Ab initio calculations of light-ion fusion reactions

INT-12-3 Workshop Structure of Light Nuclei

October 11, 2012

Lawrence Livermore

National Laboratory

Collaborators: G. Hupin (LLNL) P. Navrátil (TRIUMF,LLNL) C. Romero-Redondo (TRIUMF) R. Roth (TU Darmstadt) J. Langhammer (TU Darmstadt)

LLNL-PRES-589117

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Sofia Quaglioni

To understand the evolution of the Universe and the building blocks necessary for human life we need to understand fusion reactions

- Standard model of solar neutrinos: ⁷Be(*p*,γ)⁸B, ³He(α ,γ)⁷Be,³He(³He,2*p*)⁴He, …
- Stellar nucleosyntesis: $2\alpha(\alpha,\gamma)^{12}C$, ${}^{12}C(\alpha,\gamma)^{16}O$, ...
- But ... Difficult or impossible to measure
	- Low rates due to Coulomb repulsion between projectile and target, cross section drops exponentially as $E\rightarrow 0$
	- Projectile and target not fully ionized \rightarrow Large electronscreening corrections
	- Astrophysical energies hard to reach in laboratory
	- Extrapolations from higher energies can be unreliable!

A fundamental theory is needed to enhance predictive capability of stellar modeling

Light-ion reactions come into play in Earth-based fusion facilities (e.g., National Ignition Factility) when the fuel begins to burn

From nucleons to nuclei to fusion reactions

Primary Objectives:

Arrive at a fundamental understanding of nuclear properties from a unified theoretical standpoint rooted in the fundamental forces among nucleons

Develop theoretical foundations for an accurate description of reactions between light ions in a thermonuclear environment

- **How?**
	- Solve non-relativistic Schrödinger equation for *A* (all active) nucleons interacting through two- and three-nucleon (NN+NNN) forces (= *ab initio* calculation)
	- Structural properties (bound states, narrow resonances)
		- *Ab initio* many-body approaches (A ≤ ~16); No-Core Shell Model (NCSM)
	- Dynamical properties (scattering, reactions)
		- Extend No-Core Shell-Model with the Resonating Group Method (RGM)

Can we describe nuclei and their interactions with point-like nucleons and realistic interactions?

Ab initio **NCSM/RGM Formalism**

S. Quaglioni & P. Navrátil, Phys. Rev. Lett. 101, 092501 (2008); Phys. Rev. C 79, 044606 (2009)

Starts from: $\Psi_{RGM}^{(A)} = \sum \int d\vec{r} g_v$ $\mathcal V$ \hat{r}) $\hat{A}_v \vert \overline{\Phi_{v\vec{r}}^{(A)}}$ $(A-a,a)$ **Channel basis**

Projects Schrödinger equation on channel basis:

$$
H\Psi_{RGM}^{(A)} = E\Psi_{RGM}^{(A)} \implies \sum_{v} \int d\vec{r} \left[H_{v'v}(\vec{r}', \vec{r}) - E \left[N_{v'v}(\vec{r}', \vec{r}) \right] g_{v}(\vec{r}) = 0
$$

$$
\frac{\left| \left\langle \sum_{(A-a)}^{r'} \alpha | A_{v'}| A_{v} \right| \hat{A}_{v'} \right|^{2}}{\left| \left\langle \alpha | A_{v'} \right|^{2}} \right| \left\langle \sum_{(A-a)}^{r'} \alpha | A_{v'} \hat{A}_{v'} | \hat{A}_{v'} \right|^{2}} \right]
$$

Hamiltonian Kernel
Norm (overlap) Kernel

- Constructs integration kernels (≈ projectile-target potentials) starting from: !
	- NN +NNN (chiral EFT) interactions
	- NCSM *ab initio* wave functions

RGM accounts for: 1) interaction (Hamiltonian kernel) and 2) Pauli principle (Norm kernel) between clusters; NCSM accounts for: internal structure of clusters

Inputs:

1) Accurate nuclear interactions (and currents)

- Nuclear forces are governed by quantum chromodynamics (QCD)
	- QCD non perturbative at low energies
- Chiral effective filed theory (χEFT)
	- retains all symmetries of QCD
	- explicit degrees of freedom: $π$, N
- **Perturbative expansion in positive powers** of (Q/Λ_{χ}) «1 (Λ_{χ} ~ 1 Gev)
	- nuclear interactions
	- nuclear currents
- Chiral symmetry dictates operator structure
- **Low-energy constants (LECs) absorb short**range physics
	- some day all from lattice QCD
	- how constrained by experiment

Challenge and necessity: apply χ EFT forces tp nuclei Meissner, Epelbaum, Machleidt, ...

Inputs: 2) Many-body wave functions of targets and projectiles

Solve:
$$
H^{(A-a)} \psi_{\alpha_1}^{(A-a)}(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{A-a}) = E_{\alpha_1}^{(A-a)} \psi_{\alpha_1}^{(A-a)}(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{A-a})
$$

$$
H^{(a)} \psi_{\alpha_2}^{(a)}(\vec{r}_{A-a+1}, \vec{r}_{A-a+2}, \cdots, \vec{r}_A) = E_{\alpha_2}^{(a)} \psi_{\alpha_2}^{(a)}(\vec{r}_{A-a+1}, \vec{r}_{A-a+2}, \cdots, \vec{r}_A)
$$

- **The NCSM approach:**
	- Large (but finite!) expansions in *A*-body harmonic oscillator (HO) basis (Jacobi relative or Cartesian single-particle coordinates)

$$
\boldsymbol{\psi}^{(K)} = \sum_{N=N_{\text{min}}}^{N_{\text{max}}} c_N \boldsymbol{\Phi}_N^{HO}(\vec{\boldsymbol{r}}_1, \vec{\boldsymbol{r}}_2, \; \ldots \; , \vec{\boldsymbol{r}}_K)
$$

- Preserves translational invariance (also with Slater-Determinant basis!)
- Can include NN+NNN interactions
- Uses effective interaction to accelerate convergence to exact solution with N_{max}

Inputs: 2) Many-body wave functions of targets and projectiles

Solve:
$$
H^{(A-a)} \psi_{\alpha_1}^{(A-a)}(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{A-a}) = E_{\alpha_1}^{(A-a)} \psi_{\alpha_1}^{(A-a)}(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_{A-a})
$$

$$
H^{(a)} \psi_{\alpha_2}^{(a)}(\vec{r}_{A-a+1}, \vec{r}_{A-a+2}, \cdots, \vec{r}_A) = E_{\alpha_2}^{(a)} \psi_{\alpha_2}^{(a)}(\vec{r}_{A-a+1}, \vec{r}_{A-a+2}, \cdots, \vec{r}_A)
$$

- The NCSM approach:
	- Large (but finite!) expansions in *A*-body harmonic oscillator (HO) basis (Jacobi relative or Cartesian single-particle coordinates)

$$
\boldsymbol{\psi}^{(K)} = \sum_{N=N_{\text{min}}}^{N_{\text{max}}} c_N \boldsymbol{\Phi}_N^{HO}(\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_K)
$$

- Preserves translational invariance (also with Slater-Determinant basis!)
- Can include NN+NNN interactions
- Uses effective interaction to accelerate convergence

A bit of help: 3) Effective interaction

- **Similarity Renormalization Group (SRG) method**
	- Sequence of unitary transformations that decouple low- and high-momentum parts of the interaction

$$
H_s = U_s H U_s^+ \Longrightarrow \frac{dH_s}{ds} = [[G, H_s], H_s] \qquad (s = \frac{1}{\lambda^4})
$$

- Makes the nuclear many-body problem more tractable
- The same effective interaction used to obtain:
	- 1) Structure of projectiles and targets
	- 2) Non-local projectile-target potentials
- Introduces three-body interactions

The SRG method offers a new (and improved) approach to exact descriptions of light nuclei with realistic NN, NNN interactions

 \mathbb{E}_{gs} [MeV]

Norm kernel (Pauli principle)

$$
\left|\langle \Phi_{v\vec r'}^{(A-a',a')}\Big|\hat A^{(A-a',a')}\hat A^{(A-a,a)}\Big|\Phi_{v\vec r}^{(A-a,a)}\rangle\right|
$$

Formalism is non-trivial and depends on mass numbers of projectiles: *a*, *a'*

$$
a, a' = 1
$$
 $N_{a'=1v',a=1v}(\vec{r}',\vec{r}) =$
\n
$$
\frac{\sum_{n} R_{n'e}(r') \left\langle \Phi_{v,n}^{(A-1,1)} \right\rangle R_{n}(r)}{\left\langle \Phi_{v,n}^{(A-1,1)} \right\rangle R_{n}(r)}
$$
\n
$$
a, a' = 2
$$
 $N_{a'=2v',a=2v}(\vec{r}',\vec{r}) =$

! In general, for *a ≥ a'* need many-body matrix elements of one- to up to *a*-body exchanges

Hamiltonian kernel (Projectile-target potentials)

$$
\left|\langle\Phi_{v'\vec{r}}^{(A-a',a')}\left|\hat{A}^{(A-a',a')}\,H\,\hat{A}^{(A-a,a)}\right|\Phi_{v\vec{r}}^{(A-a,a)}\right\rangle\right|
$$

More complicated than norm kernel ...

$$
A_{a'=1}v', a_{-1}v(r') = \left[T_{rel}(r') + V_{C}(r') + E_{\alpha_{1}}^{(A-1)}\right]N_{a'=1}v', a_{-1}v(r')
$$
\n
$$
+ (A-1) \times \left\{\prod_{i=1}^{n} P_{n'i'}(r') \left\langle \Phi_{\nu'i'}^{(A-1,1)} | V_{A-1,A}(1-\hat{P}_{A-1,A}) | \Phi_{\nu i}^{(A-1,1)} \right\rangle R_{n'}(r)\right\}
$$
\n
$$
+ (A-1) \times \left\{\prod_{i=1}^{n} P_{n'i'}(r') \left\langle \Phi_{\nu'i'}^{(A-1,1)} | V_{A-2,A}\hat{P}_{A-1,A} | \Phi_{\nu i}^{(A-1,1)} \right\rangle R_{n'}(r)\right\}
$$
\n
$$
+ (A-1) (A-2) \times \left\{\prod_{i=1}^{n} P_{n'i'}(r') \left\langle \Phi_{\nu'i'}^{(A-1,1)} | V_{A-2,A}\hat{P}_{A-1,A} | \Phi_{\nu i}^{(A-1,1)} \right\rangle R_{n'}(r) + \text{terms containing NNN potential}
$$

The matrix elements of the potential are all localized and can be expanded in HO radial wfs

Matrix elements of translationally invariant operators

Translational invariance is preserved (exactly!) also with SD cluster basis

Advantage: can use powerful second quantization techniques

$$
{}_{SD}\langle \Phi_{\nu n'}^{(A-a',a')}|\hat{O}_{t,i}| \Phi_{\nu n}^{(A-a,a)}\rangle_{SD} \propto {}_{SD}\langle \psi_{\alpha_1'}^{(A-a')}|a^+a|\psi_{\alpha_1}^{(A-a)}\rangle_{SD}, \quad {}_{SD}\langle \psi_{\alpha_1'}^{(A-a')}|a^+a^+aa|\psi_{\alpha_1}^{(A-a)}\rangle_{SD}, \quad ...
$$

!

Solving the RGM equations

- The many-body problem has been reduced to a two-body problem!
	- Macroscopic degrees of freedom: nucleon clusters
	- Unknowns: relative wave function between pairs of clusters
- Non-local integral-differential coupled-channel equations:

$$
\left[T_{rel}(r) + V_C(r) + E_{\alpha_1}^{(A-a)} + E_{\alpha_2}^{(a)}\right]u_v(r) + \sum_{v'} \int dr' r' W_{vv'}(r, r')u_{v'}(r') = 0
$$

- Solve with microscopic R-matrix theory
	- Bound state boundary conditions \rightarrow eigenenergy + eigenfunction
	- Scattering state boundary conditions \rightarrow Scattering matrix
		- Phase shifts
		- Cross sections

- …

Convergence with respect to HO basis size (N_{max})

- **Influenced by:**
	- 1) Convergence of target and projectile wave functions
	- 2) Convergence of localized parts of the integration kernels
- **Here:**
	- $n + 4$ He(g.s., 0⁺) phase shifts
	- SRG-N³LO NN potential $(\lambda = 2$ fm⁻¹)

Lawrence Livermore National Laboratory Lawrence Liver

4He

n

Convergence with respect to RGM model space (number/type of binary clusters)

- **NCSM/RGM describes binary** reactions (below three-body breakup threshold)
- **If projectile (or target) can be easily** deformed or broken apart
	- Need to account for virtual breakup
	- Approximate treatment:

Include multiple excited (pseudo-) states of the clusters

Exact treatment:

1) Inclusion of three-body clusters 2) Solution of three-body scattering

- **Here:**
	- $d(g.s., {}^{3}S_{1} {}^{3}D_{1}, {}^{3}D_{2}, {}^{3}D_{3} {}^{3}G_{3}) + {}^{4}He(g.s.)$
	- SRG-N³LO NN potential $(\lambda = 1.5$ fm⁻¹)

4He(*d***,***d***)4He phase shifts** 180 3 *^D*³ ³ $135¹$ $^{3}D_{1}$ P_2° 90 ! [deg] 45 $3^{\dagger}0$ $2^{\dagger}0$ Ω + $d + \alpha$ $1\overline{2}$ 0 -45 ${}^{3}S_{1}^{3}$ + $1\vert$ 0 -90 $SRG-N^3LO$ 0 1 2 3 4 5 6 E_{kin} [MeV] 7 Pseudo-states 5 in each channel 3 1

The 7Be(*p***,**γ**) 8B radiative capture**

P. Navrátil, R. Roth, and S.Q., Phys. Lett. B704, 379 (2011)

Solar neutrino problem:

The $7Be(p,y)^8B$ is the final step in the nucleosynthetic chain leading to ⁸B and one of the main inputs of the Standard Solar Model

 \sim 10% error in latest $S_{17}(0)$: dominated by uncertainty in theoretical models

8B g.s. and *p***+7Be phase shifts**

A*b initio* **many-body calculation of the 7Be(***p***,**γ**) 8B radiative capture**

P. Navrátil, R. Roth, and S. Quaglioni, Phys. Lett. B704, 379 (2011)

- **NCSM/RGM results with largest** realistic model space $(N_{\text{max}} = 10)$:
	- $p+^7Be(g.s., 1/2^-, 7/2^-, 5/2^-,-5/2^-_2)$
	- Siegert's E1 transition operator
- Parameter Λ of SRG NN interaction chosen to reproduce separation energy: 136 keV (Expt. 137 keV)
- **S**₁₇(0) = 19.4(7) eV b on the lower side of, but consistent with latest evaluation
- **Study of dependence on the HO** basis size N_{max} and influence of higher-energy excited states of 7Be used to estimate 0.7 eV b uncertainty on $S_{17}(0)$

Ab initio theory predicts simultaneously both normalization and shape of S_{17} . Inclusion of $5/2₂$ state improves S-factor energy dependence above 1.5 MeV.

A*b initio* **many-body calculation of the 7Be(***p***,**γ**) 8B radiative capture**

P. Navrátil, R. Roth, and S. Quaglioni, Phys. Lett. B704, 379 (2011)

- **NCSM/RGM results with largest** realistic model space $(N_{\text{max}} = 10)$:
	- $p+^7Be(g.s., 1/2^-, 7/2^-, 5/2^-,-5/2^-_2)$
	- Siegert's E1 transition operator
- Parameter Λ of SRG NN interaction chosen to reproduce separation energy: 136 keV (Expt. 137 keV)
- **S**₁₇(0) = 19.4(7) eV b on the lower side of, but consistent with latest evaluation
- **Study of dependence on the HO** basis size N_{max} and influence of higher-energy excited states of 7Be used to estimate 0.7 eV b uncertainty on $S_{17}(0)$

Ab initio theory predicts simultaneously both normalization and shape of S_{17} . Inclusion of $5/2₂$ state improves S-factor energy dependence above 1.5 MeV.

The 3H(*d***,***n***) 4He and 3He(***d***,***p***) 4He fusion**

P. Navrátil, S. Quaglioni, PRL 108, 042503 (2012)

Nuclear astrophysics: Predictions of Big Bang nucleosystesis for light-nucleus abundances

Fusion research and Plasma physics: d+T is the easiest fusion to achieve on Earth; ³H(*d*,γ)⁵He branch useful for diagnostic, not known well enough

Atomic physics: Considerable electron-screening effects in *d*+3He not completely understood

A*b initio* **many-body calculations of the 3H(***d***,***n***) 4He and 3He(***d***,***p***) 4He fusion**

P. Navrátil, S. Quaglioni, PRL 108, 042503 (2012)

Calculated S-factors improve with the inclusion of the virtual breakup of the deuterium, obtained by means of excited ${}^{3}S_{1}$ ⁻³*D*₁ (*d**) and ${}^{3}D_{2}$ (*d'**) pseudo-states.

NCSM/RGM results for the 3He(*d*,*p*)4He astrophysical S-factor compared to beamtarget measurements. Data curve up and deviate from theoretical results at low energy due to laboratory electron-screening.

A*b initio* **many-body calculations of the 3H(***d***,***n***) 4He and 3He(***d***,***p***) 4He fusion**

P. Navrátil, S. Quaglioni, PRL 108, 042503 (2012)

Changing the evolution parameter λ of the SRG NN interaction from 1.5 to 1.45 fm-1 improves agreement with data (expt. Q value reproduced within 0.3%)

NCSM/RGM results for the 3He(*d*,*p*)4He astrophysical S-factor compared to beamtarget measurements. Data curve up and deviate from theoretical results at low energy due to laboratory electron-screening.

A*b initio* **many-body calculations of the 3H(***d***,***n***) 4He and 3He(***d***,***p***) 4He fusion**

P. Navrátil, S. Quaglioni, PRL 108, 042503 (2012)

Fundamental description still requires:

- **1) NNN force (SRG-induced + "real")**
- **2) 3-body cluster states & solution of 3-body scattering problem**

NCSM/RGM results for the 3He(*d*,*p*)4He astrophysical S-factor compared to beamtarget measurements. Data curve up and deviate from theoretical results at low energy due to laboratory electron-screening.

Back to where we started: *n***+4He scattering**

Convergence with respect to RGM model space

- NCSM/RGM calculation with $n+4$ He(ex), N_{max} = 15, $h\Omega$ = 19 MeV
- γ EFT N³LO NN potential: convergence reached with two-body effective interaction

- very mild effects of $0⁺⁰$ on ${}^{2}S_{1/2}$
- the negative-parity states have larger effects on ${}^{2}P_{1/2}$ and ${}^{2}P_{3/2}$
	- 0⁻0, 1⁻0 and 1⁻1 affect ² $P_{1/2}$
	- 2^-0 and 2^-1 affect ${}^2P_{3/2}$

The resonances are sensitive to the inclusion of the first six excited states of 4He

Nucleon-α **phase-shifts with** χ**EFT N3LO NN interaction**

- NCSM/RGM calculation with $N+4$ He(g.s., 0⁺0, 0⁻0, 1⁻0, 1⁻¹, 2⁻0, 2⁻¹)
- $\sim \chi$ EFT N³LO NN potential: convergence with 2-body effective interaction

²S_{1/2} in agreement with Expt. (dominated by N - α repulsion - Pauli principle)

Nucleon-α **phase-shifts with** χ**EFT N3LO NN interaction**

- NCSM/RGM calculation with $N+4$ He(g.s., 0⁺0, 0⁻0, 1⁻0, 1⁻¹, 2⁻0, 2⁻¹)
- $\sim \chi$ EFT N³LO NN potential: convergence with 2-body effective interaction

- ²S_{1/2} in agreement with Expt. (dominated by N - α repulsion Pauli principle)
- **Insufficient spin-orbit splitting between** ${}^2P_{1/2}$ **and** ${}^2P_{3/2}$ **(sensitive to interaction)**

Including the NNN force into the NCSM/RGM approach

Nucleon-nucleus formalism

$$
\left\langle \Phi_{\nu'\nu'}^{J^{\pi}T} \left| \hat{A}_{\nu} V^{NNN} \hat{A}_{\nu} \right| \Phi_{\nu\tau}^{J^{\pi}T} \right\rangle = \left\langle \Phi_{\nu'}^{(A-1)} \left| V^{NNN} \left(1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right) \right|_{(a=1)} \left| V^{MN} \left(1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right) \right|_{(a=1)} \right\rangle
$$

$$
\mathcal{V}_{\nu'\nu}^{NNN}(r,r') = \sum R_{n'l'}(r')R_{nl}(r)\left[\frac{(A-1)(A-2)}{2}\left\langle \Phi_{\nu'n'}^{J^{\pi}T} |V_{A-2A-1A}(1-2P_{A-1A})|\Phi_{\nu n}^{J^{\pi}T}\right\rangle\right]
$$
\n
$$
-\frac{(A-1)(A-2)(A-3)}{2}\left\langle \Phi_{\nu'n'}^{J^{\pi}T} |P_{A-1A}V_{A-3A-2A-1}|\Phi_{\nu n}^{J^{\pi}T}\right\rangle\right]
$$
\nDirect potential: in the model space (interaction is localized!)
\n
$$
\sum_{\text{(interaction is localized!)}} \alpha_{SD}\left\langle \psi_{\alpha_i}^{(A-1)}\Big|a_i^*a_j^*a_i a_k\Big|\psi_{\alpha_i}^{(A-1)}\right\rangle_{SD}
$$
\n
$$
\propto \sum_{\omega} \left\langle \psi_{\alpha_i}^{(A-1)}\Big|a_i^*a_j^*a_i a_k\Big|\psi_{\alpha_i}^{(A-1)}\right\rangle_{SD}
$$

Lawrence Livermore National Laboratory **Lawrence Livermore National Laboratory LLNL De** 26

4He(*n***,***n***)4He with SRG-evolved N3LO NN + N2LO NNN**

G. Hupin, J. Langhammer, S. Quaglioni, P. Navratil, R. Roth, work in progress

Including the NNN force into the NCSM/RGM approach

Deuteron-nucleus formalism

Lawrence Livermore National Laboratory **Laboratory** and the contract of the

4He(*d***,***d***)4He with SRG-evolved chiral NN+NNN force**

G. Hupin, S. Quaglioni, P. Navratil, work in progress

Preliminary results in a small model space and with only d and 4He g.s., look promising

Extended *ab initio* **NCSM/RGM Formalism**

Three-body cluster dynamics

Starts from:

3-body dynamics within Hyperspherical Harmonics: $\mathbf{x}, \mathbf{y} \to \rho, \Omega_{5} = {\alpha, \Omega_{x}, \Omega_{y}}$

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

Towards 3H(3H,2*n***) 4He and 3He(3He,2***p***) 4He**

Three-body breakup reactions

The 3H+3H fusion is often studied with the help of a sequential decay model:

 $3H+3H \rightarrow 2n+4He$, Q=11.3 MeV $3H+3H \rightarrow n+5He(g.s.),$ Q=10.4 MeV $3H + 3H \rightarrow n + 5He(e.s.),$ Q=9.2 MeV

All (two-body breakup mechanisms included) are a manifestation of the three-body continuum

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

First results for 6He ground state

S. Quaglioni, C. Romero-Redondo, P. Navratil, work in progress

- **Preliminary NCSM/RGM results**
	- *n*+*n+*4He(g.s.), *N*max = 12, *h*^Ω = 16 MeV
	- SRG-N³LO NN with $\lambda = 1.5$ fm⁻¹
- **Comparison with NCSM:**
	- \bullet \sim 1 MeV difference in binding energy due to excitations of 4He core, at present included only in NCSM
	- Contrary to NCSM, NCSM/RGM 4He+*n*+*n* w.f. has appropriate asymptotic behavior
		- $-$ Essential to describe 6 He excited states in the continuum (*e.g.*, 1- soft dipole resonance)

Conclusions and Outlook

- **With the NCSM/RGM approach we are** extending the *ab initio* effort to describe lowenergy reactions and weakly-bound systems
- **Ability to describe:**
	- Nucleon-nucleus collisions
	- Deuterium-nucleus collisions
	- (*d*,*N*) transfer reactions
	- ³H- and ³He-nucleus collisions
- Recent results with SRG- N^3LO NN pot.:
	- 3H(*n*,*n*)3H, 4He(*d*,*d*)4He, 3H(*d*,*n*)4He, 3He(*d*,*p*)4He, 7Be(*p*,γ)8B

Nork in progress

- INK YOU SHOULD BE MORE EXPLICIT
- Inclusion of NNN force in *N*-nucleus and d-nucleus formalism
- Three-cluster NCSM/RGM and treatment of three-body continuum:
	- First results for 6He ground state within 4He+*n*+*n* cluster basis
- Initial results for 3He-4He scattering

• …