Ab initio calculations of light-ion fusion reactions

INT-12-3 Workshop Structure of Light Nuclei

October 11, 2012

Lawrence Livermore National Laboratory

Collaborators: G. Hupin (LLNL) P. Navrátil (TRIUMF,LLNL) C. Romero-Redondo (TRIUMF) R. Roth (TU Darmstadt) J. Langhammer (TU Darmstadt)

LLNL-PRES-589117

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Sofia Quaglioni

To understand the evolution of the Universe and the building blocks necessary for human life we need to understand fusion reactions

- Standard model of solar neutrinos: ⁷Be(*p*,γ)⁸B, ³He(α,γ)⁷Be,³He(³He,2*p*)⁴He, ...
- Stellar nucleosyntesis: $2\alpha(\alpha,\gamma)^{12}C$, ${}^{12}C(\alpha,\gamma)^{16}O$, ...
- But ... Difficult or impossible to measure
 - Low rates due to Coulomb repulsion between projectile and target, cross section drops exponentially as E→0
 - Projectile and target not fully ionized → Large electronscreening corrections
 - Astrophysical energies hard to reach in laboratory
 - Extrapolations from higher energies can be unreliable!

A fundamental theory is needed to enhance predictive capability of stellar modeling

Light-ion reactions come into play in Earth-based fusion facilities (e.g., National Ignition Factility) when the fuel begins to burn

From nucleons to nuclei to fusion reactions

• Primary Objectives:

Arrive at a fundamental understanding of nuclear properties from a unified theoretical standpoint rooted in the fundamental forces among nucleons

Develop theoretical foundations for an accurate description of reactions between light ions in a thermonuclear environment

- How?
 - Solve non-relativistic Schrödinger equation for A (all active) nucleons interacting through two- and three-nucleon (NN+NNN) forces (= ab initio calculation)
 - Structural properties (bound states, narrow resonances)
 - *Ab initio* many-body approaches (A $\leq \sim 16$); No-Core Shell Model (NCSM)
 - Dynamical properties (scattering, reactions)
 - Extend No-Core Shell-Model with the Resonating Group Method (RGM)

Can we describe nuclei and their interactions with point-like nucleons and realistic interactions?

Ab initio NCSM/RGM Formalism

S. Quaglioni & P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008); Phys. Rev. C 79, 044606 (2009)

• Starts from: $\Psi_{RGM}^{(A)} = \sum_{v} \int d\vec{r} g_{v}(\vec{r}) \hat{A}_{v} \left| \Phi_{v\vec{r}}^{(A-a,a)} \right\rangle$

• Projects Schrödinger equation on channel basis:

$$H\Psi_{RGM}^{(A)} = E\Psi_{RGM}^{(A)} \xrightarrow{} \sum_{v} \int d\vec{r} \left[H_{v'v}(\vec{r}',\vec{r}) - E N_{v'v}(\vec{r}',\vec{r}) \right] g_{v}(\vec{r}) = 0$$

$$\underbrace{\left\langle \begin{array}{c} r' \\ (A-a) \end{array} \right\rangle}_{(A-a)} \hat{\left\langle A_{v} \right\rangle} + \hat{\left\langle A_{v} \right\rangle}_{(A-a)} \hat{\left\langle A_{v} \right\rangle} + \hat{\left\langle A_{v} \right\rangle}_{(A-a)} \hat{\left\langle A_{v} \right\rangle} \hat{\left\langle A_{v} \right\rangle}_{(A-a)} \hat{\left\langle A_{v} \right\rangle} \hat{\left\langle A_{v} \right\rangle}_{(A-a)} \hat{\left\langle A_{v}$$

- Constructs integration kernels (≈ projectile-target potentials) starting from:
 - NN +NNN (chiral EFT) interactions
 - NCSM ab initio wave functions

RGM accounts for: 1) interaction (Hamiltonian kernel) and 2) Pauli principle (Norm kernel) between clusters; NCSM accounts for: internal structure of clusters

Inputs:

1) Accurate nuclear interactions (and currents)

- Nuclear forces are governed by quantum chromodynamics (QCD)
 - QCD non perturbative at low energies
- Chiral effective filed theory (xEFT)
 - retains all symmetries of QCD
 - explicit degrees of freedom: π, N
- Perturbative expansion in positive powers of (Q/Λ_χ)«1 (Λ_χ~ 1 Gev)
 - nuclear interactions
 - nuclear currents
- Chiral symmetry dictates operator structure
- Low-energy constants (LECs) absorb shortrange physics
 - some day all from lattice QCD
 - now constrained by experiment

Challenge and necessity: apply χ EFT forces tp nuclei

Inputs: 2) Many-body wave functions of targets and projectiles

• Solve:
$$H^{(A-a)} \psi_{\alpha_1}^{(A-a)}(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{A-a}) = E_{\alpha_1}^{(A-a)} \psi_{\alpha_1}^{(A-a)}(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{A-a})$$

 $H^{(a)} \psi_{\alpha_2}^{(a)}(\vec{r}_{A-a+1}, \vec{r}_{A-a+2}, \cdots, \vec{r}_A) = E_{\alpha_2}^{(a)} \psi_{\alpha_2}^{(a)}(\vec{r}_{A-a+1}, \vec{r}_{A-a+2}, \cdots, \vec{r}_A)$

- The NCSM approach:
 - Large (but finite!) expansions in A-body harmonic oscillator (HO) basis (Jacobi relative or Cartesian single-particle coordinates)

$$\psi^{(K)} = \sum_{N=N_{\min}}^{N_{\max}} c_N \Phi_N^{HO}(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_K)$$

- Preserves translational invariance (also with Slater-Determinant basis!)
- Can include NN+NNN interactions
- Uses effective interaction to accelerate convergence to exact solution with *N*_{max}

Inputs: 2) Many-body wave functions of targets and projectiles

• Solve:
$$H^{(A-a)} \psi_{\alpha_1}^{(A-a)}(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{A-a}) = E_{\alpha_1}^{(A-a)} \psi_{\alpha_1}^{(A-a)}(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{A-a})$$

 $H^{(a)} \psi_{\alpha_2}^{(a)}(\vec{r}_{A-a+1}, \vec{r}_{A-a+2}, \cdots, \vec{r}_A) = E_{\alpha_2}^{(a)} \psi_{\alpha_2}^{(a)}(\vec{r}_{A-a+1}, \vec{r}_{A-a+2}, \cdots, \vec{r}_A)$

- The NCSM approach:
 - Large (but finite!) expansions in A-body harmonic oscillator (HO) basis (Jacobi relative or Cartesian single-particle coordinates)

$$\psi^{(K)} = \sum_{N=N_{\min}}^{N_{\max}} c_N \Phi_N^{HO}(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_K)$$

- Preserves translational invariance (also with Slater-Determinant basis!)
- Can include NN+NNN interactions
- Uses effective interaction to accelerate convergence

A bit of help: 3) Effective interaction

- Similarity Renormalization Group (SRG) method
 - Sequence of unitary transformations that decouple low- and high-momentum parts of the interaction

$$H_{s} = U_{s}HU_{s}^{+} \Rightarrow \frac{dH_{s}}{ds} = \left[[G, H_{s}], H_{s} \right] \qquad \left(s = \frac{1}{\lambda^{4}} \right)$$

- Makes the nuclear many-body problem more tractable
- The same effective interaction used to obtain:
 - 1) Structure of projectiles and targets
 - 2) Non-local projectile-target potentials
- Introduces three-body interactions

The SRG method offers a new (and improved) approach to exact descriptions of light nuclei with realistic NN, NNN interactions

E_{gs} [MeV]

Norm kernel (Pauli principle)

$$\left\langle \Phi_{v'\vec{r}\,'}^{(A-a',a')} \Big| \hat{A}^{(A-a',a')} \hat{A}^{(A-a,a)} \Big| \Phi_{v\vec{r}}^{(A-a,a)} \right\rangle$$

Formalism is non-trivial and depends on mass numbers of projectiles: a, a'

$$a, a' = 1 \qquad N_{a'=1v', a=1v}(\vec{r}', \vec{r}) = \bigvee_{v, r} (\vec{r}', \vec{r}) = \bigvee_{v, r} (\vec{r}, \vec{r}) = \bigvee_{v, r} (\vec{r}$$

In general, for $a \ge a'$ need many-body matrix elements of one- to up to *a*-body exchanges

Hamiltonian kernel (Projectile-target potentials)

$$\left\langle \Phi_{v'\vec{r}'}^{(A-a',a')} \left| \hat{A}^{(A-a',a')} H \hat{A}^{(A-a,a)} \right| \Phi_{v\vec{r}}^{(A-a,a)} \right\rangle$$

More complicated than norm kernel ...

The matrix elements of the potential are all localized and can be expanded in HO radial wfs

Matrix elements of translationally invariant operators

Translational invariance is preserved (exactly!) also with SD cluster basis

Advantage: can use powerful second quantization techniques

$${}_{SD}\left\langle \Phi_{\nu n'}^{(A-a',a')} \left| \hat{O}_{t.i.} \right| \Phi_{\nu n}^{(A-a,a)} \right\rangle_{SD} \propto {}_{SD} \left\langle \psi_{\alpha_1'}^{(A-a')} \left| a^{+}a \right| \psi_{\alpha_1}^{(A-a)} \right\rangle_{SD}, {}_{SD} \left\langle \psi_{\alpha_1'}^{(A-a')} \left| a^{+}a^{+}aa \right| \psi_{\alpha_1}^{(A-a)} \right\rangle_{SD}, {}_{SD} \left\langle \psi_{\alpha_1'}^{(A-a')} \right| \left\langle a^{+}a^{+}aa \right| \psi_{\alpha_1}^{(A-a)} \right\rangle_{SD}, {}_{SD} \left\langle \psi_{\alpha_1'}^{(A-a')} \right\rangle_{SD}, {}_{SD} \left\langle \psi_{\alpha_1'} \right\rangle_{SD}, {}_{SD} \left\langle \psi_{\alpha$$

Solving the RGM equations

- The many-body problem has been reduced to a two-body problem!
 - Macroscopic degrees of freedom: nucleon clusters
 - Unknowns: relative wave function between pairs of clusters
- Non-local integral-differential coupled-channel equations:

$$\left[T_{rel}(r) + V_C(r) + E_{\alpha_1}^{(A-a)} + E_{\alpha_2}^{(a)}\right]u_v(r) + \sum_{v'}\int dr'r' \ W_{vv'}(r,r')u_{v'}(r') = 0$$

- Solve with microscopic R-matrix theory
 - Bound state boundary conditions → eigenenergy + eigenfunction
 - Scattering state boundary conditions
 Scattering matrix
 - Phase shifts
 - Cross sections

- ...

Convergence with respect to HO basis size (N_{max})

- Influenced by:
 - 1) Convergence of target and projectile wave functions
 - 2) Convergence of localized parts of the integration kernels
- Here:
 - n + 4He(g.s.,0⁺) phase shifts
 - SRG-N³LO NN potential (λ = 2 fm⁻¹)

⁴He

n

Convergence with respect to RGM model space (number/type of binary clusters)

- NCSM/RGM describes binary reactions (below three-body breakup threshold)
- If projectile (or target) can be easily deformed or broken apart
 - Need to account for virtual breakup
 - Approximate treatment:

Include multiple excited (pseudo-) states of the clusters

• Exact treatment:

1) Inclusion of three-body clusters
 2) Solution of three-body scattering

- Here:
 - $d(g.s., {}^{3}S_{1} {}^{3}D_{1}, {}^{3}D_{2}, {}^{3}D_{3} {}^{3}G_{3}) + {}^{4}He(g.s.)$
 - SRG-N³LO NN potential (λ = 1.5 fm⁻¹)

⁴He(*d*,*d*)⁴He phase shifts 180 135 ^{3}D 90 ð [deg] 45 $3^{+}0$ $2^{+}0$ 0 $d + \alpha$ 0 -45 S_1 -90 SRG-N³LO 3 2 4 5 0 6 $E_{\rm kin}$ [MeV] 7 Pseudo-states 5 in each channel

The ⁷Be(p,γ)⁸B radiative capture

P. Navrátil, R. Roth, and S.Q., Phys. Lett. B704, 379 (2011)

Solar neutrino problem:

The ${}^7Be(p,\gamma){}^8B$ is the final step in the nucleosynthetic chain leading to 8B and one of the main inputs of the Standard Solar Model

 ~10% error in latest S₁₇(0): dominated by uncertainty in theoretical models

⁸B g.s. and $p+^7$ Be phase shifts

Ab initio many-body calculation of the $^{7}Be(p,\gamma)^{8}B$ radiative capture

P. Navrátil, R. Roth, and S. Quaglioni, Phys. Lett. B704, 379 (2011)

- NCSM/RGM results with largest realistic model space (N_{max} = 10):
 - p+⁷Be(g.s., 1/2⁻, 7/2⁻, 5/2₁⁻, 5/2₂⁻)
 - Siegert's E1 transition operator
- Parameter A of SRG NN interaction chosen to reproduce separation energy: 136 keV (Expt. 137 keV)
- S₁₇(0) = 19.4(7) eV b on the lower side of, but consistent with latest evaluation
- Study of dependence on the HO basis size N_{max} and influence of higher-energy excited states of ⁷Be used to estimate 0.7 eV b uncertainty on S₁₇(0)

Ab initio theory predicts simultaneously both normalization and shape of S_{17} . Inclusion of $5/2_2^-$ state improves S-factor energy dependence above 1.5 MeV.

Ab initio many-body calculation of the $^{7}Be(p,\gamma)^{8}B$ radiative capture

P. Navrátil, R. Roth, and S. Quaglioni, Phys. Lett. B704, 379 (2011)

- NCSM/RGM results with largest realistic model space (N_{max} = 10):
 - p+⁷Be(g.s., 1/2⁻, 7/2⁻, 5/2₁⁻, 5/2₂⁻)
 - Siegert's E1 transition operator
- Parameter A of SRG NN interaction chosen to reproduce separation energy: 136 keV (Expt. 137 keV)
- S₁₇(0) = 19.4(7) eV b on the lower side of, but consistent with latest evaluation
- Study of dependence on the HO basis size N_{max} and influence of higher-energy excited states of ⁷Be used to estimate 0.7 eV b uncertainty on S₁₇(0)

Ab initio theory predicts simultaneously both normalization and shape of S_{17} . Inclusion of $5/2_2^-$ state improves S-factor energy dependence above 1.5 MeV.

The ${}^{3}H(d,n){}^{4}He$ and ${}^{3}He(d,p){}^{4}He$ fusion

P. Navrátil, S. Quaglioni, PRL 108, 042503 (2012)

Nuclear astrophysics: Predictions of Big Bang nucleosystesis for light-nucleus abundances

Fusion research and Plasma physics: d+T is the easiest fusion to achieve on Earth; ${}^{3}H(d,\gamma){}^{5}He$ branch useful for diagnostic, not known well enough

Atomic physics: Considerable electron-screening effects in $d+^{3}$ He not completely understood

Ab initio many-body calculations of the ${}^{3}H(d,n){}^{4}He$ and ${}^{3}He(d,p){}^{4}He$ fusion

P. Navrátil, S. Quaglioni, PRL 108, 042503 (2012)

Calculated S-factors improve with the inclusion of the virtual breakup of the deuterium, obtained by means of excited ${}^{3}S_{1}{}^{-3}D_{1}(d^{*})$ and ${}^{3}D_{2}(d^{*})$ pseudo-states.

NCSM/RGM results for the ${}^{3}\text{He}(d,p){}^{4}\text{He}$ astrophysical S-factor compared to beamtarget measurements. Data curve up and deviate from theoretical results at low energy due to laboratory electron-screening.

Ab initio many-body calculations of the ${}^{3}H(d,n){}^{4}He$ and ${}^{3}He(d,p){}^{4}He$ fusion

P. Navrátil, S. Quaglioni, PRL 108, 042503 (2012)

Changing the evolution parameter λ of the SRG NN interaction from 1.5 to 1.45 fm⁻¹ improves agreement with data (expt. Q value reproduced within 0.3%)

NCSM/RGM results for the ${}^{3}\text{He}(d,p){}^{4}\text{He}$ astrophysical S-factor compared to beamtarget measurements. Data curve up and deviate from theoretical results at low energy due to laboratory electron-screening.

Ab initio many-body calculations of the ${}^{3}H(d,n){}^{4}He$ and ${}^{3}He(d,p){}^{4}He$ fusion

P. Navrátil, S. Quaglioni, PRL 108, 042503 (2012)

Fundamental description still requires:

- 1) NNN force (SRG-induced + "real")
- 2) 3-body cluster states & solution of 3-body scattering problem

NCSM/RGM results for the ${}^{3}\text{He}(d,p){}^{4}\text{He}$ astrophysical S-factor compared to beamtarget measurements. Data curve up and deviate from theoretical results at low energy due to laboratory electron-screening.

Back to where we started: *n*+⁴He scattering

Convergence with respect to RGM model space

- NCSM/RGM calculation with $n+^{4}$ He(ex), N_{max} = 15, $h\Omega$ = 19 MeV
- χEFT N³LO NN potential: convergence reached with two-body effective interaction

- very mild effects of 0^+0 on ${}^2S_{1/2}$
- the negative-parity states have larger effects on ${}^{2}P_{1/2}$ and ${}^{2}P_{3/2}$
 - 0⁻0, 1⁻0 and 1⁻1 affect ²P_{1/2}
 - 2^{-0} and 2^{-1} affect ${}^{2}P_{3/2}$

The resonances are sensitive to the inclusion of the first six excited states of ⁴He

Nucleon- α phase-shifts with χ EFT N³LO NN interaction

- NCSM/RGM calculation with N+⁴He(g.s., 0⁺0, 0⁻0, 1⁻0, 1⁻1, 2⁻0, 2⁻1)
- χ EFT N³LO NN potential: convergence with 2-body effective interaction

• ${}^{2}S_{1/2}$ in agreement with Expt. (dominated by *N*- α repulsion - Pauli principle)

Nucleon- α phase-shifts with χ EFT N³LO NN interaction

- NCSM/RGM calculation with N+⁴He(g.s., 0⁺0, 0⁻0, 1⁻0, 1⁻1, 2⁻0, 2⁻1)
- χ EFT N³LO NN potential: convergence with 2-body effective interaction

- ${}^{2}S_{1/2}$ in agreement with Expt. (dominated by *N*- α repulsion Pauli principle)
- Insufficient spin-orbit splitting between ${}^{2}P_{1/2}$ and ${}^{2}P_{3/2}$ (sensitive to interaction)

Including the NNN force into the NCSM/RGM approach

Nucleon-nucleus formalism

$$\left\langle \Phi_{\nu'r'}^{J^{\pi}T} \left| \hat{A}_{\nu'} V^{NNN} \hat{A}_{\nu} \right| \Phi_{\nu r}^{J^{\pi}T} \right\rangle = \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ r' \\ (a'=1) \end{array} \right| V^{NNN} \left(1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right) \left| \begin{array}{c} (A-1) \\ (a=1) \\ r \\ \end{array} \right\rangle$$

$$\mathcal{V}_{\nu'\nu}^{NNN}(r,r') = \sum R_{n'l'}(r')R_{nl}(r) \left[\frac{(A-1)(A-2)}{2} \left\langle \Phi_{\nu'n'}^{J^{\pi}T} | V_{A-2A-1A}(1-2P_{A-1A}) | \Phi_{\nu n}^{J^{\pi}T} \right\rangle - \frac{(A-1)(A-2)(A-3)}{2} \left\langle \Phi_{\nu'n'}^{J^{\pi}T} | P_{A-1A}V_{A-3A-2A-1} | \Phi_{\nu n}^{J^{\pi}T} \right\rangle \right].$$
Direct potential: in the model space (interaction is localized!)
$$\int \frac{1}{2} \int \frac$$

Lawrence Livermore National Laboratory

⁴He(n,n)⁴He with SRG-evolved N³LO NN + N²LO NNN

G. Hupin, J. Langhammer, S. Quaglioni, P. Navratil, R. Roth, work in progress

Including the NNN force into the NCSM/RGM approach

Deuteron-nucleus formalism

⁴He(*d*,*d*)⁴He with SRG-evolved chiral NN+NNN force

G. Hupin, S. Quaglioni, P. Navratil, work in progress

Preliminary results in a small model space and with only d and 4He g.s., look promising

Extended ab initio NCSM/RGM Formalism

Three-body cluster dynamics

• Starts from:

• 3-body dynamics within Hyperspherical Harmonics: $\mathbf{x}, \mathbf{y} \rightarrow \rho, \Omega_5 = \{\alpha, \Omega_x, \Omega_y\}$

Towards ³H(³H,2*n*)⁴He and ³He(³He,2*p*)⁴He

Three-body breakup reactions

The ³H+³H fusion is often studied with the help of a sequential decay model:

 $^{3}H+^{3}H \rightarrow 2n+^{4}He$, Q=11.3 MeV $^{3}H+^{3}H \rightarrow n+^{5}He(g.s.)$, Q=10.4 MeV $^{3}H+^{3}H \rightarrow n+^{5}He(e.s.)$, Q=9.2 MeV

All (two-body breakup mechanisms included) are a manifestation of the three-body continuum

First results for 6He ground state

S. Quaglioni, C. Romero-Redondo, P. Navratil, work in progress

- Preliminary NCSM/RGM results
 - $n+n+^{4}$ He(g.s.), $N_{max} = 12$, $h\Omega = 16$ MeV
 - SRG-N³LO NN with λ = 1.5 fm⁻¹
- Comparison with NCSM:
 - ~1 MeV difference in binding energy due to excitations of ⁴He core, at present included only in NCSM
 - Contrary to NCSM, NCSM/RGM ⁴He+n+n w.f. has appropriate asymptotic behavior
 - Essential to describe ⁶He excited states in the continuum (*e.g.*, 1⁻ soft dipole resonance)

HO model space	E _{g.s.} (⁴He) (NCSM)	Е _{д.s.} (⁶ Не) (NCSM)	<i>E</i> _{g.s.} (⁶ He) (NCSM/RGM) PRELIMINARY	n 4He
$N_{\rm max}$ = 12	-28.22 MeV	-29.75 MeV	-28.72 MeV	

LLNL-PRES-589117 🕒 32

Conclusions and Outlook

- With the NCSM/RGM approach we are extending the *ab initio* effort to describe lowenergy reactions and weakly-bound systems
- Ability to describe:
 - Nucleon-nucleus collisions
 - Deuterium-nucleus collisions
 - (*d*,*N*) transfer reactions
 - ³H- and ³He-nucleus collisions
- Recent results with SRG-N³LO NN pot.:
 - ³H(n,n)³H, ⁴He(d,d)⁴He, ³H(d,n)⁴He,
 ³He(d,p)⁴He, ⁷Be(p,γ)⁸B
 - ³He(d,p)⁴He, ⁷Be(p,γ)^oB Work in progress

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

- Inclusion of NNN force in *N*-nucleus and d-nucleus formalism
- Three-cluster NCSM/RGM and treatment of three-body continuum:
 - First results for ⁶He ground state within ⁴He+*n*+*n* cluster basis
- Initial results for ³He-⁴He scattering

• ...