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QMC and Response functions

A few canonical statements.

Dynamics of

“gz?'_';ugy Projection QMC methods are acknowledged to give useful and

Systems from  accurate estimates of expectations on the ground state of a

Monte Carlo ) ) ) ~
simulations given Hamiltonian H.
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Start from a "trial wavefunction” that can be expanded along
Pl the basis of eigenstates of M, applying an imaginary time
Functions propagator formally projects the ground state out of the initial
state. This is completely general, and does not depend on the
representation used (configuration space, momentum space,
Fock space, ...).
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A few canonical statements.

It is clear from the previous analysis of imaginary time
propagation that the information about excited states must be

buried into the filtering process.

How do we extract it?
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Functions How do we extract it?

The good, old answer is with an inverse Laplace transform!
(See e.g. L-QCD calculations, David Ceperley et al., the
ANL/LANL group....). However, everebody knows that this is
an ill posed problem.

Here we want to analyize the problem a little more closely.



Dynamic Response Function
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= 2 (Wol Ot W, )(W,[O|Wo)é (w - (E, - Eo))

= (WolOT YW, ) (W, |6 [w - (E, - Eo)] O[Wo)
Response v

Function — (W()’OAT(S [w — (I:I - EO)] ©|‘UO>

m |V, ) — complete set of Hamiltonian eigenstates
m O —> excitation operator

m w —> energy transfer (h=1)



Integral Transform Methods

Dynamics of

Quantum
s';’g:,’:f?,:’,’,, The response function can be formally written as a ground
Nonte o state expectation:
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Since we can't evaluate it directly, one choice is to consider
— instead an integral transform with some generic kernel K:
ynamic

Response
Function

®(0) = [ K(o,w)R(w)dw
= (Wo|OtK (0, (H - Eo)) O|Wo)

and take the inverse transform to find R(w)
— ill-posed problem!.
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Integral Transform methods

Some "obvious” characteristics of a good kernel should be:

m the transform ® (o) is easy to calculate

m the inversion of the transform can be made stable

m K(o,w) is approximately 6(o —w) (in principle not strictly
necessary)
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m the solution does not exist or it is not unique

m the solution does not depend continuosly on the data

An intuitive way to see the problem is to consider
Il posed fn(y) = Sin(ny)

problems

g0 = [ KGoy) )y "0

the integration process has a smoothening effect.



Integral transforms and lll-posed problems
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Pederiva Let us consider now the inverse problem. We expect it to
behave in the opposite way, i.e. by adding an arbitrary small
high frequency perturbation to the input g can lead to an
arbitrary high perturbation in the output f

g(0) > g(o) + g (o) with | g| > |g""|.
|k g > |k g|

Il posed
problems



Singular Value Decomposition (SVD)
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gi=8(xi) Ki=K(xiyk) fi=rf(yk)
The SVD of the matrix K is a factorization of the form

K=UZVT with U,V,£eRWMN

Il posed
problems

with U,V orthogonal and X = diag[o1,...,0n].

The columns @ of U and v; of V can be regarded as
orthonormal basis vectors of RN and the following holds

- _ = T_._ =,
Kvi=oju; K'uj=o0;V



Singular Value Decomposition (SVD) II

Dynamics of In terms of the SVD of the matrix K the direct and inverse

Quantum
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Singular Value Decomposition (SVD) II

In terms of the SVD of the matrix K the direct and inverse
problems can be rewritten as

_ _ N
Z 'y = Z
J J

tl

gj

If the matrix K is the result of discretization of a Fredholm
Integral equation of the 1st kind the following basic properties
holds

m the singular values o; decay fast towards zero

m the singular vectors u;,v; have increasing frequencies

We can use the decay rate of singular values to define a sort of
degree of ill — posedness
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Regularization techniques

Dynamicsof  As an escape, it is possible to approximate the original ill-posed

Quantum

Many-Body problem with a well-posed one, constraining the solution with

Systems from

Montletgarlo known features (eg. smoothness, sign, asymptotic behavior...)
o in this way, (i.e. changing the problem...), the solution is
Pederiva well-defined

In most approaches we have minimization problems of the form

m)_cin D [K?,g—] +al [1_‘]

Il posed
problems Where

m D is a likelihood function (eg. Chi-squared, euclidean
norm)

m L is a penalty functional that enforces eg. smoothness

B « is the regularization parameter



Integral kernels - Laplace

Dynamics of

Moy Body Projection QMC methods exploit the long time behavior of the

Systems from

Monte Carlo imaginary-time propagator
simulations
~ [e9)
F,:'.ZZS:;? e—TH’q)O) _ Z e_TE"<Wn’¢0)|\Un) Iz e_TE0<WO‘¢O>|\UO>
n=0

In this framework it is natural to consider the Laplace kernel:

K(o,w) = e

Integral
kernels
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Integral kernels - Laplace

Projection QMC methods exploit the long time behavior of the
imaginary-time propagator

e TH|dg) = Z e TEn (W o),y 5
n=0

e T (Wo| o) | Wo)

In this framework it is natural to consider the Laplace kernel:
K(o,w)=¢e%
The transform becomes an imaginary-time correlation function:

(Wo|Ote” UHO|‘V0) (Wo|01(0)O(0)|Wo)
(Wo|Wo) (Wo|Wo)

d(o) =
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Singular Values and Stability

In order to understand how bad the Laplace kernel really is. let
us compare its SVD spectrum with that of a Lorentz kernel,
known to be more stable for inversion.

Laplace kernel [QMC methods]

KLaplace (07 w) =e 7

Lorentz kernel [LIT method]

r
M2+ (0 -w)?

where the parameter I" controls the width of the kernel.

KLorentz(O'y w) =
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Singular Values and Stability
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Integral Kernels - Laplace-like
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Quantum
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simulations

R We now want to build an integral kernel which can be

Pederiva calculated in QMC methods and that has a shape closer to the
Lorentz kernel. In general, a better approximation of a Dirac §
function (which has obviously a flat spectrum) seems to be a
better guess for the kernel.

This is an "obvious” statement, but it can be made
quantitative by means of the SVD analysis!

Integral
kernels
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Let us consider the following kernel, that we can easily see as
built out of Laplace kernels with different imaginary times

(Sumudu Transform):

K(o,w,N) = 1

g

As N — oo the kernel width becomes smaller.

(527"

N

>

k=0

(

N
k

)(_1) e—ln(2)(N+k)%

[Tep—
2

N3
115

(1)



Integral Kernels - New Kernel (SV spectrum)
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Path Integral Methods

How do we calculate imaginary-time correlation function?

Path Integral based methods (VPI,PIGS,RQMC) have access to
pure estimators and are naturally suited for imaginary-time
properties since we simulate already full imaginary-time paths.

Consider an imaginary-time path of length 27 + 8 as our
"walker" and discretize the path in M time-slices of size
AT = (27 + 3)/M, then:

Co(B) = (W r|em(H-E0) Ot e=AH-E0) G (H-Eo)y 1)
(Wr|em8)(H-Eo) [y 1)

roo (Wo|Ote PH-E OlWg) (W O1(0)O(3)|Wo)

(Wo|Wo) B (Wo|Wo)
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Pederiva can test our kernels.

Quick reminders:

m Liquid *He becomes superfluid at temperatures < 2.172K

m The interaction is essentially Van der Waals. At saturation
the binding energy per atom is 7.12K (1K =
8.2x10711MeV)

Condensed
He



Density response of superfluid He*

Dynamicsof  The density response is usually measured by means of neutron
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Density response of superfluid He*
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m 64 He* atoms in a cubic box with Periodic Boundary
Conditions

m realistic effective interaction: HFDHE?2 pair-potential
[Aziz (1979)]. Notice that in condensed *He 3-body forces
would be needed.

m Trial-function with two and three-body correlations

m Reptation Quantum Monte Carlo (RQMC) [Baroni (1999)]

Condensed
He



Density response of superfluid He*
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Monte Carlo Reptation Quantum Monte Carlo is based on a path-integral
Francesco formulation of the imaginary time propagation, added with
LT importance sampling at every step

gb(X,r)\lJT(X):de’G(X,X’, )\IlilT((X’))w (X")o(X',0)

We can split G on short time intervals:

G(X7XI,T) = f dX"dXNG (ijll’%) . G(XN,X,,%)
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Density response of superfluid He*
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S i The splitted Green's function can be in turn be redefined as a
onte Carlo . , .

simulations product of importance sampled Green's functions:
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GX, X', 1) = GX.X', 1) L2 =
( 9 77_) ( 77_) WT(X,)

N
In the short time approximation, at order A7 = 7/N(Trotter):

fd " dXNE (X X" T)...G(X’V,X’,i)

! 2
- (X‘VwWTT(E?E)) ‘X') _l(HWT(X)+HWT(X’))AT
Eondensed G(X7XI’ AT) ~e T 2Ar e 2\ v (XN v (X)
He
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Density response of superfluid *He

We are therefore lead to sample a reptile, i.e. a path {Xo--- Xy}
in which each time slice is sampled evolving the previous one
with a Langevin dynamics:

HW 7 (X;
Xis1 = x-+mﬁ +n(Xi, Xi + 1, A7)

The reptiles are sampled by randomly choosing one of the two
ends, sampling a further point of the path, and destroyng the
last point on the oppsite site.

In the middle of the path the points are propagated of an
imaginary time 7/2.
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ESTIMATORS
Energy:
1 HW (X
E =2 [Eoc(0) + Eioc(r)]  where  Eppc = #;))

Other (local):
1

T—-20

(0)= ——([" " o(dr)

o should be large enough to avoid bias from the trial function.
The operator averaged at times 0 and 7 gives the mixed
estimate (Wo|O|V 1) usually computed in DMC.



pynamicsof AN interesting feature of RQMC is the fact that expectations
Quantum

Many-Body computed at the center of the sample "reptile” are no longer
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Monte Carlo dependent on the importance function.

simulations
Francesco 211 T
Pederiva
M X
212 %L N
4
w‘ M
23 B
\ /
L \ B
214 \ \ ‘ﬂwl
hal MIW
25 - \ N E
\ /
L o M |
216 Yoy, ™ . J’M’M‘M r ww,dff
" o
WAV, Y
7 I I i I L
o 100 200 300 400 500 600 100 800
Condensed
He Figure 3.1: Potential energy along an 800 slices-long imaginary-time path

obtained with a long run (~ 107 samples) and a time step € = 0.001K*

from A. Roggero M.Sc. thesis



Density response of superfluid *He

Dynamics of
Quantum
Many-Body
Systems from
Monte Carlo
simulations

Francecco We are interested in the density response of the system, in this
Pederiva case the Response function is the so-called Dynamic Structure
Factor

S(3.9) = 1 SV lpgl Vo) 25 (w - (£, - Eo))

where p is the Fourier Transform of the density operator:
pq = Z_/ elqu'
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In RQMC calculations
it is possible to com-
pute very efficiently
the Laplace transform
of the response func-
tion. Baroni and
Moroni(PRL 82, 4745
(1999)) presented the
results of the inversion
with ME techniques.
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Density response of superfluid *He

20

10

Gn (ba

T
[ T ]
F I
L | ]
. A ;
L : ]
L y ]
= P I
I i

PTERON /i RS SRR R ST R R
0 10 20 30

@ (K)

The ME reconstruction of the dynamical structure

A~! (solid line). The dotted line is

the result of a path integral Monte Carlo calculation [17], and
the dashed line is the measured S(g, w). The inset compares
the positions of the ME peaks at various wave vectors (open
circles) with the experimental excitation spectrum.
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Density response of superfluid *He
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Density response of superfluid *He
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Density response of superfluid *He
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Example: density response of superfluid *He
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m the only input of the calculation is the interaction potential
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m we only need imaginary-time correlation functions
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Con

m for high accuracy, extremely long imaginary-time intervals

have to be considered
m the inversion procedure still introduces uncontrollable

€rrors

Conclusions
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