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Effective Field Theory

*Define short and long distance scales

Long distance: Q. <« A Short distance: A
Low particle momenta momentum cutoff

*Integrate out short distance degrees of freedom
Heff — HO —|—H(1) _|_H(2) 4o

*Derive an effective Hamiltonian as an expansion in some small expansion
parameter
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l Lattice Effective Field Theory
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Lattice Effective Field Theory

Calculate many body properties of nuclear and Muller et. al., PRC61(2000)044320
neutron matter

*Elastic scattering (NN, dimer-fermion...) Bauret. al., arXiv:1206.1765v1

Energy spectra up to carbon-12 up to NNLO Epelbaum et. al., Eur. Phys. J. A45,335-352(2010)

I Epelb t. al., arXiv:1208.1328v1
*Hoyle state calculations pelbaum et. al., arXiv v

sgeometric structure of Hoyle state

*Spin-2 rotational excited state of carbon-12
*Rms charge radius
*Quadrupole moments

*Cold atom calculations Bulgac et. al., Int J. Mod. Phys. B20, 5165(2006)



Bound State Reflection

Photo from trevorshp.com




Nuclear Structure

Motivation










Nuclel under pressure

Confined Nuclei
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Quantum well
_ O
Semiconductor (e.g., GaAs) @

Quantum Dot
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A NEUTRON STAR: SURFACE and INTERIOR
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Polar cap

Image from astro.umd.edu
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Quantify errors due to finite oscillator space

Furnstahl, Hagen, Papenbrock, arXiv:1207.6100v1
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Reflection phase shift

center of mass

sin[pX + §(p)]
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Reflection Radius

ar — lim R(p)
p—0

p=0
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Effective range expansion

1 1
peotd(p) = —— + —rrp? — Prp* + - -
ar 2
ar is the scattering length,
rr is the effective range, and

Pr is the shape parameter

Linear confinement energy
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Alpha particle in a hard-wall box

Compressed alpha clusters within carbon-12
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Alpha particle reflection radius (LO)

At leading order the alpha particle matter radius is 1.53fm

L p(L) RIp(L)]
11.8 fm 81(9) MeV 2.1(4) fm
9.9 fm 97(10) MeV 1.6(3) fm
7.9 fm 118(10) MeV 1.3(2) fm
L
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Shallow two-body bound state

p=————  reduced mass
my mi T ma
° s M = mq + mao total mass
;{2 . .
> Ep = ——B  energy due to binding
ap 21
scattering length 1

Kp = — binding momentum

2
P
Ex = on7 Kinetic energy
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Effective range expansion

1 1
pcotd(p) = —— + -rrp” — Prp* + - -
ar 2

Scattering parameters described by universal dimensionless constants

3
KBAQR, KBTR, KPR, -
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Equal masses in one dimension

o—o
1 i)

1 0? 1 0
2m Ox?  2m Ox3

H =

+ Cpdo(xy —x9)

Bethe ansatz with hard-wall boundaries

w(xlv 562) X
O(xo — x1) {sin(k,xq) sin [ky(xe2 — L) + Dy sin(kpzq) sin [ky (22 — L)}
-+ 9(561 — ZC‘Q) {D[[ Sin(kaiﬁg) sin [kb(acl — L)] -+ D]]] Sin(kbéﬁz) S1n [ka(ﬂil — L)]}

K

E = b
2m  2m

24



Symmetric under parity

SEl—}L—CCl, 332—>L—332
Drrr =1, D= Dg

Symmetric under particle exchange
X1 <> L2

Dip=1, Dy =Dy

w(wlv 372) X
O(zo — x1) {sin(k,xq) sin [ky (22 — L)] + sin(kpaq ) sin kg (22 — L)]}
-+ 9(331 — 1132) {Sin(k‘aw2) sin [’Cb(aﬁ1 — L)] -+ Sin(kaEQ) Sin [/{Ja(ﬁcl — L)]}

Contact interaction

lim K 0 0 )¢(37175172):| = 2Cpp (1, 22)|, —p,

a:l—m:;“ 8331 8332

p=mj2

25



Solution
(kg + kp)sin[(ky + kp) L/2] = —2Cgpcos [(kq + kp) L /2]

p:ka+kb

Phase shift and Reflection Radius

pcotd(p) = —2kp

sin[pX — 24(p)|

_ 1 /|EB] —1 Ex
KJBR(EK) =3 Ex tan m

E
S
2|
=

Exact solution is analytic for all energies. No inelastic break-up...
consequence of exact integrability.
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Low-energy effective potential

Two particles in d dimensions with attractive zero range interactions. The
coefficient of the regulated delta function interaction is tuned to produce the
desired binding energy

H=-——V2 - —V2 1+ Cps' D —
le " ng 2 + B ( 1 2)
1
i L4 T;l n m% reduced mass
7 M = mq + ms total mass
K2 - -
Eg=-—-L energy due to binding
mi 214
1 -
Kp = — binding momentum
ap
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1 -
Hrel — __v')% +CB(S(d)(F)

Choose inertial frame where center-of-mass motion parallel to the wall is zero.
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Adiabatic expansion in the soft scattering limit

pcotd(p) = —1/ar + O(Ex/ |Eg|)
Eigenstates of H__, ‘¢§g(?)>

To compute a; we keep only the lowest eigenstate for any fixed X, and
calculate the adiabatic potential V(X) and adiabatic diagonal correction T(X).

V(X)+T(X) Adiabatic potential
VIX) = (0 (7] Hyar [ (7))
Adiabatic diagonal correction
. =2 .
\ x OO = (0| 5o |vk)
\_ U |EB|
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Relative coordinate boundary conditions

R*: m17_"1+m277'2 w—(X)/QSTd§LU+(X)/2
M
2M
4 (X) = m—1X
r_(X) = —?n—MX
2
Mo ms
(Fma,zc)d — L4 (X) (Fmin)d
mi
3 e
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The ground state of H,,, at infinite volume is a d-dimensional Green’s function or

Yukawa function,
/ ddﬁ e—iﬁ-ff*’
2m)4p*+Kg

To construct the solution with hard-wall boundaries we use the method of images
with alternating signs.

physical region

—y, 47 - : :
Lt A ol X X, 2x, =x

=X il X =X
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If we keep all images the answer is exact. But this is analytically tractable
only for the one-dimensional case. Instead we keep a finite number of images
organized as an asymptotic expansion in powers of

The final result is an expansion for the reflection scattering length in powers
of

B_RBer(aR),B_KBm*(aR)' < e—QHBaR

At zeroth order we recover the infinite volume result

vOX)+T9(X) = Ep
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For one dimension the first-order correction to the effective potential is

TM(X) + VID(X)

H/2BM2 e_K'Bm-F(X) + e_ﬁB"T—(XN
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Plot showing the zeroth, first, and second order potentials in one dimension



2D
For two dimensions the first-order correction to the effective potential is

TH(X)+VI(X) =

[NV

(4 +2) m3 Kolwpry (X)) + (£ + 2 ) k3 Kolrpr(X)]
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Plot showing the zeroth, first, and second order potentials in two dimensions



For three dimensions the first-order correction to the effective potential is

TM(X) + VID(X)

_ kM 6_,{3$+(X)+6_HB|$(X)|]
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Plot showing the zeroth, first, and second order potentials in three dimensions
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Numerical results and comparison

Using a simple Hubbard lattice model with attractive on-site interactions, we
have computed the reflection radius R(p) for the shallow two-body bound
state. We have considered both one, two, and three spatial dimensions as well
as mass ratios

M2 _ 1,948

To take the zero range limit, we have extrapolated the lattice results to zero
lattice spacing. For the two- and three-dimensional systems we have also
extrapolated to infinite volume for directions perpendicular to the wall.
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Comparing lattice, exact, and EFT results
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Comparing lattice and EFT results
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Comparing lattice and EFT results
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Summary

We have presented a new tool for probing the structure of quantum bound states
by studying elastic scattering off of hard-wall boundaries including:

*Universal effective potential for shallow two body bound states
Exact solution for equal mass two body bound states in one dimension

*Numeric Simulations in one, two, and three dimensions for shallow two body
bound states as well as the alpha particle

«Comparison of the above three methods
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Still To Do

*\Varying the boundary conditions

*\erifying universal constants with systems such as the deuteron or ultra-cold
atomic systems

Further numeric simulations of realistic composite bodies such as the deuteron
and triton as well as larger systems such as carbon-12 to probe characteristics
of nuclear structure

*Applications to ultra-cold atomic systems as well as quantum dots and wells

Investigate inelastic scattering and the inelastic threshold



