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QMC and Response functions
A few canonical statements.

Projection QMC methods are acknowledged to give useful and
accurate estimates of expectations on the ground state of a
given Hamiltonian Ĥ.

Start from a ”trial wavefunction” that can be expanded along
the basis of eigenstates of Ĥ, applying an imaginary time
propagator formally projects the ground state out of the initial
state. This is completely general, and does not depend on the
representation used (configuration space, momentum space,
Fock space, ...).

lim
⌧→∞ e− ⌧�h (Ĥ−E0)� T � = lim

⌧→∞�n e− ⌧�h (En−E0)��n���n� T � =
= ��0� T ���0�
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QMC and Response functions
A few canonical statements.

It is clear from the previous analysis of imaginary time
propagation that the information about excited states must be
buried into the filtering process.

How do we extract it?

The good, old answer is with an inverse Laplace transform!
(See e.g. L-QCD calculations, David Ceperley et al., the
ANL/LANL group....). However, everebody knows that this is
an ill posed problem.

Here we want to analyize the problem a little more closely.
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Dynamic Response Function

Spectral representation of DRF

R(!) =�
⌫
�� ⌫ �Ô � 0��2� [! − (E⌫ − E0)]

=�
⌫
� 0�Ô†� ⌫�� ⌫ �Ô � 0�� (! − (E⌫ − E0))

= � 0�Ô†�
⌫
� ⌫�� ⌫ �� [! − (E⌫ − E0)] Ô � 0�

= � 0�Ô†� �! − (Ĥ − E0)� Ô � 0�
� ⌫� �→ complete set of Hamiltonian eigenstates

Ô �→ excitation operator

! �→ energy transfer (�h = 1)
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Integral Transform Methods

The response function can be formally written as a ground
state expectation:

R(!) = � 0�Ô†� �! − (Ĥ − E0)� Ô � 0�
Since we can’t evaluate it directly, one choice is to consider
instead an integral transform with some generic kernel K :

�(�) = � K(�,!)R(!)d!

= � 0�Ô†K(�, (Ĥ − E0))Ô � 0�
and take the inverse transform to find R(!)→ ill-posed problem!.
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Integral Transform methods

Some ”obvious” characteristics of a good kernel should be:

the transform �(�) is easy to calculate

the inversion of the transform can be made stable

K(�,!) is approximately �(� − !) (in principle not strictly
necessary)
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Integral transforms and Ill-posed problems

Ill-Posed Problems [Hadamard]

A problem is called ill-posed when one of the following occours

the solution does not exist or it is not unique

the solution does not depend continuosly on the data

An intuitive way to see the problem is to consider
fn(y) = sin(ny)

g(x) = � b

a
K(x , y) fn(y)dy

n→∞���→ 0

the integration process has a smoothening e↵ect.
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Integral transforms and Ill-posed problems

Let us consider now the inverse problem. We expect it to
behave in the opposite way, i.e. by adding an arbitrary small
high frequency perturbation to the input g can lead to an
arbitrary high perturbation in the output f

g(�)→ g(�) + gHF (�) with �g� � �gHF �.
�K−1gHF � � �K−1g�
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Singular Value Decomposition (SVD)

We can make a discretization of the Integral transform

g(x) = � b

a
K(x , y)f (y)dy �→ gi = N�

k

↵kKik fk i ∈ [1,N]
gi ≡ g(xi) Kik ≡ K(xi , yk) fk ≡ f (yk)

The SVD of the matrix K is a factorization of the form

K = U⌃V T with U,V ,⌃ ∈ NxN

with U,V orthogonal and ⌃ = diag[�1, . . . ,�N].
The columns ūj of U and v̄j of V can be regarded as
orthonormal basis vectors of N and the following holds

Kv̄j = �j ūj KT ūj = �j v̄j
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Singular Value Decomposition (SVD) II

In terms of the SVD of the matrix K the direct and inverse
problems can be rewritten as

ḡ = Kf̄ = N�
j

�j(v̄T
j f̄ )ūj f̄ = K−1ḡ = N�

j

ūT
j ḡ

�j
v̄j

If the matrix K is the result of discretization of a Fredholm
Integral equation of the 1st kind the following basic properties
holds

the singular values �i decay fast towards zero

the singular vectors ūi ,v̄i have increasing frequencies

We can use the decay rate of singular values to define a sort of
degree of ill − posedness
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j

ūT
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Singular Value Spectrum



Dynamics of
Quantum

Many-Body
Systems from
Monte Carlo
simulations

Francesco
Pederiva

QMC and
Response
Functions

Dynamic
Response
Function

Ill posed
problems

Integral
kernels

Condensed
4He

Conclusions

Regularization techniques

As an escape, it is possible to approximate the original ill-posed
problem with a well-posed one, constraining the solution with
known features (eg. smoothness, sign, asymptotic behavior...)
in this way, (i.e. changing the problem...), the solution is
well-defined

In most approaches we have minimization problems of the form

min
f̄

D �Kf̄ , ḡ� + ↵L �f̄ �
where

D is a likelihood function (eg. Chi-squared, euclidean
norm)

L is a penalty functional that enforces eg. smoothness

↵ is the regularization parameter
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Integral kernels - Laplace

Projection QMC methods exploit the long time behavior of the
imaginary-time propagator

e−⌧ Ĥ ��0� = ∞�
n=0 e−⌧En� n��0�� n� ⌧→∞���→ e−⌧E0� 0��0�� 0�

In this framework it is natural to consider the Laplace kernel:

K(�,!) = e−�!

The transform becomes an imaginary-time correlation function:

�(�) = � 0�Ô†e−�ĤÔ � 0�� 0� 0� = � 0�Ô†(0)Ô(�)� 0�� 0� 0� .
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Dynamics of
Quantum

Many-Body
Systems from
Monte Carlo
simulations

Francesco
Pederiva

QMC and
Response
Functions

Dynamic
Response
Function

Ill posed
problems

Integral
kernels

Condensed
4He

Conclusions

Singular Values and Stability

In order to understand how bad the Laplace kernel really is. let
us compare its SVD spectrum with that of a Lorentz kernel,
known to be more stable for inversion.

Laplace kernel [QMC methods]

KLaplace(�,!) = e−�!

Lorentz kernel [LIT method]

KLorentz(�,!) = �

�2 + (� − !)2
where the parameter � controls the width of the kernel.
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Singular Values and Stability

KLorentz {� = 20}
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Singular Values and Stability

KLorentz {� = 20 , 10}
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Singular Values and Stability

KLorentz {� = 20 , 10 , 5}
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Singular Values and Stability

KLorentz {� = 20 , 10 , 5} KLaplace
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Integral Kernels - Laplace-like

We now want to build an integral kernel which can be
calculated in QMC methods and that has a shape closer to the
Lorentz kernel. In general, a better approximation of a Dirac �
function (which has obviously a flat spectrum) seems to be a
better guess for the kernel.

This is an ”obvious” statement, but it can be made
quantitative by means of the SVD analysis!



Dynamics of
Quantum

Many-Body
Systems from
Monte Carlo
simulations

Francesco
Pederiva

QMC and
Response
Functions

Dynamic
Response
Function

Ill posed
problems

Integral
kernels

Condensed
4He

Conclusions

Singular Values and Stability

Let us consider the following kernel, that we can easily see as
built out of Laplace kernels with di↵erent imaginary times
(Sumudu Transform):

K(�,!,N) = 1

�
�2−!

� − 2−2!
� �N = N�

k=0
�N

k
�(−1)ke− ln(2)(N+k)!

�

(1)
As N →∞ the kernel width becomes smaller.
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Integral Kernels - New Kernel (SV spectrum)
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Path Integral Methods

How do we calculate imaginary-time correlation function?

Path Integral based methods (VPI,PIGS,RQMC) have access to
pure estimators and are naturally suited for imaginary-time
properties since we simulate already full imaginary-time paths.

Consider an imaginary-time path of length 2⌧ + � as our
”walker” and discretize the path in M time-slices of size
�⌧ = (2⌧ + �)�M, then:

CO(�) = � T �e−⌧(Ĥ−E0)Ô†e−�(Ĥ−E0)Ôe−⌧(Ĥ−E0)� T �
� T �e−(2⌧+�)(Ĥ−E0)� T �

⌧→∞���→ � 0�Ô†e−�(Ĥ−E0)Ô � 0�� 0� 0� = � 0�Ô†(0)Ô(�)� 0�� 0� 0�
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Condensed 4He

Liquid 4He is the ”simplest” many-body system on which we
can test our kernels.
Quick reminders:

Liquid 4He becomes superfluid at temperatures < 2.172K

The interaction is essentially Van der Waals. At saturation
the binding energy per atom is 7.12K (1K =
8.2×10−11MeV)
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Density response of superfluid He4

The density response is usually measured by means of neutron
scattering.

http://www.cm.ph.bham.ac.uk/group/whoswho/blackburn/blackburn.html

Francesco Pederiva
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Density response of superfluid He4

QMC calculation

64 He4 atoms in a cubic box with Periodic Boundary
Conditions

realistic e↵ective interaction: HFDHE2 pair-potential
[Aziz (1979)]. Notice that in condensed 4He 3-body forces
would be needed.

Trial-function with two and three-body correlations

Reptation Quantum Monte Carlo (RQMC) [Baroni (1999)]
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Density response of superfluid He4

Reptation Quantum Monte Carlo is based on a path-integral
formulation of the imaginary time propagation, added with
importance sampling at every step

�(X , ⌧) T (X) = � dX ′G(X ,X ′, ⌧)  T (X)
 T (X ′) T (X ′)�(X ′,0)

We can split G on short time intervals:

G(X ,X ′, ⌧) = � dX ′′�dXNG �X ,X ′′, ⌧

N
� . . .G �XN ,X ′, ⌧

N
�
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Density response of superfluid He4

The splitted Green’s function can be in turn be redefined as a
product of importance sampled Green’s functions:

G̃(X ,X ′, ⌧) ≡ G(X .X ′, ⌧)  T (X)
 T (X ′) =

= � dX ′′�dXN G̃ �X ,X ′′, ⌧

N
� . . . G̃ �XN ,X ′, ⌧

N
�

In the short time approximation, at order �⌧ = ⌧�N(Trotter):

G̃(X ,X ′,�⌧) ∼ e−
�X−∇ T (X ′)

 T (X ′) −X
′�2

2D�⌧ e
− 1

2
�H T (X)
 T (X ′) +H T (X ′)

 T (X) ��⌧
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Density response of superfluid 4He

We are therefore lead to sample a reptile, i.e. a path {X0�XN}
in which each time slice is sampled evolving the previous one
with a Langevin dynamics:

Xi+1 = Xi +�⌧
H T (Xi)
 T (Xi) + ⌘(Xi ,Xi + 1,�⌧)

The reptiles are sampled by randomly choosing one of the two
ends, sampling a further point of the path, and destroyng the
last point on the oppsite site.
In the middle of the path the points are propagated of an
imaginary time ⌧�2.
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ESTIMATORS

Energy:

E = 1

2
[Eloc(0) + Eloc(⌧)] where Eloc = H T (X)

 T (X)
Other (local):

�Ô� = 1

⌧ − 2�
�� ⌧−�

�
O(⌧ ′)d⌧ ′�

� should be large enough to avoid bias from the trial function.
The operator averaged at times 0 and ⌧ gives the mixed
estimate � 0�Ô � T � usually computed in DMC.
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An interesting feature of RQMC is the fact that expectations
computed at the center of the sample ”reptile” are no longer
dependent on the importance function.

from A. Roggero M.Sc. thesis
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Density response of superfluid 4He

We are interested in the density response of the system, in this
case the Response function is the so-called Dynamic Structure
Factor

S(q,!) = 1

N
�
⌫
�� ⌫ �⇢q � 0��2� (! − (E⌫ − E0))

where ⇢q is the Fourier Transform of the density operator:
⇢q ≡ ∑j e

iqrk .
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Density response of superfluid 4He

In RQMC calculations
it is possible to com-
pute very e�ciently
the Laplace transform
of the response func-
tion. Baroni and
Moroni(PRL 82, 4745
(1999)) presented the
results of the inversion
with ME techniques.

VOLUME 82, NUMBER 24 P HY S I CA L REV I EW LE T T ER S 14 JUNE 1999

FIG. 3. The ME reconstruction of the dynamical structure
factor of 4He at q ≠ 1.32 Å21 (solid line). The dotted line is
the result of a path integral Monte Carlo calculation [17], and
the dashed line is the measured Ssq, vd. The inset compares
the positions of the ME peaks at various wave vectors (open
circles) with the experimental excitation spectrum.

f-sum rule, ≠Fsq, tdy≠tjt≠0

≠ q2, is also fulfilled with
high precision.
Inferring the dynamical structure factor Ssq, vd

requires an inverse Laplace transform, Fsq, td ≠R`
0

Ssq, vdexps2vtd dv. We perform a maximum en-
tropy (ME) analysis [16] of our data, with results similar
to those obtained in Ref. [17]. The ME reconstruction
of Ssq, vd, shown in Fig. 3, is too smooth and does not
reproduce the sharp features exhibited by the experimen-
tal structure factor in the superfluid phase. Some known
properties of the spectrum are recovered: The presence of
a gap in the excitation spectrum is clearly revealed, and
the position of the peak of the reconstructed dynamical
response closely follows the measured dispersion of the
elementary excitations [4,17]. However, the general
reliability of the ME analysis as a predictive tool, with
the statistical accuracy of the data typically achieved from
the simulation of continuum systems, is hard to assess.
We finally outline the calculation of the superfluid den-

sity rs. The superfluid transition is of interest even at
zero temperature, for instance, in the presence of an exter-
nal disordered potential V

ext

. We can compute rs from
the diffusion coefficient of the center of mass motion,
rsyr ≠ limt!` Dstd, which is the zero temperature limit
of the winding number estimator used in path integral
simulations [9]. We consider a model system of static im-
purities in 4He represented by attractive Gaussians placed
at random sites and we observe that the computed rs,
which is correctly one for the pure system, is indeed re-
duced in the presence of the impurities [4].
Based on our limited experience, the RQMC method

features distinct advantages over standard branching DMC.

Clusters, films, and superfluids in restricted geometries are
natural candidates for further applications. For Fermion
problems, the fixed-node approximation [1,2] can be used
to cope with the sign problem. The dynamical information
contained in the path is, in this case, incorrect [6], but
the algorithm is still free from the mixed estimate and the
population control biases. Furthermore, because it samples
an explicit expression for the imaginary time evolution,
RQMC gives access to quantities obtained by differentia-
tion, for instance, a low-variance estimator of electronic
forces [18].
We acknowledge support from MURST. We thank

K. E. Schmidt, M. P. Nightingale, and C. J. Umrigar for
useful discussions.
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Dynamic Structure Factor

A. Roggero, F. Pederiva, G. Orlandini, arXiv:1209.5638

Experimental data from W.G. Stirling, H.R. Glyde, PRB 41, 4224 (1990)
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Low-Momentum Excitation spectrum
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Excitation spectrum in quasi-elastic regime
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Example: density response of superfluid 4He

Excitation spectrum: incoherent (single particle) part
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Conclusions

Pro

the only input of the calculation is the interaction potential

we only need imaginary-time correlation functions

Con

for high accuracy, extremely long imaginary-time intervals
have to be considered

the inversion procedure still introduces uncontrollable
errors
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