# Microscopic description of exotic nuclei in the Berggren basis

## J.Rotureau



European Research Council

CHALMERS



Light nuclei from first principles, INT, October 3, 2012





Importance of continuum in the structure of nuclei far from stability





## Closed quantum systems



#### infinite well



discrete states only, HO basis usually

exact treatment of the c.m, analytical solution...

## **Open quantum systems** (nuclei far from stability)



## Gamow States

G. Gamow, Z. Phys. 51 (1928) 204



#### Gamow states and completeness relations

T. Berggren, Nucl. Phys. A109, 265 (1968); Nucl. Phys. A389, 261 (1982) T. Lind, Phys. Rev. C47, 1903 (1993)



$$\sum_{n=b,r} \left| u_n \right\rangle \left\langle \tilde{u}_n \right| + \frac{1}{\pi} \int_{L_*} \left| u(k) \right\rangle \left\langle u(k^*) \right| \, dk = 1$$

particular case: Newton completeness relation  $\sum_{n=b} |u_n \rangle \langle \tilde{u}_n | + \frac{1}{\pi} \int_{R} |u(k) \rangle \langle u(k^*)| \, dk = 1$  Bound, resonant state

$$u(r) \to C_+ H^+_{l,\eta}(kr)$$

normalization of resonant states with external complex scaling :

$$N_i = \sqrt{\int_0^R u_i^2(r) \, dr + \int_0^{+\infty} u_i^2(R + x \cdot e^{i\theta}) \, e^{i\theta} \, dx}$$



Complex scattering state 
$$u(r) \rightarrow C_{+}H^{+}_{l,\eta}(kr) + C_{-}H^{-}_{l,\eta}(kr)$$
$$C^{+}C^{-} = \frac{1}{2\pi}. \text{ (normalisation)}$$

## Gamow Shell Model



pole approximation: "O<sup>th</sup>" order approximation :

 $H^{p.a}|\Psi^{p.a.}\rangle = E^{p.a.}|\Psi^{p.a.}\rangle$ 

Many-body resonance (bound) states have the largest overlap

 $|\langle \Psi^{p.a.}|\Psi\rangle$ 

N. Michel *et al*, PRL 89 (2002) 042502; PRC67 (2003) 054311; PRC70 (2004) 064313 G. Hagen *et al*, PRC71 (2005) 044314 J.R *et al*, PRL 97 (2006) 110603 N. Michel *et al*, JPG (2009) 013101 G.Papadimitriou et al, PRC(R) 84 (2011) 051304

i) discretization of continuum contour

$$\sum |u_{res}\rangle \langle u_{res}| + \sum_{i} |u_{ki}\rangle \langle u_{ki}| \simeq 1$$

ii) construction of many-body basis

 $|SD_i\rangle = |u_{i1...}u_{iA}\rangle$ 

iii) construction of Hamiltonian matrix

 $\langle SD_i | H | SD_j \rangle$ 

(complex symmetric matrix)

iv) many-body spectrum: bound,resonant and "spurious" continuum states



cluster Orbital Shell Model (COSM) coordinates

(Y. Suzuki et, Phys. Rev. C 38, 1 (1988))



i) U<sub>i</sub> core-nucleon potential
 ii) V<sub>ii</sub> phenomenological, realistic NN interaction

#### Helium chain (<sup>4</sup>He core plus valence neutrons )



pole approximation:  $p_{3/2}$ ,  $p_{1/2}$  resonance (<sup>5</sup>He g.s and 1<sup>st</sup> excited state)



(taken from P. Muller *et al* , PRL 99, 252501 (2007))

[16] E. Caurier *et al*, PRC 73, 021302 (R) (2006)
[17] S.C. Pieper, Riv. Nuovo Cim. 031, 709 (2008).

M. Brodeur et al. PRL 108, 052504 (2012) <sup>6</sup>He <sup>8</sup>He =1.910±0.011 fm =1.835±0.019 fm (point charge radius)





structural information on nuclear hamiltonian and nuclear many-body dynamics (the radial extent of the halo nucleus is reflected in the charge radius)

## <sup>6</sup>He,<sup>8</sup>He Hamiltonian

- Woods-Saxon potential for <sup>4</sup>He-n (fitted to <sup>5</sup>He resonances)
- "Minnesota like" interaction,
   2 parameters (adjusted to <sup>6</sup>He,<sup>8</sup>He g.s.)
- $\cdot p_{3/2}$  resonance +  $p_{3/2}$  complex continuum
- $p_{_{1/2}}$ sd real continuum







### two-neutron density $\rho_{nn}(r_1=r,r_2=r,\theta)$



two-neutron density  $\rho_{nn}(r_1=r,r_2=r,\theta)$ 

<sup>6</sup>He *resonant*  
state 
$$J^{\Pi}=2^{+}$$





G. Papadimitriou, A. T. Kruppa, N. Michel, W. Nazarewicz M. Płoszajczak and **J. R**, PRC 84 (2011)



## Density Matrix Renormalization Group (DMRG)

S. R. White, Phys. Rev. Lett. 69 (1992) 2863
S. R. White, Phys. Rev. B 48 (1993) 10345
S.R. White et al, Phys. Rev. B 48 (1993) 3844

lattice models, spin chain, quantum dots, atomic nuclei......

Reduction of the number of degrees of freedom + renormalization

\* Separation into a 'medium' and 'environment'

\* Truncation of degrees of freedom in the environment



Application for nuclei

T.Papenbrock et al J.Phys.G 31 (2005) 51377 J. R et al, PRL 97 (2006) 110603 S.Pittel et al PRC 73 (2006) 014301 (R) B. Thakur et al, Phys. Rev. C 78 (2008) 041303(R) J.R et al, PRC 79 (2009) 014304







Warm up phase



Construction of  $2^{nd}$  quantization operators and states in P and C

|c
angle : states with 0,1,...n nucleons

operators :  $a_i^{\dagger}, (a_j^{\dagger}a_k^{\dagger})^K, [(a_i^{\dagger}a_j^{\dagger})^{K_1}\tilde{a_k}]^{K_2} \dots$ 

shells in C added one by one one step=one shell

\* diagonalization in the superblock

\* singular value decomposition

 $|\Psi
angle^J=\sum_{p,c}\Psi_{pc}\left(|p
angle^{J_p}|c
angle^{J_c}
ight)^J$  (state with the largest overlap

with the pole approx)

\*diagonalization of the density matrix :

$$\rho_{c,c'}^{J_c} = \sum_p \Psi_{pc} \Psi_{pc'} -$$

eigenstates with ►"largest" eigenvalues are kept. Eigenvalues of the density are probabilities :

$$\sum_{\alpha} w_{\alpha} = 1$$



<sup>7</sup>He g.s.



<sup>4</sup>He core + 3 neutrons

\* pole space : Op<sub>3/2</sub> ,Op<sub>1/2</sub> \* continuum space : p<sub>3/2</sub> ,p<sub>1/2</sub> (30 shells each)

Woods-Saxon + Surface Gaussian twobody interaction :

$$V_{i,j}^{J,T} = V_0(J,T) \exp\left[-\left(\frac{\mathbf{r_1} - \mathbf{r_2}}{\mu}\right)^2\right] \delta(|\mathbf{r_1}| + |\mathbf{r_2}| - 2R_0)$$

Shell Model dimension=83948 largest matrix in DMRG=1143

(J.R et al., PRL 97 (2006) 110603)

<sup>7</sup>He g.s.



Convergence of the real (top) and imaginary part (bottom) of the g.s. energy as a function of the total number of shells



Very good scaling

with number of shells !

DMRG truncation at  $N_{opt}$ =22

Ab-Initio calculations in the Berggren basis

$$H = \frac{1}{A} \sum_{i < j}^{A} \frac{(\vec{p}_i - \vec{p}_j)^2}{2m} + V_{NN,ij}$$

i) NN potential:

\* AV18 (R.B. Wiringa et al PRC 51 (1995) 38)
 \* N<sup>3</sup>LO (D.R.Entem et al PRC(R) 68 (2003) 041001)
 *(For comparison with Faddeev, Faddeev-Yakubovsky and Coupled Cluster)* softened by v<sub>low-k</sub> with Λ = 1.9 fm-1
 (S. Bogner et al, Phys. Rep. 386 (2003) 1)



iii) Resolution with DMRG

Calculations of <sup>3</sup>H, <sup>4</sup>He and <sup>5</sup>He



GSM full diagonalisation: dim= 123,835 DMRG : dim~ 1200 E<sub>exact</sub>=-7.840 MeV E<sub>DMRG</sub>=-7.832 MeV



Faddeev result from Nogga et al, PRC 70 (2004) 061002, 2004





```
GSM full dim=1,379,196,439
DMRG : dim~ 1.10<sup>5</sup>
```



Microscopic description of exotic nuclei in the Berggren basis

(Shell Model approach with coupling to the continuum)

i) Gamow Shell Model for helium isotopes, charge radius

ii) Ab-Initio approaches for (exotic) light nuclei with DMRG

Perspectives:

<sup>11</sup>Li description as 7 nucleons above <sup>4</sup>He core, Oxygen isotopes with <sup>22</sup>O as a core, Ab-Initio description of Hydrogen chain.....



B.R. Barrett, University of Arizona G. Papadimitriou, University of Arizona



*W.Nazarewicz,* University of Tennesse/ORNL *N. Michel*, University of Tennesse

Grand Accélérateur National d'Ions Lourds



M. Płoszajczak, GANIL



C. Forssén, Chalmers University of Technology