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Nuclear Density Functional Theory

Global theory for the entire nuclear
chart (around 3000 nuclei identified,
other 6000 expected)

(quite) Accurate description of the
ground-state properties (rms deviation
for masses ' 1 MeV)

Reasonable computational cost (basic
properties of all the nuclei in a single
24 wall-clock hour run on a 4 Tflop
machine)

Outline
Generalized Skyrme interaction to improve the form of the empirical nuclear
functional
Effective theory as theoretical framework to set the empirical nuclear functional
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Energy Density Functional (EDF)

E [ρ(r)] =
~2

2m

Z
dr τ(r) + Eint [ρ(r)]− λ

Z
dr ρ(r)

No (physical) external potential term in the functional (nuclei are self bound)

Kohn-Sham scheme achieved by mapping one-body density matrix to the local (or
quasi-local) densities

Main features of the Energy Density Functional

Existence of EDF predicted by Hohenberg-Kohn theorem

Ground-state energy obtained through variational principle
EGS = Minρ E [ρ(r)]

Different effects included through coupling constants

I) Microscopically-constrained and II) phenomenological EDFs (both lacking of
spectroscopic quality and predictive power)
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Two main classes of nuclear EDFs

I) Microscopically-constrained nuclear EDF

Derived from the N-N potential in Ch EFT

V NN = V NN1π + V NN2π + · · ·+ V NNct (Λ)

Density-dependent coupling constants associated
with the underlying meson-exchange interactions

Mapping of the in-medium nucleonic effects at
the two-pion-mass scale or heavier-meson scales
in a local EDF

from [P. Finelli et alii, Nucl Phys A 770,
(2006)]

II) Phenomenological nuclear EDF

Only nucleonic degrees of freedom are explicitely
included
The connection to the strong interaction is
limited to the role of symmetries in building the
relevant terms of the EDF
Coupling constants are fitted to the experimental
data

from M. Kortelainen et alii,
Phys Rev C 82, (2010)
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The Skyrme EDF

Standard Skyrme EDF [Perlinska et alii, Phys Rev C 69, 014316 (2004)]

E [ρ(r), τ(r), j(r), · · · ] =

Z
dr Cρρ(r)2 + Cτρ(r)τ(r) + Cjj(r)2 + · · ·

Bilinear terms composed by local densities (equipped with coupling constants)

τ(r) =
ˆ
∇ · ∇′ρ(r, r′)

˜
r=r′

j(r) =
1

2i

ˆ`
∇−∇′

´
ρ(r, r′)

˜
r=r′

Order of each term given by the number of derivatives (up to NLO)

The two-body term of the Skyrme
interaction [Skyrme, Nuclear Physics 9 615
(1959)]

4.png

expansion in relative momenta of a
finite-range interaction
(low-momentum range)

consistent with the symmetries of
the nucleon-nucleon interaction
contact force (easier calculation)

fitted to experimental data
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New-generation nuclear EDFs

Standard phenomenological functionals need to be improved:

Experimental single-particle energies difficult to reproduce with Skyrme functionals

Macroscopic models still better (Liquid Drop Models)

Different possible ways to extend the Skyrme EDF:

by enriching the structure of the functional with density-dependent coupling
constants or higher powers of density:

C =⇒ C(ρ(r));

ρ(r)τ(r) =⇒ ρ2(r)τ2(r)

by extending the functional with higher-order derivatives:

E [ρ(r), τ(r), j(r), · · ·]

Simple Taylor expansion on one-body density matrix is performed

ρ
“
R +

r

2

”
= e

1
2 r·∇ρ(R) =

X
n

1

n!

„
1

2
r · ∇

«n
ρ(R)
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Extended Skyrme interaction

Building blocks are higher-order derivatives tensors

KñL̃ are spherical tensor derivatives of order ñ and rank L̃ [Carlsson et al., Phys. Rev. C 78, 044326
(2008)]

No. tensor KnL order n rank L
1 1 0 0
2 k 1 1
3 [kk]0 2 0
4 [kk]2 2 2
5 [kk]0k 3 1
6 [k[kk]2]3 3 3
7 [kk]20 4 0
8 [kk]0[kk]2 4 2
9 [k[k[kk]2]3]4 4 4

10 [kk]20k 5 1
11 [kk]0[k[kk]2]3 5 3
12 [k[k[k[kk]2]3]4]5 5 5
13 [kk]30 6 0
14 [kk]20[kk]2 6 2
15 [kk]0[k[k[kk]2]3]4 6 4
16 [k[k[k[k[kk]2]3]4]5]6 6 6
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Extended Skyrme interaction: higher-order pseudopotential

Two-body pseudopotential [Raimondi et alii, Phys Rev C 83, 054311 (2011)][Raimondi et alii, Phys Rev C 84,
064303 (2011)]

V̂ =
X
ñ′L̃′,

ñL̃,v12S

Cñ
′L̃′

ñL̃,v12S
V̂ ñ

′L̃′

ñL̃,v12S

Cñ
′L̃′

ñL̃,v12S
coupling constant corresponding to tensor V̂ ñ

′L̃′

ñL̃,v12S
coupled with spin

operators.

1 {ñ′, L̃′, ñ, L̃, v12, S} allowed indices
according to the symmetries

2 Pseudopotential is a scalar, local and
zero-range operator

3 Expansion up to N3LO
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N3LO EDF obtained from the pseudopotential

The average of the pseudopotential with respect to the nuclear many-body wavefunction

〈Cñ
′L̃′

ñL̃,v12S
V̂ ñ

′L̃′

ñL̃,v12S
〉 =

X
Cn

′L′v′J′,t
mI,nLvJ Tn

′L′v′J′,t
mI,nLvJ

gives the EDF coupling constants Cn
′L′v′J′,t

mI,nLvJ as linear combinations

of the pseudopotential coupling constants Cñ
′L̃′

ñL̃,v12S

Results for N3LO EDF

The EDF has the same symmetries of
the pseudopotential

EDF free from self-interaction
problems

Reduced number of independent
coupling constants of the functional
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Nuclear phenomenological EDFs based on Effective Theory

Nuclear functionals need to be put on a firm theoretical ground:

necessity of a regularization procedure to cure the UV divergence of zero-range
interactions
consistent expansion scheme for the functional based on a (length) scale

Methodology of effective theory for nuclear functionals:
1 Introduce an expansion scale by regularizing zero-range pseudopotential

2 Fit the coupling constants

3 Check independence and convergence properties of the expansion

4 Check naturalness of the coupling constants
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Scales of energy

We can extract three different scales for nuclear phenomena:

1 Scale of the spontaneous chiral symmetry breaking ∼ 1 GeV (Hard)

2 Scale of the boson-exchange interaction (Soft/Hard):

Pion mass scale mπ '135 MeV/c2

Fermi momentum scale kF ' 260 MeV/~c
3 Low-energy nuclear phenomena scale (Soft):

Nucleon separation energy δE ' 8 MeV corresponding to δk ' 32
MeV/~c
Shell effects E 6 1 MeV corresponding to δk 6 4 MeV/~c

Two observations:

The small-energy scale in QCD chiral dynamics becomes a short-range high-energy
of nucleon-nucleon force acting on nucleons in nuclei.

In finite nuclei surface effects decrease the infinite-matter binding energies

F.Raimondi (TRIUMF) effective nuclear functionals 14th November 2012 11 / 25



First step: regularized pseudopotential

A possible way to regularized the potential is to consider Gaussian function

δ(r) = lim
a→ 0

ga(r) = lim
a→ 0

e
− r2

a2

(a
√
π)

3

Central two-body regularized pseudopotential

V (r′1, r
′
2; r1, r2) =

4X
i=1

P̂iÔi(k,k
′)δ(r′1 − r1)δ(r′2 − r2)ga(r1 − r2),

P̂i are the spin and isospin exchange operators, giving the different channels of the
interaction
δ(r′1 − r1)δ(r′2 − r2) are the locality delta functions

Ôi(k,k
′) are relative momentum operators:

0th order: 1 (LO)
2nd order: k2, k′2, ... (NLO)
4th order: k4, k′2k2, ... (N2LO)
...
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Simplified version of the regularized pseudopotential

Assumption: The pseudopotential depends only on the sum of relative momenta

Ôi(k,k
′) ≡ Ôi(k + k′)

For instance, at NLO, we have (two coupling constants T
(i)
1 and T

(i)
2 become

dependent),

T
(i)
0 +

1

2
T

(i)
1

`
k2 + k′∗2

´
+ T

(i)
2 k · k′∗ ≡ T (i)

0 +
1

2
T

(i)
1

`
k + k′∗

´2
Local central two-body regularized pseudopotential

V (r) =
4X
i=1

P̂iÔi(k)ga(r) =
4X
i=1

P̂i

nmaxX
n=0

V
(i)
2n ∆nga(r)

V (r) is function of the relative distance r = r1 − r2

scalar potential as expansion in powers of Laplacians ∆ in r

V
(i)
2n are coupling constants to be adjusted to data, at a given fixed scale a
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Second step: fitting the coupling constants

Standard optimization procedure

1 define a large set of experimental observables
2 optimize values of the coupling constants so as to reproduce experiments
3 test the predictability of the parametrization obtained

Derivation of the coupling constants

Gogny interaction is a phenomenological finite-range interaction,

G(r) =

4X
i=1

P̂iGi(r) =

4X
i=1

P̂i
X
k=1,2

G
(i)
k gak (r)

Strategy: for a given value of the range a, derive the pseudopotential coupling constants

V
(i)
2n from the Gogny coupling constants G

(i)
k and ak. This is achieved by requiring that

the lowest moments of both potentials are equal

M
(i)
2m ≡

Z
r2mGi(r)d3r =

Z
r2mVi(r)d3r
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Third step: compute observables

Eight doubly magic nuclei are considered for calculation: 16O, 40Ca, 48Ca, 56Ni, 78Ni,
100Sn, 132Sn and 208Pb

Deviations of binding energies and radii
relative to Gogny interaction results

Convergence very rapid:
decreasing by about a factor of
four at each order

Deviations below 1% at N3LO

Smooth trends of the lines may
be ascribed to many-body
effects physics
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Independence of the regularization scale

Deviations of binding energies and radii relative to those obtained for 208Pb

The flatness of lines shows a good degree of independence of the regularization
scale

The choice of 208Pb as nucleus of reference is irrelevant
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Independence of the regularization scale for 208Pb

Convergence properties for 208Pb at different scales

Gogny 

Gogny 

NLO N2LO N3LO 

208Pb 

At N2LO the independence with respect to the scale is reached
At N3LO the convergence of the energy and radius are reached
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Comparison between pseudopotential and Gogny form
factors of the interaction

Nuclear observables are weakly dependent on the regularization scale a

a as parameter to be optimized with respect to the Gogny interaction

The optimized value of a can be interpreted as range of the effective interaction

Optimization of the pseudopotential coupling constants (included a) has been performed
by matching the form factors of the pseudopotential at NLO to the ones of the Gogny
interaction

General expressions for the form factors

Gogny form factor

2X
k=1

C
(G)
k e

− r2

a2
k

Regularized pseudopotential form
factor

e
− r2

a2

„
C0 + C2

r2

a2

«
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Plots of the pseudopotential and Gogny form factors of the
interaction (a= 0.85 fm)

Channel without spin and isospin exchange operators
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Comparing different nuclei in the same scale

Lepage plots show the dependence of the error in the description of a given
observable on energy or a distance
In nuclear structure (energy and length scales per particle roughly constants) we
can study how the error depends on number of nucleons

Deviations of binding energies and radii scaled by number of particles

Density-matrix expansion technique tells us that local functionals work better in
nuclei where the bulk properties overcome surface effects
Nucley beyond A'48 scale in the same way as 208Pb: different size does not
change convergence properties
Lighter nuclei have better convergence properties
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Fourth step: naturalness of coupling constants

Naive dimensional analysis applied to effective nuclear Lagrangian

Naturalness: after extracting the dimensional scales from a term of the functional, the
remaining dimensionless coefficient should be of order of unity

The relevant scales of the effective point-coupling Lagrangian

c

»
ψ†ψ
f2Λ

–l »∇
Λ

–n
f2Λ2

c dimensionless constant of order of unity,
l power of density expansion,
n power of gradient expansion,
Λ scale of the gradient,
f is the pion decay constant (for functionals derived from ChEFT)
Scaling factor for the conversion from unnatural to natural coupling constants

S = f2(l−1)Λn+l−2

Dimensionless coupling constants for the local effective pseudopotential (l = 2)

v
(i)
2n = f2Λ2nV

(i)
2n
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Coupling constants before NDA

Coupling constants values for different channels of the interaction (a=0.85 fm)
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Coupling constants are derived from the coupling constants of the Gogny
interaction (no direct adjustment to data)

In logarithmic scale, coupling constants decrease almost linearly with n

The slope of this decrease is Λ−2n (Λ '700 MeV/~c ' 3.5 fm−1)
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Coupling constants in natural units (I)

Natural coupling constants

v
(i)
2n = f2Λ2nV

(i)
2n

v
(i)
2n natural if f ' 35 MeV/(~c)3/2

Zero-order coupling constants
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LO coupling constants are less
natural than higher-order ones

Second-order coupling constants

0.85 0.9 0.95 1 1.05 1.1 1.15

Regularization scale a (fm)

-2

-1

0

1

V
2

n
(N

at
u

ra
l 

u
n

it
s)

Wigner

Heisenberg

Bartlett
Majorana

 n=1

NLO coupling constants are natural
at all the scales
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Coupling constants in natural units (II)

Fourth-order coupling constants
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N2LO coupling constants are
natural only at some scales

Sixth-order coupling constants
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N3LO coupling constants are
natural at all the scales

Naturalness of the coupling constants provides a signature of a QCD hard scale in
the low-energy effective functionals

Future adjustments of the coupling constants to data =⇒ weaker scale dependence
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Summary and perspective

Main results addressed

Application of the effective-theory principles to low-energy nuclear theory

Construction of the expansion scheme allowing for a systematic improvement of
nonlocal EDFs and/or finite-range effective interactions

Practical implementation of the proposed scheme in terms of Gaussian regulators

Demonstration that such an expansion scheme rapidly converges

Check of the naturalness of the pseudopotential coupling constants

Perspective

Extension of the study to nonlocal regularized pseudopotential

Optimization of the regularized pseudopotential to experimental data

THANK YOU
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