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Outline

Motivations and generalities: Poincaré covariance and Few-Nucleon

systems

Bakamjian-Thomas construction and the Light-Front Relativistic

Hamiltonian Dynamics

The neutron structure from inclusive and Semi-inclusive DIS by a

polarized 3He→ the spin-dependent Light-Front Spectral Function

of the nucleon

A Light-Front approach for Semi-inclusive DIS:

e+3 ~He⊥ → e′ + h+X

(work in progress, and Del Dotto, Pace, Salmè, Scopetta, Il Nuovo Cimento C 35

(2012) 101)

Conclusions & Perspectives
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Why a Relativistic description of

Few-Nucleon Systems is needed?

The Standard Model of Few-Nucleon Systems, where nucleon and pion degrees of

freedom are taken into account, is already at a very sophisticated stage, and many

efforts are presently carried on in order to retain all the general principles

compatible with a theory where a fixed number of constituents is acting.

To achieve a relativistic description, beyond a purely kinematical approach, still

with a finite dof, should represent an important step forward in nuclear physics, in

view of the fact that, e.g., the extraction of some key quantities for hadronic

physics, like the neutron Generalized Parton Distributions and/or

Transverse-momentum Distributions, could be affected by relativistic nuclear

effects. As a matter of fact, i) nuclear targets are needed (....deuteron, ~3He) and ii)

DIS regime has to be reached. This means that, at least, one has to carefully deal

with the boosts of the nuclear states!

Indeed, even dynamics should be investigated within a relativistic framework, to

shed light on some tensions in the description of the Few-nucleon systems (e.g.,

Ay puzzle?)
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Many efforts for Few Nucleons

Relativistic Mean Field Theory for Few-Nucleon? NO !

Field theoretical approaches for two-body systems (Bethe-Salpeter Equation,

primarily) have a basic role, but difficult to be numerically implemented. NB: in the

last two decades, there has been an increasing amount of efforts in implementing

different methods for obtaining numerical solutions in both Euclidean and

Minkowski space. E.g., Feynman-Schwinger representation of the Green

Functions (Tjon and Nieuwenhuis, PRL 77 (1996) 814), the Nakanishi PTIR (

Kusaka & William PRD 51 (1995) 7026, Carbonell & Karmanov EPJA 46 (2010)

387 and review in FBS 49 (2011) 205, Frederico et al PRD 85 (2012) 036009, etc.

.), or the quasipotential reduction (e.g. Gross-Stadler, review in FBS 49 (2011)

91). They are becoming more and more sophisticated....

However, for A ≥ 2, one can exploit phenomenological, but not less rigorous,

approaches, like the one based on the Relativistic Hamiltonian Dynamics,

proposed by Dirac in 1949 (RMP 21 (1949) 392). RHD’s allow one to fulfill the

Poincaré covariance, with finite dof, and therefore, they could be seen as falling in

between the non relativistic framework and the field theory, in its full glory.
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Aim and Tool:

Aim: To describe a Few-Nucleon system through a Poincaré covariant formalism, in

order to obtain an approach where both wave functions and operators (e.g. EW current)

transform according to the extended Poincaré group (4D translations + Lorentz group +

parity and time reversal)

General principles to be implemented

⋆ Extended Poincaré covariance

[Pµ, P ν ] = 0, [Mµν , P ρ] = −ı(gµρP ν − gνρPµ),

[Mµν ,Mρσ] = −ı(gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ)

P and T have to be taken into account !

⋆ ⋆ Macroscopic locality (or macroscopic causality), if we want to take advantage of the

study of two-nucleon systems, interacting with short-range forces, when A ≥ 3 systems

are investigated. In a Poincaré covariant framework some issues arise, and can be

easily solved through unitary operators called packing operators

Tool: the Dirac Relativistic Hamiltonian Dynamics in Light-front form
Poincaré description of

3 ~He.... – p.5/31



Choosing a Relativistic Hamiltonian

Dynamics

A reasonable compromise: i) fulfilling Poincaré covariance in a non perturbative

way; ii) embedding the whole successful non relativistic phenomenology; iii)

affordable numerical calculations; iv) fixed number of constituents; v) large class of

allowed interactions.

The investigation of 4D hyper-surfaces (in Minkowski space) with maximal

symmetry, under the action of the generators of GP , lead Dirac to propose the

Relativistic form of the Hamiltonian Dynamics.

A quantum states evolves in time] under the action of Hamiltonian operators that

contain the Dynamics. The initial state lives onto a given surface, with its-own

symmetries wrt GP .

In the non relativistic framework, one has only one choice for the initial

hyper-surface : t = 0 and any {x, y, z}. Since any value for the velocity is possible.

In a relativistic framework, given the existence of a limiting velocity (the speed of

the light), one has a set of possibilities. In total 5, but Dirac considered only three

surfaces: the ones with maximal symmetry, namely that remain invariant under the

action of the maximal number of Poincaré generators.
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Dirac presented three forms for the Relativistic Hamiltonian Dynamics:

Instant Form, has as initial surface the most familiar one: t = 0, where the time is

the standard one. It is invariant wrt to ~P and ~J .

Front Form or Light-Front Form, has an initial surface i) fully "illuminated", at a

given timeLF = ct+ z, by an electromagnetic wave and ii) tangent to the

light-cone, → DIS and SIDIS

Point Form, has as initial surface, the one invariant for Lorentz transformations. It

has a hyperboloid form, since t2 − x2 − y2 − z2 remains invariant.

Notice that the set is completed by two other hyper-surfaces, that have less symmetry

properties than the previous ones.

The symmetry properties of the initial surface make a separation among the generators

of GP :

The ones that leave the initial hyper-surface invariant are called kinematical, since

are untouched by the interactions.

The remaining generators are the dynamical ones. They push the system away

from the initial hyper-surface, and therefore they must contain the interaction, that

governs the evolution. They are also called Hamiltonians.
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4D surfaces with maximal symmetry under GP

After S.J. Brodsky, H.C. Pauli and S.S Pinsky, Phys. Rep. 301, 299 (1998).

The thick arrows indicate the flow of the variable noted as time, that labels the states

reached by the interacting system under the action of the generators containing the

Dynamics. Summarizing: different forms of HD → different form of the variable ”time”.
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Benefits and problems with LFHD

+ In LFHD, one has the maximal set of kinematical generators. They are 7

P+ = P 0 + Pz , ~P⊥, Jz ,Kz , ~E⊥. The two generators

{Ex,= Kx + Jy, Ey = Ky − Jx} are the transverse LF boosts.

+ The LF boosts: Kz, ~E⊥, given their kinematical nature,produce trivial

transformation rules for boosting quantum states, and allows one to separate the

intrinsic motion from the global motion, in complete analogy with the non

relativistic case.

+ P+ ≥ 0 leads to a meaningful Fock expansion.

+ The IMF description of DIS is easily included.

+ The dynamical set is composed by only 3 generators: P− = P 0 − Pz and

Fx = Kx − Jy, Fy = Ky + Jx. The last two generators are the transverse LF

rotations.

+ No square roots in the dynamical operator P−, propagating the state in the

LF-time.

− Although one can define a kinematical, intrinsic angular momentum in a particular

construction of the generators, as discussed below, the transverse LF-rotations are

dynamical.
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Poincaré generators for an interacting

system

For finite degrees of freedom, an explicit construction of the 10 Poincaré generators, was

given by Bakamjian and Thomas (PR 92 (1953) 1300).

The essential feature of the BT construction is that i) the dynamical generators of GP are

expressed in terms of the mass operator of the interacting system, and ii) only this

contains the interaction (remind that the mass operator is one of the Casimir of GP )

For the LFHD, the BT construction is implemented through the following steps (for the

other forms one has an analogous procedure, see Keister and Polyzou Adv. NP 20

(1991))

First step: construct the 10 generators, {P−
0 , P

+, ~P⊥, J3, ~F0⊥,K3, ~E⊥} for the

non interacting system

Second step: choose 10 auxiliary operators, {M0, P+, ~P⊥,K3, ~E⊥,~j0LF }. The

non interacting mass, M0, and the angular momentum, ~j0LF in the intrinsic frame,

are given by

M2
0 = P−0P+ − | ~P⊥|2 (0,~j0LF ) =

[

B−1
LF

(
P0

M0

)]µ

ν

(
P0

M0

)
W ν

0

M0

[B−1
LF ]µν is a LF boost, and W ν

0 is the Pauli-Lubanski 4-vector (W 2
0 =M2

0 |~j0LF |2)

NB the commutation rules of the Poincaré generators imply the ones of the

auxiliary operators (and viceversa)
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Third step: add to M0 an interaction V that commutes with

{P+, ~P⊥, K3, ~E⊥,~j0LF }. Then, the set {M =M0 + V, P+, ~P⊥,K3, ~E⊥,~j0LF }

have the same commutation rules of the non interacting set (i.e. the one with M0).

Fourth step: invert the second step, starting from

{M = M0 + V, P+, ~P⊥, K3, ~E⊥,~j0LF }. Then the obtained 10 Poincaré

generators, fulfill the correct commutation rules, and contain the interaction.

NB |~j0LF |2 and the third component of ~j0LF can be used for labeling the states !!

NB NB the BT construction holds for an interacting system with a finite number of dof

and it is not unique. In principle, the dependence (in P− and ~F⊥) upon the interaction

could be more general, not only through the mass operator.
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Macroscopic locality

Macroscopic locality meets our physical intuition

For instance, if the spacelike distance increases, and the interaction dies, one should

expect two completely isolated subsystems, for which the Hamiltonian clusterizes as

follows

For |r12 − r3| >> d ⇒ H(123) = H12 +Hfree
3

(the same for the other generators)

NB Spacelike separations are not Lorentz invariant, this leads to a mathematical

formulation of the macroscopic locality in terms of infinitely large spacelike separations:

d → ∞.

Imposing macroscopic locality means that all the properties valid for a system must hold

for any subsystem in isolation.

Then, e.g., the two-body interaction extracted from the study of NN systems can be

adopted in the description of many-nucleon systems (modulo the presence of

many-body interactions).
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The macroscopic locality can be easily implemented if one takes as a basis the tensor

product of the (A-1)-body interacting states and the single particle states (with the proper

symmetrization).

Within the BT construction, the macrolocality cannot be implemented, but there are

unitary operators, the packing operators, that relate the states obtained in the BT

approach and the one related to the tensor-product approach

The packing operators, fortunately, give very small effects, and therefore one can adopt

the BT framework safely (Coester-Polyzou PRD 26, 1348 (1982) and Keister-Polyzou

PRC 86 (2012))014002.

The macroscopic locality (the only property that we are able to experimentally test) can

be seen as a weak counterpart of the microscopic locality (or microcausality): one of the

basic axioms of the Local Field Theory. In this case the constraint is imposed at

arbitrarily short spacelike distances onto free fields.
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A first lesson

BT construction provides a viable tool for obtaining the Poincaré generators for an

interacting system, with finite degrees of freedom.

The key ingredient is the mass operator, Casimir of GP , that contains the

interaction, and generates the dependence upon the interaction of the dynamical

generators. P− and the LF transverse rotations ~F⊥, in LFHD.

The interaction , V , must commutes with all the kinematical generators, and in

addition with the non interacting spin. These constraints lead to the independence

upon the global (CM) motion, as in the non relativistic case and the property to

conserve the BT angular momentum.

The full theory must fulfills the macroscopic locality, as well. This property can be

implemented by using interaction-dependent, unitary operators: the packing

operators. Their effects is quite small, and therefore they will be neglected in what

follows.
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The BT Mass operator for A=3 nuclei - I

MBT (123) = M0(123) + V BT
12,3 + V BT

23,1 + V BT
31,2 + V BT

123

where

M0(123) =
√

m2 + k21 +
√

m2 + k22 +
√

m2 + k23 =
√

M2
0 (ij) + p2ℓ +

√

m2 + p2ℓ

is the free mass operator, with i) ~k1 + ~k2 + ~k3 = 0, and ii) ~pℓ the Jacobi

momentum with respect to the CM of the free pair (ij).

V BT
ij,ℓ =

√

M2
0 (ij) + vBT

ij + p2ℓ −
√

M2
0 (ij) + p2ℓ is the two-body interaction in a

A=3 system, and vBT
ij the two-body interaction in a A=2 system, fulfilling the

proper commutation rules.

The structure of V BT
ij,ℓ , is suggested by the analysis of a two-body interacting

system + a free third particle. One can naturally write

M12,3 =
√

M2
0 (12) + vBT

ij + p23 +
√

m2 + p23 =

= M0(123) +

[√

M2
0 (12) + vBT

12 + p23 −
√

M2
0 (12) + p23

]

V BT
123 is a short-range three-body forces
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The BT Mass operator for A=3 nuclei - II

Notice that

V BT
12,3 =

vBT
12

√

M2
0 (12) + vBT

12 + p23 +
√

M2
0 (12) + p23

∼

4mV NR
12

√

M2
0 (12) + vBT

12 + p23 +
√

M2
0 (12) + p23

→ V NR
12

For the two-body case the Schrödinger Eq. can be rewritten as follows

[

4m2 + 4k2 + 4mV NR
]

|ψd〉 =
[
4m2 − 4mBd

]
|ψd〉

[

M2
0 (12) + 4mV NR

]

|ψd〉 =
[
M2

d +B2
d

]
|ψd〉 ∼ M2

d |ψd〉

and the identification between vBT
12 and 4mV NR naturally stems out, disregarding

correction of the order Bd/Md, Analogous elaboration for the Lippmann-Schwinger Eq.

(even without approx. on the energies...)
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The BT Mass operator for A=3 nuclei - III

In the non relativistic framework, it is not taken into account the changes in the two-body

interaction when we move from the two-body CM to the three-body CM

The NR mass operator is written as

MNR = 3m+
∑

i=1,3

k2i
2m

+ V NR
12 + V NR

23 + V NR
31 + V NR

123

NB The operators describing the two- and three-body forces must obey to the

commutation rules proper of the Galilean group, leading to the well-known properties like

the translation invariance, the conservation of the total 3-momentum.

Those properties are similar to the ones in the BT construction. This allows us to

consider the standard non relativistic mass operator as a sensible BT mass operator,

and embedding it in a Poincaré covariant approach.

MBT (123) =M0(123) + V BT
12,3 + V BT

23,1 + V BT
31,2 + V BT

123 ∼MNR

As a consequence, the standard eigensolutions of MNR can be eligible for a Poincaré

covariant description of the A=3 nuclei.
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The BT Mass operator for A=3 nuclei - IV

To complete the matter:

within the LFHD, the LF boosts are kinematical and therefore their action result in

a simple phases

Coupling intrinsic spins and orbital angular momenta is easily accomplished within

the Instant form of RHD: it amounts to the usual non relativistic machinery

(Clebsch-Gordan coefficients)

to embed this machinery in the LFHD one needs unitary operators, the so-called

Melosh rotations, that relate the LF spin wave function and the canonical one. For

a (1/2)-particle with LF momentum k̃ ≡ {k+, ~k⊥}

|s, σ′〉LF =
∑

σ

D
1/2
σ′,σ

(R†
M (k̃)) |s, σ〉c

where D
1/2
σ′,σ

(R†
M (k̃)) is the standard Wigner function for the J = 1/2 case

for the nucleon quantities, like the density distribution or the Spectral Function, the

Melosh rotations does not produce an extra algebraic burden respect to the Instant

form, viz

OLF
σ′′′,σ =

∑

σ′′,σ′

D
1/2
σ′′′,σ′′ (R

†
M ) OIF

σ′′,σ′ D
1/2
σ′,σ

(RM )
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Second lesson

What has been done till now, within a non relativistic framework, can be re-used in a

Poincaré covariant framework

This does not represent the ultimate response.

NB

V BT
12,3 =

vBT
12

√

M2
0 (12) + vBT

12 + p23 +
√

M2
0 (12) + p23

and vBT
12 is the two-body interaction that must describe the whole two-nucleon

phenomenology (bound + scattering states), in the A=2 CM !

(Instant form calculations of the Faddeev equation for both n− d elastic scattering and

breakup, with CD Bonn and TM99 3BF, can be found in Witala et al PRC 83 (2011)

044001.)
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The most recent applications

The first application has been the evaluation of the electromagnetic form factors of 3H

and 3He, without dynamical two-body currents (Baroncini, Kievsky, Pace and G.S. AIP

1056, 272 (2008)) → Figs.

The second one is given by the spin-dependent nucleon Spectral Function in a nucleus

with polarization ~SA

PN
MA

(k,E) = SA
〈ΨA; JAMAπA|a†

~k,µ′
δ(E −H + EA) a~kµ|πAJAMA; ΨA〉SA

where H is the Hamiltonian of an (A− 1) system

The spin-dependent Spectral Function yields the probability distribution to find a nucleon

with a given 3-momentum and removal energy E, in a nucleus with the the third

component of ~JA along the polarization ~SA equal to MA.

This quantity is relevant for describing the inclusive and semi-inclusive electron

scattering from a polarized 3He target.
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Charge and Magnetic form factors of 3H and

3He in LFHD and AV18
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The neutron structure from a polarized 3He

target

3 ~He is the ideal target to study the microscopic structure of the neutron.

Naive picture: in S-wave 3 ~He = ~n

(~ 90 % )

p p p p p pn n n

S  DS  
1

... A realistic description of the nucleons inside a polarized 3He leads to modifications,

very relevant for an accurate extraction of the neutron properties !

In plane wave impulse approx. (PWIA), an essential ingredient for achieving this goal is

the evaluation of a realistic spin-dependent nucleon Spectral-function, that can be written

by using a tensor product basis (|~k〉 ⊗ |φfA−1
〉) as

PN
σ′σMA

(k,E) =
∑

fA−1

δ(E − EA−1 + EA)

SA
〈ΨA; JAMAπA|~k, σ;φfA−1

〉
︸ ︷︷ ︸

〈φfA−1
;σ′~k|πAJAMA; ΨA〉SA

︸ ︷︷ ︸

տ overlaps ր
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Example I: the spin structure function of the

neutron from DIS

Reaction:

~e+3 ~He → e′ +X

In DIS regime, the asymmetry of the inclusive cross section, dσ(~SHe, h) (h is the elicity

of the incoming electron) is given by

A‖ =
dσ(~SHe, h = +)− dσ(~SHe, h = −)

dσ(~SHe, h = +) + dσ(~SHe, h = −)
= 2xBj

gHe
1 (xBj)

FHe
2 (xBj)

where g1 and F2 are spin-dependent and spin-independent structure functions of 3He.

If i) one takes into account S, S′ and D and ii) Fermi motion + binding effects are

considered only for determing the effective nucleon polarization, one can approximate

gHe
1 (xBj) = 2ppg

p
1(xBj) + png

n
1 (xBj)

where pN is the effective longitudinal polarization of the nucleon, easily evaluated in

PWIA from the spin-dependent Spectral Function.

pp = −0.023 (AV 18) pn = 0.878 (AV 18)

NB This approximation, checked in detail by using the full PWIA expression (Ciofi, Pace,

Scopetta, G.S. PRC 48, 968) is widely adopted.
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Example II: neutron Single-Spin Asymmetry

from SiDIS

π
Reaction

e+3 ~He⊥ → e′ + π+X

where êz ≡ q̂ with ~q

the3-momentum trans-

fer

Aim: to obtain the neutron single-spin asymmetry (wrt to opposite directions of the

transverse polarization, ~S⊥He), that, in turn, it allows one, e.g., to investigate the T-odd

Sivers function, f⊥q
1T (x, k⊥). This is one of the quark transverse-momentum distributions

and yields the correlation between the quark transverse-momentum and the transverse

polarization of the father nucleon. It provides unique information on the orbital angular

momentum content of the nucleon wave function and eventually sheds light on the

famous spin-crisis.

Can one use a simple expression, like the one adopted for DIS, to extract the neutron

SSA from the 3He SSA?
3 ~He⊥ → ~n⊥
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The expression to be safely adopted for extracting the neutron SSA (and actually applied

to the data by Qian et al., PRL 107 (2011) 072003) is

Aexp
3 = fnpn⊥A

exp
n + 2fppp⊥A

exp
p

where fN , is the nucleon dilution factors, and pN⊥, the nucleon transverse polarization.

In a non relativistic framework the transverse and longitudinal polarizations are equal .

The full calculations (S.Scopetta, PRD 75 (2007) 054005) for checking the reliability of

the previous eq. was done in the Bjorken limit and using PWIA (FSI only in the spectator

nucleon pair).

Ath
3 ≃

∫

d~p dE....~P(~p,E) f⊥q
1T

(
Q2

2p · q
,k2

T

)

Dq,h
1

(

p · h

p · q
,

(
p · h

p · q
κT

)2
)

≃

≃ pnA
th
n + 2ppA

th
p

For the detailed calculations, one needs again the spin-dependent nuclear spectral

function. The function Dq,h
1 , the fragmentation function, describes the hadronization

process.
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The SiDIS nuclear hadronic tensor in LFHD

M f

εS

k

h f

In PWIA the LF hadronic tensor for the 3He nucleus is:

Wµν(Q2, xB , z, τhf, ĥ, SHe) ∝
∑

σ,σ′

∑

τhf

∫
∑ ǫmax

S

ǫmin
S

dǫS

∫ (MX−MS)2

M2
N

dM2
f

×

∫ ξup

ξlo

dξ

ξ2(1− ξ)(2π)3

∫ Pmax
⊥

Pmin
⊥

dP⊥

sinθ
(P+ + q+ − h+)

×wµν
σσ′

(

τhf , q̃, h̃, P̃
)

P
τhf

σ′σ
(k̃, ǫS , SHe)

where (ṽ = {v+ = v0 + v3,v⊥})

wµν
σσ′

(

τhf , q̃, h̃, P̃
)

is the nucleon tensor −→

P
τhf

σ′σ
(k̃, ǫS , SHe) is the LF nuclear spectral function →

defined in terms of LF overlaps →
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The 3He spin-dependent Spectral Function in

LFHD

Pτ
σ′σ(k̃, ǫS , SHe) ∝

∑

σ1σ
′

1

D
1
2 [R†

M (k̃)]σ′σ′

1
Pτ

σ′

1
σ1

(k̃, E, SHe) D
1
2 [RM (k̃)]σ1σ

is obtained through the unitary Melosh Rotations : D
1
2 [RM (k̃)] =

m+k+−ıσ·(ẑ×k⊥)√
(m+k+)2+|k⊥|2

and the instant-form spectral function

Pτ
σ′

1
σ1

(k̃, E, SHe) =
∑

fA−1

δ(E + EfA−1
− EHe) ×

SHe
〈ΨHe; JHeMHeπHe|~kστ ;φfA−1

〉 〈φfA−1
; τσ′~k|πHeJHeMHe; ΨHe〉SHe

=

=
[

Bτ
0,SHe

(|k|, E) + σ · fτSHe
(k, E)

]

σ′

1
σ1

with fτSHe
(k, E) = SA Bτ

1,SHe
(|k|, E) + k̂ (k̂ · SA) Bτ

2,SHe
(|k|, E)

NB Only THREE independent functions, B0,1,2 are needed, once parity and

time-reversal are imposed. Adding FSI between third particle and spectator pair, one

could include more terms.
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GOOD preliminary NEWS

We are now evaluating the SSAs using the LF hadronic tensor, to check whether the

proposed extraction procedure still holds within the LF approach at finite values of Q2.

LF longitudinal and transverse polarizations show a very little change

protonNR protonLF neutronNR neutronLF
∫
dEd~p 1

2
Tr(Pσz)~SA=ẑ

-0.02263 -0.02231 0.87805 0.87248
∫
dEd~p 1

2
Tr(Pσy)~SA=ŷ

-0.02263 -0.02268 0.87805 0.87494

In the Bjorken limit the extraction procedure works well within the LF approach as

it does in the non relativistic case [PRELIMINARY RESULTS].

The effect of integration limits in the actual JLab kinematics [Qian et al., PRL 107

(2011)] , instead of the ones in the Bjorken limit, is small. The effect will be even

smaller in the JLAB planned experiments at 12 GeV [G. Cates et al., E12-09-018].

We are going to include the FSI between the jet produced from the hadronizing

quark and the two nucleon system through a Glauber approach [C. Ciofi degli Atti,

L. Kaptari, PRC 83 (2011) 044602] .
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Conclusions & Perspectives

A Poincaré covariant description of an interacting system is proposed. In particular,

the Relativistic Hamiltonian Dynamics coupled with the Bakamjian-Thomas

construction of the 10 generators appears a viable way to implement the approach.

The successful phenomenology developed within the non relativistic framework

can be embedded in a Poincaré covariant description of the nuclei

The nucleon spectral function of a polarized 3He, within the Light-Front

Hamiltonian Dynamics, has been proposed for the first time. An actual evaluation

based on overlaps obtained from the AV18 wave function of the Pisa group is

currently adopted for evaluating many quantities, relevant for extracting information

on the neutron structure in DIS and SiDIS processes.
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