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Outline 

Effective Field Theory 
 

•Lattice Effective Field Theory  
 

 Bound State Reflection 
 

•Motivation 
 

•Reflection Phase Shift 
 

•Alpha Particle in a Box 
 

•Shallow two-body bound states 
 

•Equal masses in one dimension 
 

•Low-energy effective potential 
 

•Numerical Results and comparison 
 

Summary 
 

 Still to do 



Effective Field Theory 

 
•Define short and long distance scales 
 

Long distance:                                                              Short distance: 
Low particle momenta   momentum cutoff 
                                                                                          
•Integrate out short distance degrees of freedom  
 

 
•Derive an effective Hamiltonian as an expansion in some small expansion 
parameter 
 

QL ¿ ¤ ¤

N 

N 

N 

N 

V 

N N 

N N N N 

N N 
N 

N 

N 

N 

Leading Order (LO) 
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Lattice Effective Field Theory 
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Lattice Effective Field Theory 

 

•Calculate many body properties of nuclear and 

neutron matter 

 
 

•Elastic scattering (NN, dimer-fermion…) 
 

 

 

•Energy spectra up to carbon-12 up to NNLO  
 

 

•Hoyle state calculations  

•geometric structure of Hoyle state 
 

•Spin-2 rotational excited state of carbon-12 

•Rms charge radius 

•Quadrupole moments 

 

 

•Cold atom calculations 
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Bound State Reflection 

Photo from trevorshp.com 
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12C(0+2 )

? 
Nuclear Structure 

Motivation 
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VS 



Nuclei under pressure 
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Confined Nuclei  



Quantum well 

Semiconductor (e.g., GaAs) 
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Quantum Dot 
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Image from astro.umd.edu 
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Quantify errors due to finite oscillator space 

Furnstahl, Hagen, Papenbrock, arXiv:1207.6100v1 



Furnstahl, Hagen, Papenbrock, arXiv:1207.6100v1 
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center of mass 

Reflection phase shift 
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Reflection Radius 

p= 0
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Effective range expansion 

Linear confinement energy 
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Alpha particle in a hard-wall box 

Compressed alpha clusters within carbon-12 
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Alpha particle energy (LO) 



L p(L) R[p(L)] 

11.8 fm 81(9) MeV 2.1(4) fm 

9.9 fm 97(10) MeV 1.6(3) fm 

7.9 fm 118(10) MeV 1.3(2) fm 

Alpha particle reflection radius (LO) 
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At leading order the alpha particle matter radius is 1.53fm 
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reduced mass 

binding momentum 

energy due to binding 

total mass 

kinetic energy 

Shallow two-body bound state 

scattering length 

Χ 



Effective range expansion 
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Scattering parameters described by universal dimensionless constants 



Equal masses in one dimension 

Bethe ansatz with hard-wall boundaries 
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Symmetric under particle exchange 

Symmetric under parity 

Contact interaction 
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Solution 

Phase shift and Reflection Radius  

Exact solution is analytic for all energies.  No inelastic break-up… 

consequence of exact integrability. 
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Χ
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Low-energy effective potential 

Two particles in d dimensions with attractive zero range interactions.  The 

coefficient of the regulated delta function interaction is tuned to produce the 

desired binding energy 

reduced mass 

binding momentum 

energy due to binding 

total mass 
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Choose inertial frame where center-of-mass motion parallel to the wall is zero. 



Adiabatic expansion in the soft scattering limit 
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Adiabatic potential 

Adiabatic diagonal correction 

To compute aR we keep only the lowest eigenstate for any fixed X, and 

calculate the adiabatic potential V(X) and adiabatic diagonal correction T(X). 

Eigenstates of Hrel 
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Relative coordinate boundary conditions 



The ground state of Hrel  at infinite volume is a d-dimensional Green’s function or 

Yukawa function, 
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To construct the solution with hard-wall boundaries we use the method of images 

with alternating signs. 
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If we keep all images the answer is exact.  But this is analytically tractable 

only for the one-dimensional case.  Instead we keep a finite number of images 

organized as an asymptotic expansion in powers of 

The final result is an expansion for the reflection scattering length in powers 

of  

At zeroth order we recover the infinite volume result 



1D 

For one dimension the first-order correction to the effective potential is 

Plot showing the zeroth, first, and second order potentials in one dimension 



2D 

For two dimensions the first-order correction to the effective potential is 

Plot showing the zeroth, first, and second order potentials in two dimensions 



For three dimensions the first-order correction to the effective potential is 
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3D 

Plot showing the zeroth, first, and second order potentials in three dimensions 



Numerical results and comparison 

Using a simple Hubbard lattice model with attractive on-site interactions, we 

have computed the reflection radius R(p) for the shallow two-body bound 

state.  We have considered both one, two, and three spatial dimensions as well 

as mass ratios 

To take the zero range limit, we have extrapolated the lattice results to zero 

lattice spacing.  For the two- and three-dimensional systems we have also 

extrapolated to infinite volume for directions perpendicular to the wall. 
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1D 
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Comparing lattice, exact, and EFT results 



2D 
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Comparing lattice and EFT results 



3D 
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Comparing lattice and EFT results 



Summary  
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We have presented  a new tool for probing the structure of quantum bound states 

by studying elastic scattering off of hard-wall boundaries including: 

 

•Universal effective potential for shallow two body bound states 

 

•Exact solution for equal mass two body bound states in one dimension 

 

•Numeric Simulations in one, two, and three dimensions for shallow two body  

  bound states as well as the alpha particle 

 

•Comparison  of the above three methods 



 
•Varying the boundary conditions 

 

•Verifying universal constants with systems such as the deuteron or ultra-cold  

  atomic systems 

 

•Further numeric simulations of realistic composite bodies such as the deuteron  

  and triton as well as larger systems such as carbon-12 to probe characteristics  

  of nuclear structure 

 

•Applications to ultra-cold atomic systems as well as quantum dots and wells 

 

•Investigate inelastic scattering and the inelastic threshold 

Still To Do 


