GENERALIZATION OF UMEYA-MUTO SUM RULE TO FOCK SPACE

Umeya-Muto sum rule [3] can be generalized to the case of a theory defined in Fock space, such as the Gorkov-Green’s
function formalism introduced above. Although the following derivation could be carried out for any initial many-body
state defined in Fock space |�JM

i ⌅, let us now consider the ground state of the targeted nucleus to be in a J⇤ = 0+

state, i.e. |�00
0 ⌅. The single-particle basis can be conveniently labelled by a = {na,⌅a, ja,ma, qa} = {na,ma,�},

where na represents the principal quantum number, ⌅a the parity, ja the total angular momentum, ma its projection
along the z-axis and qa the isospin projection. In the following each roman single-particle index corresponds to such
set of quantum numbers.

In this case in the overlaps (15) and (16) the quantum numbers of the state |�JkMk
k ⌅ are constrained by the ones

of the creation and annihilation operators acting on |�00
0 ⌅. In particular one can define

Uk
a = ⇤�00

0 |āa|�JkMk
k ⌅

= ⌅a(�1)ja ⇤�00
0 |(�1)m ana��ma |�

JkMk
k ⌅

= ⌅a(�1)ja C00
JkMkjama

⇤�00
0 ||ana�||�

JkMk
k ⌅

= ⇥Jkja ⇥Mk�ma

⌅a(�1)ma

⇧
2ja + 1

⇤�00
0 ||ana�||�

JkMk
k ⌅

⇥ ⇥⇥� ⇥Mk�ma (�1)ma Unk

na [�] , (28)

and similarly

Ūk
a ⇥ ⇥⇥� ⇥Mkma Ū

nk

na [�] , (29)

Vk
a ⇥ ⇥⇥� ⇥Mk�ma (�1)�ma Vnk

na [�] , (30)

V̄k
a ⇥ ⇥⇥� ⇥Mkma V̄

nk

na [�] . (31)

The e⇥ective single-particle energy of an orbit a is defined by

⇤centa ⇥ hcent
ab ⇥ab = taa +

⌅

cd

V̄ NN
acad ⇧

[1]
dc +

⌅

cdef

V̄ NNN
acdaef ⇧

[2]
efcd ⇥

⌅

k

S+a
k E+

k +
⌅

k

S�a
k E�

k (32)

where E±(N)
k are the generalized separation energies introduced in Eq. (26) and S±a

k the generalized spectroscopic
amplitudes defined through

S+a
k ⇥

⇤⇤⇤⇤�JkMk
k |a†a|�00

0 ⌅
⇤⇤⇤
2
=

⇤⇤Uk
a

⇤⇤2 (33)

S�a
k ⇥

⇤⇤⇤⇤�JkMk
k |aa|�00

0 ⌅
⇤⇤⇤
2
=

⇤⇤Vk
a

⇤⇤2 . (34)

One can show that such amplitudes are normalized to one
⌅

k

S+a
k +

⌅

k

S�a
k =

⌅

k

⇧
⇤�00

0 |aa|�JkMk
k ⌅⇤�JkMk

k |a†a|�00
0 ⌅+ ⇤�00

0 |a†a|�
JkMk
k ⌅⇤�JkMk

k |aa|�00
0 ⌅

⌃

= ⇤�00
0 |

�
aa, a

†
a

⇥
|�00

0 ⌅
= ⇥aa
= 1 . (35)

By employing definitions (28)-(31) one can further specify the m-independence of the e⇥ective single-particle energy
defined in Eq. (32)

⇤na� =
⌅

k

S+na�
nk

E+(N)
k +

⌅

k

S�na�
nk

E�(N)
k , (36)

where the block-diagonal generalized spectroscopic amplitudes are now defined through

S+a
k = ⇥⇥� ⇥Mk�ma

⇤⇤⇤Unk

na [�]

⇤⇤⇤
2
⇥ ⇥⇥� ⇥Mk�maS+na�

nk
(37)

S�a
k = ⇥⇥� ⇥Mk�ma

⇤⇤⇤Vnk

na [�]

⇤⇤⇤
2
⇥ ⇥⇥� ⇥Mk�maS�na�

nk
. (38)



Towards medium/heavy open-shell

E (N=13) = -1269.6 MeV
E (N=∞) = -1269.7(2) MeV
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➟ From N=13 to N=11 → 200 keV
➟ Very good convergence

✺ Case of 74Ni

(Extrapolation to infinite model space from 
[Coon et al., 2012; Furnstahl et al. 2012])



74Ni - spectral information
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➟ Static and dynamic pairing
    correlations

➟ Many-body correlations 
    screened out from ESPEs

➟ Second order compresses
    spectrum



Three-body forces

✺ 3NF in the Gorkov formalism: work in progress

[Cipollone, Barbieri, Navrátil, in preparation]
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Conclusions and outlook

✺ Formulation of particle-number restored Gorkov theory

✺ Improvement of the self-energy expansion

✺ Implementation of three-body forces

✺ Gorkov-Green’s functions: 
    first ab-initio open-shell calculations

30

which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh
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fh(ω′′)G21
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}

×
{
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h
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.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)

✺ Provide a manageable way to address
    (near) degenerate systems

✺ Good convergence, reasonable scaling,
    agreement with CC benchmarks
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✺ Proper coupling to the continuum


