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Precision Photonuclear Reaction
Measurements

O Precision theoretical calculations for light nuclei
are now possible.

o In general photonuclear measurements do not
have the precision to be helpful in interpreting
the results of recent high quality calculations.

o Except for a few recent measurements -
photonuclear reaction measurements in the past,
have not paid attention to ensuring that
systematic uncertainties are properly estimated
and kept under control.

o The obvious example is 4He.
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*He Photodisintegration
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Systematic Uncertainties

o Only the most recent measurement have paid
strict attention to systematic uncertainties.

o The most difficult parameters to determine are
= Detector efficiencies
= Number of incident photons

o There is no value in making new measurements
unless systematic uncertainties are shown to be
under control.

o I hope to convince you that measurements with
systematic uncertainties less than about 3% are
now possible.



Precision Absolute Cross Sections

o In this talk I will concentrate on photoneutron
cross sections.

o Specifically — measured at HIyS using the
Blowfish neutron detector.

o HIyS has several advantages for these
measurements.
= Monoenergetic photons (low AE)
= High intensity (> 107 s1)
= Linear and circular polarization available
= Pulsed (micropulses every ~180 ns)




E&S UNIVERSITY OF
£ SASKATCHEWAN

Blowfish

O Large solid angle
neutron detector

o 88 BC-505 liquid
scintillators

= Spherically arranged on a
16 inch radius.

m Covers V4 of 4 rt sr.

= Pulse shape
discrimination.




o Simulation for
Blowfish has been
built using the
GEANT4 toolkit (C++)

o Vital to the process of
determining the
detector efficiency.

o Augmented with

modules to simulate
the light output
response of the BC505
detectors.

o Writes data in exactly
the same format as
from real
experiments.




GDH Sum Rule

o Blowfish was originally built for a direct measurement of
the Gerasimov-Drell-Hearn (GDH) sum rule for the
Deuteron.

o Connects an energy weighted integral of spin-polarized
photo-absorption cross sections with the anomalous
magnetic moment of the target.

o Based on very : causality, unitarity,
gauge and Lorentz invariance.

o0

[(e" ()~ JA(k))% - 2%@{%)

0 t
oP and o# Total inelastic photon cross sections with the

target spin and the circularly polarized photon
helicity are parallel (P) and antiparallel (A).

K; Anomalous magnetic moment of target.
M, Mass of target.
St Target Spin




GDH Sum Rule

Target Threshold K |GDH
Proton k ~ 145 MeV 1.79 204.0 pb
Neutron k.~ 145 MeV -1.91 232.0 pb
Deuteron ky= 2.2 MeV —0.14 0.6 ub

Impulse approximation argument suggests:

k7Z'
J-G DH deuteron ~ —436 :Ub
Kg




GDH Sum Rule
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GDH Sum Rule

o Low energy region ideally suited to HIGS.

O Precision absolute cross sections are
needed

= GDH sum depends on the difference between
two absolute cross sections. (c” — ¢4)

o Polarized deuterium target (HIFROST) is
being installed now.

0 Measurements will begin early 2013.



Photon Flux Monitor

o HIGS beam is not continuous.
= Pulsed at 5.58 MHz (180 ns between bunches)

o A direct counting photon detector with an
efficiency known to better than 2% has been
designed and commissioned.
= Low efficiency

1-2%
= Very stable efficiency
Insensitive to small changes in gain

= Wide energy range
5-100 MeV

= Wide photon flux range
o Now in regular use at HIGS




Photon Flux Monitor

o 5 thin (~1 mm) |
scintillator paddles Radiator

o Detects recoil electrons . .
and positrons from Recoll
Compton scattering and e’ ore-
pair production from a Photon
thin Al radiator. Beam

o Described well with a
GEANT4 simulation.

o Gains can be monitored
by sampling paddle
spectra.

Scintillators 0 1 ) 2 3 4

Discriminators

g

Monitor
Output

Veto




Photon Flux Monitor

o Data compared to
GEANT4 simulation

Coincidence of paddles 0, 1

and 2.

Used for determining gain
and threshold of paddle 1.

Coincidence of paddles 2, 3
and 4 in anticoincidence with

paddle 1.

Black — Measured
Red — Simulation
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Photon Flux Monitor
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Photon Flux Monitor

o There are only a few photons in each bunch (bunch rate
5.58 MHz)

o At high photon rates there is chance that more than one

photon can trigger the Flux monitor — but only one can be
counted per bunch.

Rate Correction

o A simple correction can be
made using Poisson : .
statistics and using the _
measured rates in veto -
paddle.

o Operation of the flux monitor = | N
has now been verified in

_ A
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Geant4 Sim Before Rate Correction
+ Geantd Sim After Rate Correction
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Detectors

/BC-505 Liquid Scintillator

7 Light Guide (Lucite)
o | S

n %\/\, W\ | Photomultiplier tube

0 Neutrons are detected by recoil charged particles
in the BC-505 liquid scintillator (mostly protons).




Detectors

/BC-SOS Liquid Scintillator

yught Guide (Lucite)
o

y o W\ | Photomultiplier tube

AN
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0 The detectors are also sensitive to gamma-ray
photons through Compton scattering.

0 We calibrate the detector with radioactive
sources with known energy y-rays.

o During an experiment we need to separate
neutrons against a background of y-rays.




Pulse Shape Discrimination

o We use pulse shape discrimination to tell the
difference between recoil protons (neutrons) and
recoil electrons (photons).

0 Because of the different way electrons and
protons deposit energy in the BC-505, the
resulting scintillation light has a different time

structure.
time
neutron -~ Long gate
gamma " QDC
PMT
*QDC




Pulse Shape Discrimination

(Long gate) — (Short gate) = PSD parameter
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Time of Flight

o We can use time-of-flight to reject the prompt
gamma rays from beam photons Compton
scattered from the target and other materials.

o The Compton scattered gamma rays can be used
to set the zero for the time-of-flight of the
neutrons.

Beam Pickoff TDC — M

Time




Time of Flight

d(y,n)

o From the time-of-flight the
neutron energy can be
determined.

0 e.g. With a D,0O target

= the expected neutron energy
can be calculated from the
incident photon energy and the
deuterium kinematics.

= the difference between the
measured neutron energy and
the expected neutron energy is
plotted.

*O(y,n)
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Detector Efficiency

/BC-505 Liquid Scintillator

7 Light Guide (Lucite)
o | S

n %\/\, W\ | Photomultiplier tube

o For a given neutron energy there is a distribution
of recoil proton energies up to the neutron
energy.




Detector Etficiency

Energy Deposited
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o The relationship between
energy deposited and light
output is not linear.

o Depends on particle type.
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Light Output Response of BC-505

o The scintillation light output is in general not simply
proportional to the particle energy.

o Understanding the light output is vitally important to
simulating the detector response accurately so that the
efficiency can be calculated.

1000 . . |

Light output spectrum from ] | Experiment
9.8 MeV “tagged” neutrons 800 - Simulation
from the = p — ny reaction,

measured at TRIUMF. 600 -

Counts

400 —

200

|
2 4
Light Output (MeV )




Light Output Response of BC-505

o Excellent fits to measurements have been obtained using
the Chou parameterization.
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Light output for a particle of energy E
stopping in a material with range R.
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Detector Etficiency

O The detector efficiency is

P ELEN LI L BN B BN B R L BRI
determined by integrating the light /= | oMV 1
output spectrum from a hardware ol !mr\\. IR
discriminator threshold (or software “m_—%L e o
thl"@ShOld) H?’T. LT e E

o This is done through the GEANT4 oot f T
simulation with the threshold as 00 (] | -
input. o

o It is therefore vitally important to £ w[fk_, B
know the gain of a detector. "" lm‘é]ﬁ‘ ! L ST N T .

= Measured using a radioactive wl oMV
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Gain Monitoring System

o LED light pulser with a Fiber optic light distribution system.
o Monitored with a GSO scintillator and radioactive source.
o Does not depend on the stability of any components.

- Monitor Detector Monitor
Radioactive » ADC T
Source KoY

Neutron — Disc. —J
Detector Cell Cell
_ADC
LED & Fiber —» Disc. J
Distribution box i | T
| v v V
|

» Data Acquisition System

Bewer et al. NIMA 608 (2009) 417




Cross Section

e.g. Deuterium - only one reaction channel

0o We parameterize the cross section in terms of
associated Legendre functions
= For linearly polarized photons

do (0, 0) = 9 14 Y a,P’(cos)+> e P’(cosH)cos 2¢
dQ 4 k=1 k=2

@ = centre-of-mass polar angle w.r.t. beam
@ = azimuthal angle w.r.t. beam polarization

= For circularly polarized photons

do o =
— (@) =—|1+> a.P’(cos
O 1S AR ws0)

m We find k <4 sufficient.




Detector Efticiency

0 The parameterisation is used as input to the
GEANT4 simulation to find the response for each
cell.

o The simulation can be used to find the response
for each cell to each Legendre function.

o A fit is done to the measured neutron yield in all
the cells to determine the parameters.

0 The parameterization can be integrated to get the
total cross section.

O The result is total cross sections and 6 and ¢
angular distributions.



Deutertum Photodisintegration

o 20 MeV - Example of parameter fit. Circularly

polarized photons

| Number of Hits on the Cells for exp hits_exp

Entries BB

.Eﬂﬂﬂ — Integral 2.945¢+05

=
o

5000 f
4nuuf
3nunf
znunf

1000+

Cell (1 to 88)

-|- Data
— Fit

S. Kucuker, PhD Dissertation



Deuteron Photodisintegration
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Deuteron Photodisintegration

P,.= Neutron spin polarization
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We are proposing to
measure

d(y,n)p
for E, =8-16 MeV

for a range of
neutron angles.

Arenhdvel providing
theoretical support.

S-1, Ando et al. arxiv:nucl-th/1103.4434v2 (2011)



*“He Photoneutron Cross Section

o We will measure “He(y,n) between @f o
20 and 40 MeV. k SO

o High pressure gas target has been= {}{| “** = jﬁ 7y
constructed and tested by
collaborators at Kharkov Institute, . “=
Ukraine. - np— Al

O He cell is a stainless steel can
inside a H, filled tube

Designed with a safety factor of 3

V4 Vo6_ Gasholder
>3 =




*“He Photoneutron Cross Section

0 Geant4 simulations show that

= at detector thresholds where we have good
PSD

= the gain tracking system can ensure that
detector efficiencies are sufficiently well know
that

= the overall detector efficiencies can be know to
~ 2%
o Then including the photon counting
uncertainty we can expect cross sections
to within ~3%




Measurements with °Ii and "1

0 Measurements were made using
5Li, “Li(nat), and Blank targets.

O Linear polarized photons at 8, 9,
10, 11, 12, 13, 15 and 15.6 MeV.

o Circularly polarized photons at
20, 25, 30 and 35 MeV.

o Two blowfish array orientations
were used at most energies to
quantify systematics.

Teflon

target
container




°Li

0 One detector cell, 9 = 90°, E, = 13 MeV

o Neutron energy distribution obtained
from time-of-flight
OoRed — ¢ =0°wrty SLi(y,n)°Li

0 Blue - ¢ = 90" wrty °Li(y,p)°He

°He — “He +n 2ot
neutrons are isotropic 200~

150 —
100 —

50 —

.-I—I 1|
9 10
Kinetic Energy (MeV)




Detector Simulation

o In general there are many reaction channels producing
neutrons to consider.

o Each channel is characterized by a different neutron
energy spectrum.

o This must be included in the detector response function.
Reaction Channels with neutrons in.the final state for 6Li.

Label Reaction Threshold

(MeV)
(7, Po) bLi+vy —p+°He(gs.) = n+p+“*He 4.6
(v,10) SLi4+ v — n+°Li(gs.) 5.7
(v:p1) SLi+ v — p+5He(1.27) — n+p+ ‘He 5.9
(v,m1) SLi+ v — n + °Li(1.49) 7.0
(7:p2) 6Li + v — p + He(16.8) — n+ p + ‘He 21.4
(v, m2) SLi+~ — n +°Li(16.9) 22.6
(7:p3) Li+~ — p+9He(19.1) — n+p + ‘He 23.7
(v, n3) SLi+ v — n 4+ °Li(19.3) 25.0




Fitting

o Fit to each neutron detector time-of-flight
spectrum after PSD cuts based on the
expected neutron energy spectrum for each
reaction channel.

Example:
°Li at
E, =20 MeV

Background
from
atmospheric

nitrogen.

1400
1200
1000

800

Counts

600
400
200

(y.n)

+ N l i
Background
e

10 15 20

Time-of-Flight (ns)

25



Fitting

o Then, knowing the contribution from each
reaction channel in each detector cell we
can fit the yields in each cell to determine
the differential cross section coefficients.

G—120001158° | 144° | 130°|117° [ 104°| 90° | 76° | 63° | 50° | 36°
Example: 00001 +
°Li at e
O L
E,=13Mev 5509
=
§6000' *
E +
4000
Z. i+ { 1
2000 t
| 1 1 | 1 1 1 1 | 11 1 1 | 11 |

1 1 1 | 1 | 11 1 1 | 1 1 1 1
10 20 30 40 50 60 70 80
Detctor Number (1 to 80)



Fitting
0 Not all reaction channels contribute
significantly at all energies.

O Some reaction channels at some energies have
neutron energy distributions that cannot be
separated with statistical significance - so they
are combined in the fit.

= e.g. At 20 MeV we can only extract the cross section
for 6Li(y,ny+n,)

o Only those coefficients that are needed to
accurately describe the cross section, with
statistical significance, are reported.

= e.g. Coefficients a,, a,, e,, e; are extracted for the
5Li(y,ny) channel.

= e.g. Only a, Coefficient is statistically significant for
the °Li(y,p;) channel.
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Comparison to Farlier
Photoneutron Measurements

o Although the ®Li(y,p,) channel produces
neutrons, they are of low energy and are
below our detector thresholds.

O Previous measurements, such as the quasi-
monoenergetic photon measurements of the
Livermore group, are sensitive to neutrons of
all energies.

0 Direct measurements of (y,py) are poor.

o Therefore, to make a comparison, the best we
can do is make the assumption that

G(YIPO) = G(Y/”O) + 100%



Comparison to Farlier

Photoneutron Measurements
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Comparison to Theory

o To compare to the theoretical prediction for the total
photoabsorption cross section we need to add an
estimate for the (y,3He,3H) reaction channel.

o This is the most important reaction channel that does

not produce neutrons.

m Significant :‘g
disagreement =
between =
measurements. 3

= We make an z
estimate by &
averaging existing =
data. Z

=

1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

O_OI 11

w8 4

a3l
o o
—ae2—
&
[m}
o
Hg
[m}
(]

e Composite Value
o Manuzio ef al.

o Sherman ef al.

» Shin et al.

& Junghans ef al.

| |
?iﬁ“ﬁ §
L T%:j L |I:I |DT D|I:I | D%D%:j% D%E}D? ] D% [

o oo
Mo o)

I\|III|II
22 24

b
o_

ST
26 28 30 32 34 36
Photon Energy (MeV)




Comparison to Theory

m Large error bars are because of unmeasured
reaction channels.

Bacca, et al., Phys. Rev. C 69, 057001
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7L1 <YD n0>

o For “Li there are also
many reaction channels.

o But for 7Li(y,n,) a light >

500

400

Counts

output cut can be placed o™ :
to eliminate other ool |
reaction channels. v -
o With such a high (1400 e e
keV) light output cut 100,
there is perfect PSD S0
separation. Zeof
% b
20;
OS50 100

PSD Parameter




7L1 <YD n0>

o A fit can be done to
the yield for each cell
to extract the
coefficients.

O Then the cross section
can be calculated.

Errors include
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Summary

O Precision photoneutron measurements are
now possible.

o Aiming for ~ 3% systematic uncertainties.
0 Some data on Deuterium

0 Some data on °Li and “Li

0 GDH experiment — Early 2013

0 4He experiment - Later 2013




