Electromagnetic structure and reactions of light nuclei from $χEFT$ *

Saori Pastore @ INT - Seattle, WA - November 2012

∗ in collaboration with: Steven Pieper, Rocco Schiavilla, Bob Wiringa, Maria Piarulli, Luca Girlanda, Michele Viviani, Laura E. Marcucci, Alejandro Kievsky, José L. Goity

PRC**78**, 064002 (2008) - PRC**80**, 034004 (2009) - PRC**81**, 034005 (2010) - PRL**105**, 232502, (2010) - PRC**84**, 024001 (2011)

- ► EM currents I: Standard Nuclear Physics Approach (SNPA)
- \blacktriangleright EM currents II: Nuclear χ EFT approach
- EM observables in $A \leq 9$ systems
- \blacktriangleright Summary
- \blacktriangleright Outlook

The Basic Model

 \triangleright The nucleus is a system made of A interacting nucleons, its energy is given by

$$
H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots
$$

where ^υ*ij* and *Vijk* are 2- and 3-nucleon interaction operators

▶ Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

► EM current operator **j** satisfies the current conservation relation (CCR) with the nuclear Hamiltonian, hence V, ρ, **j** need to be derived consistently

$$
\mathbf{q} \cdot \mathbf{j} = [H, \rho]
$$

CCR does not constrain transverse (orthogonal to **q**) currents

Currents from nuclear interactions ∗- Marcucci *et al.* PRC**72**, 014001 (2005)

- ◮ Current operator **j** constructed so as to satisfy the continuity equation with a realistic Hamiltonian
- ▶ Short- and intermediate-behavior of the EM operators inferred from the nuclear two- and three-body potentials

- ∗ also referred to as Standard Nuclear Physics Approach (SNPA) currents
	- ◮ Long range part of **j**(υ) corresponds to OPE seagull and pion-in-flight EM currents

Currents from nuclear interactions - Marcucci *et al.* PRC**72**, 014001 (2005) Satisfactory description of a variety of nuclear EM properties [see Marcucci *et al.* (2005) and (2008)]

 2 H(p, γ)³He capture

▶ Isoscalar magnetic moments are a few % off (10% in A=7 nuclei)

Chiral Effective Field Theory EM Currents

Currents and nuclear electroweak properties:

- ▶ Park, Rho *et al.* (1996–2009); hybrid studies in A=2–4 by Song *at al.* (2009-2011)
- ▶ Meissner <i>et al.</i> (2001), Kölling <i>et al.</i> (2009–2011); applications to d and ³He photodisintegration by Rozpedzik *et al.* (2011); applications to *d* and $A = 3$ magnetic f.f.'s by Kölling, Epelbaum, Phillips (2012)
- \blacktriangleright Phillips (2003);

applications to deuteron static properties and f.f.'s

Transition amplitude in time-ordered perturbation theory

$$
T_{\text{fi}} = \langle f | T | i \rangle = \langle f | H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} | i \rangle
$$

= $\langle f | H_1 | i \rangle + \sum_{|I|} \langle f | H_1 | I \rangle \frac{1}{E_i - E_I} \langle I | H_1 | i \rangle + ...$

 \triangleright A contribution with N interaction vertices and L loops scales as

- α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex N_K = number of pure nucleonic intermediate states
- \blacktriangleright (*N* − *N_K* − 1) energy denominators expanded in powers of $(E_i E_N)/\omega_\pi \sim Q$ 1 $\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N}$ $\frac{1}{E_i - E_N - \omega_{\pi}} |I\rangle \sim -\Big[\frac{1}{\omega}\Big]$ $\frac{\omega_{\pi}}{2}$ *Q*−¹ $+\underbrace{\frac{E_i - E_N}{\omega_{\pi}^2}}$ Q^0 $+\frac{(E_i - E_N)^2}{2^3}$ $\frac{\omega_{\pi}^3}{\omega_{\pi}}$ Q^1 $+ \dots \vert \vert I \rangle$
- Due to the chiral expansion, the transition amplitude T_f can be expanded as $T_{\text{fi}} = T^{\text{LO}} + T^{\text{NLO}} + T^{\text{N2LO}} + \dots$ and $T^{\text{NnLO}} \sim (Q/\Lambda_{\chi})^n T^{\text{LO}}$

 $7/22$

χ EFT EM current up to $n = 1$ (or up to N3LO)

- \blacktriangleright *n* = −2, −1, 0, and 1-(loops only): depend on known LECs namely g_A , F_{π} , and proton and neutron μ
- \blacktriangleright $n = 0$: $(Q/m_N)^2$ relativistic correction to **j** (−2)
- \blacktriangleright unknown LECs enter the $n = 1$ contact and tree-level currents (the latter originates from a γπ*N* vertex of order *eQ*²)
- ▶ divergencies associated with loop integrals are reabsorbed by renormalization of contact terms
- ▶ loops contributions lead to purely isovector operators
- \blacktriangleright **j**^{(n \leq 1) satisfies the CCR with χ EFT two-nucleon potential $v^{(n\leq 2)}$}

$$
N^3LO: j^{(i)} \sim eQ \text{ and } |\cdot| \text{ is } | \cdot| \text{ is } | \cdot| \text{ is } X \times X \times X
$$

γ EFT EM current up to $n = 1$ (or up to N3LO)

- EECs of contact interactions at Q^0 and 'minimal' contact interactions at Q^2 fixed from fits to *np* phases shifts: LECs taken from *Q* ⁴ NN potential of D.R. Entem, R.Machleidt—PRC**68**, 041001 (2003)
- ▶ LECs from 'non-minimal' interactions fixed by reproducing EM observables: Different parameterizations are possible
- ► No three-body currents at N3LO

* Note:

- currents associated with one loop corrections to the OPE are missing in our calculations; renormalization of OPE currents has been carried out in Kölling 2011
- * We revised derivation of current of involving CT interaction + pion loop (more on this issue on extra slides if interested)
- * The N3LO MIN contact current is in agreement with that of Kölling 2011 after Fierz-reordering, apart from differences in the term $\propto C_5$ (more on this issue on extra slides if interested)

* Piarulli *et al.* in preparation, **PRC**80**, 034004 (2009)

χEFT EM currents at N3LO: fixing LECs p.1/2 – Piarulli *et al.* in prep.

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation $\left(\frac{dV}{2}/dV\right) = 1/4$)

Left with 5 LECs: Fixed in the
$$
A = 2 - 3
$$
 nucleons' sector

 \blacktriangleright Isoscalar sector:

* d^S and c^S from EXPT μ_d and $\mu_S(^3H)^3$ He)

χEFT EM currents at N3LO: fixing LECs p.2/2 – Piarulli *et al.* in prep. $d^{\mathbf{S}}, d_1^{\mathbf{V}}, d_2^{\mathbf{V}}$ $c^{\mathbf{S}}, c^{\mathbf{V}}$ Isovector $\left| \cdot \right|$ $\left| \cdot \right|$ $d_1^{\mathbf{V}}, d_2^{\mathbf{V}}$

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

Left with 4 LECs: Fixed in the *A* = 2−3 nucleons' sector

► Isovector sector: ^{*} I = c^V and d_1^V from EXPT $\mu_V(^3H)^3$ He) m.m. and EXPT *npd* γ xsec. or ^{*} II = c^V from EXPT *npd*γ xsec. and d_1^V from Δ-saturation^{*} or ^{*} III = c^V from EXPT $\mu_V(^3H)^3$ He) m.m. and d_1^V from Δ -saturation^{*}

$$
{}^*d_1^V=4\tfrac{\mu^*h_A}{9m(m_\Delta-m)}\Lambda^2
$$

Predictions with χ EFT EM currents for $A = 2-3$ systems- Piarulli *et al.* in prep.

np capture xsec. (using model III) / μ_V of $A = 3$ nuclei (using model II) bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)

trinucleon w.f.'s from hyperspherical harmonics expansion Kievsky *et al.*, FBS**22**, 1 (1997); Viviani *et al.*, FBS**39**, 59 (2006); Kievsky *et al.*, J. Phys. G: Nucl. Part. Phys. **35**, 063101 (2008)

Predictions with χ EFT EM currents for $A = 2-3$ systems - Piarulli *et al.* in prep.

³H magnetic f.f. using model III bands represent cutoff dependence $(Λ = 500 – 600 MeV)$

trinucleon w.f.'s from hyperspherical harmonics expansion Kievsky *et al.*, FBS**22**, 1 (1997); Viviani *et al.*, FBS**39**, 59 (2006); Kievsky *et al.*, J. Phys. G: Nucl. Part. Phys. **35**, 063101 (2008)

GFMC Predictions $A = 6-9$ – Variational Monte Carlo

Minimize expectation value of *H*

$$
E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0
$$

using trial function

$$
|\Psi_V\rangle = \left[\mathscr{S}\prod_{i
$$

- \triangleright single-particle Φ_A (*JMTT*₃) is fully antisymmetric and translationally invariant
- ightharpoontrial pair correlations $f_c(r)$ keep nucleons at favorable pair separation
- pair correlation operators U_{ii} reflect influence of v_{ii} (AV18)
- ightharpoontriangleright in triple correlation operator *U*^{*ijk*} added when *V*^{*ijk*} (IL7) is present

 $Ψ_V$ are spin-isospin vectors in 3*A* dimensions with $\sim 2^A \binom{A}{Z}$ components Lomnitz-Adler, Pandharipande, Smith, NP **A361**, 399 (1981) Wiringa, PRC **43**, 1585 (1991)

GFMC Predictions *A* = 6–9 – Green's function Monte Carlo

Given a decent trial function Ψ_V , we can further improve it by "filtering" out the remaining excited state contamination:

$$
\Psi(\tau) = \exp[-(H - E_0)\tau]\Psi_V = \sum_n \exp[-(E_n - E_0)\tau]a_n\psi_n
$$

$$
\Psi(\tau \to \infty) = a_0\psi_0
$$

Evaluation of $\Psi(\tau)$ is done stochastically (Monte Carlo method) in small time steps ∆^τ using a Green's function formulation.

In practice, we evaluate a "mixed" estimates

$$
\langle O(\tau) \rangle = \frac{f \langle \Psi(\tau) | O | \Psi(\tau) \rangle_i}{\langle \Psi(\tau) | \Psi(\tau) \rangle} \approx \langle O(\tau) \rangle_{\text{Mixed}}^i + \langle O(\tau) \rangle_{\text{Mixed}}^f - \langle O \rangle_{V}
$$

$$
\langle O(\tau) \rangle_{\text{Mixed}}^i = \frac{f \langle \Psi_V | O | \Psi(\tau) \rangle_i}{f \langle \Psi_V | \Psi(\tau) \rangle_i} ; \quad \langle O(\tau) \rangle_{\text{Mixed}}^f = \frac{f \langle \Psi(\tau) | O | \Psi_V \rangle_i}{f \langle \Psi(\tau) | \Psi_V \rangle_i}
$$

Pudliner, Pandharipande, Carlson, Pieper, & Wiringa, PRC **56**, 1720 (1997) Wiringa, Pieper, Carlson, & Pandharipande, PRC **62**, 014001 (2000) Pieper, Wiringa, & Carlson, PRC **70**, 054325 (2004)

Examples of GFMC propagation: M1 Transition in $A = 7$

Examples of GFMC propagation: Magnetic moment in $A = 9$

Reduce noise by increasing the statistic for the IA results

GFMC calculation of magnetic moments in $A \leq 9$ nuclei: Summary

Predictions for $A > 3$ nuclei – AV18/IL7 + χ EFT EM MEC

Preliminary results

$$
\mu(\text{IA}) = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i (1 - \tau_{i,z})/2]
$$

Preliminary results

Overall improvement of isoscalar (IS) component of the magnetic moment

$$
\mu = \mu_S + \tau_z \mu_V
$$

Anomalous magnetic moment of ⁹C

Mirror nuclei spin expectation value

► Charge Symmetry Conserving (CSC) picture ($p \leftrightarrow n$) *

$$
<\sigma_z>=\frac{\mu(T_z=+T)+\mu(T_z=-T)-J}{(g_s^p+g_s^n-1)/2}=\frac{2\mu(IS)-J}{0.3796}
$$

► For *A* = 9, *T* = 3/2 mirror nuclei:
$$
{}^{9}C
$$
 and ${}^{9}Li$ EXP $\langle \sigma_z \rangle$ = 1.44 while THEORY $\langle \sigma_z \rangle \sim 1$ (assuming CSC) possible cause: Charge Symmetry Breaking (CSB)

Three different predictions for $\langle \sigma_z \rangle$ with CSC w.f.'s (*) and CSB w.f.'s

Preliminary

- \triangleright Need both CSB in the w.f.'s and MEC!
- [∗] Utsuno PRC**70**, 011303(R) (2004)

GFMC calculation of M1 transitions in $A \leq 9$ nuclei: Summary

M1(IA) =
$$
\mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2
$$

+ $g_n S_i (1 - \tau_{i,z})/2]$
E2(IA) = $\sum_i e_{N,i} r_i^2 Y_2(\hat{\mathbf{r}}_i)$

Preliminary results

0 1 2 3 Ratio to experiment EXPT ⁶Li(0⁺ → 1⁺) B(M1) ⁷Li(¹ / 2 - → ³ / 2 -) B(M1) ⁷Li(¹ / 2 - → ³ / 2 -) B(E2) ⁷Be(¹ / 2 - → ³ / 2 -) B(M1) ⁷Be(¹ / 2 - → ³ / 2 -) B(E2) ⁸Li(1⁺ → 2⁺) B(M1) ⁸Li(3⁺ → 2⁺) B(M1) ⁸B(1⁺ → 2⁺) B(M1) ⁸B(3⁺ → 2⁺) B(M1) ⁹Be(⁵ / 2 - → ³ / 2 -) B(M1) ⁹Be(⁵ / 2 - → ³ / 2 -) B(E2) GFMC(IA) GFMC(MEC)

Summary

- SNPA and χ EFT up to N3LO EM currents operators tested in the $A \le 9$ nuclei
- ▶ Predictions from hybrid calculations of magnetic moment and M1 transitions in *A* ≤ 9 nuclei are in good agreement with experimental data: Corrections beyond the IA are important to bring theory in agreement with experimental data
- Anomalous magnetic moment of ${}^{9}C$ is reproduced as a result of both CSB in the nuclear w.f.'s and χ EFT two-body corrections

Outlook: electroweak properties of light nuclei

- EM structure of light nuclei
	- Extend hybrid calculations to different combinations of $2N$ and $3N$ potentials to study charge radii, charge and magnetic form factors of $A \leq 10$ systems (on going project)
- ∗ Weak structure of light nuclei
	- ► Extend hybrid calculations to weak properties of light nuclei