Electromagnetic structure and reactions of light nuclei from $\chi EFT *$

Saori Pastore @ INT - Seattle, WA - November 2012

 * in collaboration with: Steven Pieper, Rocco Schiavilla, Bob Wiringa, Maria Piarulli, Luca Girlanda, Michele Viviani, Laura E. Marcucci, Alejandro Kievsky, José L. Goity

PRC78, 064002 (2008) - PRC80, 034004 (2009) - PRC81, 034005 (2010) - PRL105, 232502, (2010) - PRC84, 024001 (2011)

- ► EM currents I: Standard Nuclear Physics Approach (SNPA)
- EM currents II: Nuclear χ EFT approach
- EM observables in $A \le 9$ systems
- Summary
- Outlook

The Basic Model

▶ The nucleus is a system made of A interacting nucleons, its energy is given by

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

where v_{ij} and V_{ijk} are 2- and 3-nucleon interaction operators

Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1-, 2-, ... nucleon operators:

EM current operator j satisfies the current conservation relation (CCR) with the nuclear Hamiltonian, hence V, ρ, j need to be derived consistently

$$\mathbf{q} \cdot \mathbf{j} = [H, \rho]$$

CCR does not constrain transverse (orthogonal to q) currents

Currents from nuclear interactions *- Marcucci et al. PRC72, 014001 (2005)

- Current operator j constructed so as to satisfy the continuity equation with a realistic Hamiltonian
- Short- and intermediate-behavior of the EM operators inferred from the nuclear two- and three-body potentials

* also referred to as Standard Nuclear Physics Approach (SNPA) currents

Long range part of j(υ) corresponds to OPE seagull and pion-in-flight EM currents

Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005) Satisfactory description of a variety of nuclear EM properties [see Marcucci et al. (2005) and (2008)]

 2 H(p, γ)³He capture

► Isoscalar magnetic moments are a few % off (10% in A=7 nuclei)

Chiral Effective Field Theory EM Currents

Currents and nuclear electroweak properties:

- Park, Rho et al. (1996–2009); hybrid studies in A=2–4 by Song at al. (2009-2011)
- ▶ Meissner *et al.* (2001), Kölling *et al.* (2009–2011); applications to *d* and ³He photodisintegration by Rozpedzik *et al.* (2011); applications to *d* and A = 3 magnetic f.f.'s by Kölling, Epelbaum, Phillips (2012)

Phillips (2003);

applications to deuteron static properties and f.f.'s

Transition amplitude in time-ordered perturbation theory

$$\begin{split} T_{\mathrm{fi}} &= \langle f \mid T \mid i \rangle \quad = \quad \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle \\ &= \quad \langle f \mid H_1 \mid i \rangle + \sum_{|I\rangle} \langle f \mid H_1 \mid I \rangle \frac{1}{E_i - E_I} \langle I \mid H_1 \mid i \rangle + \dots \end{split}$$

A contribution with N interaction vertices and L loops scales as

- α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex N_K = number of pure nucleonic intermediate states
- $(N N_K 1) \text{ energy denominators expanded in powers of } (E_i E_N) / \omega_{\pi} \sim Q$ $\frac{1}{E_i E_I} |I\rangle = \frac{1}{E_i E_N \omega_{\pi}} |I\rangle \sim -\left[\underbrace{\frac{1}{\omega_{\pi}}}_{Q^{-1}} + \underbrace{\frac{E_i E_N}{\omega_{\pi}^2}}_{Q^0} + \underbrace{\frac{(E_i E_N)^2}{\omega_{\pi}^3}}_{Q^1} + \dots\right] |I\rangle$

► Due to the chiral expansion, the transition amplitude $T_{\rm fi}$ can be expanded as $T_{\rm fi} = T^{\rm LO} + T^{\rm NLO} + T^{\rm N2LO} + \dots$ and $T^{\rm NnLO} \sim (Q/\Lambda\chi)^n T^{\rm LO}$

χ EFT EM current up to n = 1 (or up to N3LO)

- ► n = -2, -1, 0, and 1-(loops only): depend on known LECs namely g_A, F_π , and proton and neutron μ
- ▶ n = 0: $(Q/m_N)^2$ relativistic correction to $\mathbf{j}^{(-2)}$
- unknown LECs enter the n = 1 contact and tree-level currents (the latter originates from a $\gamma \pi N$ vertex of order $e Q^2$)
- divergencies associated with loop integrals are reabsorbed by renormalization of contact terms
- loops contributions lead to purely isovector operators
- ► $\mathbf{j}^{(n \le 1)}$ satisfies the CCR with χ EFT two-nucleon potential $\boldsymbol{\upsilon}^{(n \le 2)}$

$$\mathbb{N}^{3}\mathrm{LO: j^{(1)} \sim eQ}$$
 \rightarrow \mathbb{Q} \rightarrow

χ EFT EM current up to n = 1 (or up to N3LO)

- ► LECs of contact interactions at Q^0 and 'minimal' contact interactions at Q^2 fixed from fits to *np* phases shifts: LECs taken from Q^4 NN potential of D.R. Entem, R.Machleidt—PRC68, 041001 (2003)
- LECs from 'non-minimal' interactions fixed by reproducing EM observables: Different parameterizations are possible
- No three-body currents at N3LO

* Note:

- * currents associated with one loop corrections to the OPE are missing in our calculations; renormalization of OPE currents has been carried out in Kölling 2011
- * We revised derivation of current of involving CT interaction + pion loop (more on this issue on extra slides if interested)
- * The N3LO MIN contact current is in agreement with that of Kölling 2011 after Fierz-reordering, apart from differences in the term $\propto C_5$ (more on this issue on extra slides if interested)

* Piarulli et al. in preparation, **PRC80, 034004 (2009)

χEFT EM currents at N3LO: fixing LECs p.1/2 – Piarulli et al. in prep.

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation ($d_2^V/d_1^V = 1/4$)

Left with 5 LECs: Fixed in the A = 2 - 3 nucleons' sector

Isoscalar sector:

* d^{S} and c^{S} from EXPT μ_{d} and $\mu_{S}({}^{3}\text{H}/{}^{3}\text{He})$

Λ	NN/NNN	$10 \times d^S$	c^{S}
600	AV18/UIX (N3LO/N2LO)	-2.033 (3.231)	5.238 (11.38)

 χ EFT EM currents at N3LO: fixing LECs p.2/2 – Piarulli *et al.* in prep. $d^{s}.d^{v}_{1}.d^{v}_{2} = c^{s}.c^{v}$

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation ($d_2^V/d_1^V = 1/4$)

Left with 4 LECs: Fixed in the A = 2 - 3 nucleons' sector

Isovector sector:

* I = c^V and d_1^V from EXPT $\mu_V({}^{3}\text{H}{}^{3}\text{He})$ m.m. and EXPT $npd\gamma$ xsec. or

* II = c^V from EXPT $npd\gamma$ xsec. and d_1^V from Δ -saturation*

* III = c^V from EXPT $\mu_V({}^{3}\text{H}{}^{/3}\text{He})$ m.m. and d_1^V from Δ -saturation*

Λ	NN/NNN	Current	d_1^V	c^V
600	AV18/UIX (N3LO/N2LO)	Ι	75.0 (33.14)	257.5 (41.84)
		II	4.98 (4.98)	-11.57 (-22.31)
		III	4.98 (4.98)	-1.025 (-11.69)
*1				

*
$$d_1^V = 4 \frac{\mu^* h_A}{9m(m_\Delta - m)} \Lambda^2$$

Predictions with χ EFT EM currents for A = 2-3 systems- Piarulli *et al.* in prep.

np capture xsec. (using model III) / μ_V of A = 3 nuclei (using model II) bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)

trinucleon w.f.'s from hyperspherical harmonics expansion Kievsky *et al.*, FBS**22**, 1 (1997); Viviani *et al.*, FBS**39**, 59 (2006); Kievsky *et al.*, J. Phys. G: Nucl. Part. Phys. **35**, 063101 (2008)

Predictions with χ EFT EM currents for A = 2-3 systems - Piarulli *et al.* in prep.

³H magnetic f.f. using model III bands represent cutoff dependence ($\Lambda = 500 - 600$ MeV)

trinucleon w.f.'s from hyperspherical harmonics expansion Kievsky *et al.*, FBS**22**, 1 (1997); Viviani *et al.*, FBS**39**, 59 (2006); Kievsky *et al.*, J. Phys. G: Nucl. Part. Phys. **35**, 063101 (2008)

GFMC Predictions A = 6-9 – Variational Monte Carlo

Minimize expectation value of H

$$E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0$$

using trial function

$$|\Psi_V\rangle = \left[\mathscr{S}\prod_{i < j} (1 + \frac{U_{ij}}{L_{ij}} + \sum_{k \neq i,j} U_{ijk})\right] \left[\prod_{i < j} f_c(r_{ij})\right] |\Phi_A(JMTT_3)\rangle$$

- ▶ single-particle $\Phi_A(JMTT_3)$ is fully antisymmetric and translationally invariant
- central pair correlations $f_c(r)$ keep nucleons at favorable pair separation
- pair correlation operators U_{ij} reflect influence of v_{ij} (AV18)
- ▶ triple correlation operator U_{ijk} added when V_{ijk} (IL7) is present

 Ψ_V are spin-isospin vectors in 3A dimensions with $\sim 2^A {A \choose Z}$ components Lomnitz-Adler, Pandharipande, Smith, NP A361, 399 (1981) Wiringa, PRC 43, 1585 (1991)

GFMC Predictions A = 6-9 – Green's function Monte Carlo

Given a decent trial function Ψ_V , we can further improve it by "filtering" out the remaining excited state contamination:

$$\Psi(\tau) = \exp[-(H - E_0)\tau]\Psi_V = \sum_n \exp[-(E_n - E_0)\tau]a_n\psi_n$$
$$\Psi(\tau \to \infty) = a_0\psi_0$$

Evaluation of $\Psi(\tau)$ is done stochastically (Monte Carlo method) in small time steps $\Delta \tau$ using a Green's function formulation. In practice, we evaluate a "mixed" estimates

$$\begin{split} \langle O(\tau) \rangle &= \frac{f \langle \Psi(\tau) | O| \Psi(\tau) \rangle_i}{\langle \Psi(\tau) | \Psi(\tau) \rangle} \approx \langle O(\tau) \rangle_{\text{Mixed}}^i + \langle O(\tau) \rangle_{\text{Mixed}}^f - \langle O \rangle_V \\ \langle O(\tau) \rangle_{\text{Mixed}}^i &= \frac{f \langle \Psi_V | O| \Psi(\tau) \rangle_i}{f \langle \Psi_V | \Psi(\tau) \rangle_i} \ ; \ \langle O(\tau) \rangle_{\text{Mixed}}^f = \frac{f \langle \Psi(\tau) | O| \Psi_V \rangle_i}{f \langle \Psi(\tau) | \Psi_V \rangle_i} \end{split}$$

Pudliner, Pandharipande, Carlson, Pieper, & Wiringa, PRC **56**, 1720 (1997) Wiringa, Pieper, Carlson, & Pandharipande, PRC **62**, 014001 (2000) Pieper, Wiringa, & Carlson, PRC **70**, 054325 (2004)

Examples of GFMC propagation: M1 Transition in A = 7

Examples of GFMC propagation: Magnetic moment in A = 9

Reduce noise by increasing the statistic for the IA results

GFMC calculation of magnetic moments in $A \leq 9$ nuclei: Summary

Preliminary results

$$\mu(IA) = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 - \tau_{i,z})/2]$$

Magnetic moments in $A \leq 9$ nuclei: SNPA vs χ EFT

	А	s.s.	IA	TOT SNPA	TOT χ EFT*	EXP
IS	7	[43]	0.902 (3)	0.833 (12)	0.906 (7)	0.929
IV		[43]	- 3.944 (5)	- 4.587 (18)	- 4.670 (9)	- 4.654
IS	8	[431]	1.289 (8)	1.160 (15)	1.299 (9)	1.344
IV		[431]	0.182 (8)	- 0.129 (15)	- 0.139 (9)	- 0.310
IS	9	[432]	0.994 (15)	0.922 (32)	1.038 (21)	1.024
IV		[432]	- 1.095 (10)	- 1.371 (21)	- 1.532 (15)	- 1.610

Preliminary results

Overall improvement of isoscalar (IS) component of the magnetic moment

$$\mu = \mu_S + \tau_z \mu_V$$

Anomalous magnetic moment of ⁹C

Mirror nuclei spin expectation value

▶ Charge Symmetry Conserving (CSC) picture $(p \leftrightarrow n)^*$

$$<\sigma_z>=rac{\mu(T_z=+T)+\mu(T_z=-T)-J}{(g_s^p+g_s^n-1)/2}=rac{2\mu(\mathrm{IS})-J}{0.3796}$$

► For A = 9, T = 3/2 mirror nuclei: ⁹C and ⁹Li EXP $< \sigma_z >= 1.44$ while THEORY $< \sigma_z >\sim 1$ (assuming CSC) possible cause: Charge Symmetry Breaking (CSB)

► Three different predictions for $< \sigma_z >$ with CSC w.f.'s (*) and CSB w.f.'s

$<\sigma_z>$	Symmetry	IA	TOT	EXP
CSB	${}^{9}\text{Li}(\frac{3}{2}^{-};\frac{3}{2}), {}^{9}\text{C}(\frac{3}{2}^{-};\frac{3}{2})$	1.29 (8)	1.52 (11)	1.44
CSC	${}^{9}\text{Li}(\frac{3}{2}^{-};\frac{3}{2}), {}^{9}\text{C}(\frac{3}{2}^{-};\frac{3}{2})^{*}$	0.95 (11)	1.00 (11)	
CSC	${}^{9}\text{Li}(\frac{3}{2}^{-};\frac{3}{2})^{*}, {}^{9}\text{C}(\frac{3}{2}^{-};\frac{3}{2})$	1.00 (11)	1.05 (9)	

Preliminary

- Need both CSB in the w.f.'s and MEC!
- * Utsuno PRC70, 011303(R) (2004)

GFMC calculation of M1 transitions in $A \le 9$ nuclei: Summary

$$MI(IA) = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 - \tau_{i,z})/2]$$

$$E2(IA) = \sum_i e_{N,i} r_i^2 Y_2(\hat{\mathbf{r}}_i)$$

Preliminary results

Summary

- SNPA and χ EFT up to N3LO EM currents operators tested in the $A \le 9$ nuclei
- ▶ Predictions from hybrid calculations of magnetic moment and M1 transitions in A ≤ 9 nuclei are in good agreement with experimental data: Corrections beyond the IA are important to bring theory in agreement with experimental data
- Anomalous magnetic moment of ⁹C is reproduced as a result of both CSB in the nuclear w.f.'s and χEFT two-body corrections

Outlook: electroweak properties of light nuclei

- * EM structure of light nuclei
 - Extend hybrid calculations to different combinations of 2N and 3N potentials to study charge radii, charge and magnetic form factors of $A \le 10$ systems (on going project)
- * Weak structure of light nuclei
 - Extend hybrid calculations to weak properties of light nuclei