The Isoscalar Monopole Resonance of ⁴He

Giuseppina Orlandini

Work done in collaboration with:

Sonia **Bacca (Triumf)** Nir **Barnea (Jerusalem)** Winfried **Leidemann (Trento)**

O⁺ Resonance in the ⁴He compound system

Position at $E_R = -8.2$ MeV, i.e. **above** the ³H-p threshold $\Gamma = 270\pm70$ keV - **Strong** evidence in electron scattering

Giuseppina Orlandini, INT, Sept 21, 2012

With electron scattering one can study not only the energy E_R of the resonance, but also the variation of the strength with q, i.e. the momentum transferred from the electron to the nucleus (different resolutions !)

In fact:

$$\frac{d\sigma}{d\Omega dE_{e}} = \sigma_{Mott} q_{\mu}^{4}/q^{4} F_{L}(q, E)$$
Long

With electron scattering one can study not only the energy E_R of the resonance, but also the variation of the strength with q, i.e. the momentum transferred from the electron to the nucleus (different resolutions !)

In fact:

at E=E, it is called "transition f.f."

The longitudinal form factor $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E})$ is given by $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E}) = \oint_{n} |\langle \mathbf{n} | \rho(\mathbf{q}) | \mathbf{0} \rangle|^{2} \delta(\mathbf{E} - \mathbf{E}_{n} + \mathbf{E}_{0})$ The longitudinal form factor $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E})$ is given by $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E}) = \mathbf{f}_{n} | < \mathbf{n} | \rho(\mathbf{q}) | \mathbf{0} > |^{2} \delta(\mathbf{E} - \mathbf{E}_{n} + \mathbf{E}_{0})$ where

H $|n\rangle = E_n |n\rangle$ and **H** is the nuclear Hamiltonian $\rho(\mathbf{q}) = \sum_{i=1}^{A} \exp[i \mathbf{q} \cdot \mathbf{r}_i] (1 + \tau_i^3) / 2$ is the **charge density** operator

| n > is in the continuum (N-body scattering state)

The longitudinal form factor $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E})$ is given by $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E}) = \oint_{n} | < \mathbf{n} | \rho(\mathbf{q}) | 0 > |^{2} \delta(\mathbf{E} - \mathbf{E}_{n} + \mathbf{E}_{0})$ where

H $|\mathbf{n}\rangle = \mathbf{E}_{\mathbf{n}} |\mathbf{n}\rangle$ and **H** is the nuclear Hamiltonian $\rho(\mathbf{q}) = \sum_{i=1}^{n} \exp[i \mathbf{q} \cdot \mathbf{r}_{i}] (1 + \tau_{i}^{3}) / 2$ is the **charge density** operator

We have calculated the isoscalar L=0 (monopole) component i.e.

$$\rho_{M}(\mathbf{q}) = \sum_{i}^{A} j_{0}(qr_{i}) Y_{00}$$

Notice!

$F_{L}(q, E) = \int_{n}^{\infty} |\langle n | \rho(q) | 0 \rangle|^{2} \delta(E - E_{n} + E_{0})$

can be rewritten as

 $\mathbf{F}_{\mathsf{L}}(\mathbf{q}, \mathbf{E}) = \operatorname{Im}\left\{ \langle \mathbf{0} | \rho_{\mathsf{M}}^{\dagger}(\mathbf{q}) \left(\mathbf{E} + \mathbf{E}_{\mathsf{0}}^{-} \mathbf{H} + i \varepsilon \right)^{-1} \rho_{\mathsf{M}}(\mathbf{q}) \left| \mathbf{0} \right\rangle \right\}$

 $\mathbf{F}_{\mathbf{L}}(\mathbf{q}, \mathbf{E}) = \operatorname{Im}\{\langle 0 | \rho_{M}^{\dagger}(\mathbf{q}) (\mathbf{E} + \mathbf{E}_{0} - \mathbf{H} + \mathbf{i} \mathbf{E})^{-1} \rho_{M}(\mathbf{q}) | 0 \rangle\}$ $\Sigma_{n} | \mathbf{m} \rangle \langle \mathbf{m} | = \mathbf{I}$ $\Sigma_{n} | \mathbf{m} \rangle \langle \mathbf{n} | = \mathbf{I}$

where | n) is a square integrable basis

 $\mathbf{F}_{\mathbf{I}}(\mathbf{q}, \mathbf{E}) = \operatorname{Im}\left\{ \langle \mathbf{0} | \rho_{M}^{\dagger}(\mathbf{q}) (\mathbf{E} + \mathbf{E}_{0} - \mathbf{H} + i \epsilon)^{-1} \rho_{M}^{}(\mathbf{q}) | \mathbf{0} \right\}$ $\Sigma_n |m\rangle \langle m| = I$ $\Sigma_n |n\rangle \langle n| = I$ By diagonalizing **H**_{mn} pne obtains eigenvalues ξ and eigenfunctions $|\xi\rangle$ and F₁ becomes a sum of delta functions centered in ξ_1

 $\mathbf{F}(\mathbf{q}, \mathbf{E}) = \operatorname{Im}\{\langle \mathbf{0} | \rho_{M}^{\dagger}(\mathbf{q}) (\mathbf{E} + \mathbf{E}_{0} - \mathbf{H} + i \varepsilon)^{-1} \rho_{M}(\mathbf{q}) | \mathbf{0} \rangle\}$ $\Sigma |m\rangle \langle m| = I$ $\Sigma_n |n\rangle \langle n| = I$ By diagonalizing **H**_{mn} one obtains eigenvalues ξ and eigenfunctions $|\xi\rangle$ and F_{1} becomes a sum of delta functions centered in ξ_{1}

 $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E}) = \sum_{\mathbf{v}} |\langle \xi_{\mathbf{v}} | \rho_{M}(\mathbf{q}) | 0 \rangle |^{2} \delta(\mathbf{E} - \xi_{\mathbf{v}})$

 $\mathbf{F}_{\mathbf{q}}(\mathbf{q},\mathbf{E}) = \operatorname{Im}\left\{ \langle \mathbf{0} | \rho_{M}^{\dagger}(\mathbf{q}) (\mathbf{E} + \mathbf{E}_{0} - \mathbf{H} + i \epsilon)^{-1} \rho_{M}^{}(\mathbf{q}) | \mathbf{0} \right\}$ $\Sigma_n |m\rangle \langle m| = I$ $\Sigma_n |n\rangle \langle n| = I$ By diagonalizing **H**_{mn} one obtains eigenvalues ξ and eigenfunctions $|\xi\rangle$ and F becomes a sum of delta functions centered in ξ

$$F_{L}(q, E) = \sum_{v} |\langle \xi_{v} | \rho_{M}(q) | 0 \rangle |^{2} \delta(E - \xi_{v})$$

Approximation: continuum has been discretized!

We have calculated **F**_L (**q**, **E**) with the Lorentz Integral Transform (LIT) method, which allows to reduce the continuum problem to a bound state-like problem, rigorously $\begin{aligned} & \text{Illustration of the LIT} \\ & \textbf{F}_{L}(\textbf{q},\textbf{E}) = \operatorname{Im}\{\langle 0 | \rho_{M}^{\dagger}(\textbf{q}) (\textbf{E}+\textbf{E}_{0}-\textbf{H}+\textbf{i} \textbf{\epsilon})^{-1} \rho_{M}(\textbf{q}) | 0 \rangle\} \end{aligned}$

Illustration of the LIT $\mathbf{F}_{\mathbf{M}}(\mathbf{q}, \mathbf{E}) = \operatorname{Im}\left\{\left\langle 0 \right| \rho_{\mathbf{M}}^{\dagger}(\mathbf{q}) \left(\mathbf{E} + \mathbf{E}_{\mathbf{0}} - \mathbf{H} + i \mathbf{\epsilon} \right)^{-1} \rho_{\mathbf{M}}(\mathbf{q}) \left| \mathbf{0} \right\rangle \right\}$ σ σ_R $\Phi_{I}^{\sigma_{I}}(\mathbf{q}, \sigma_{R}) = \int d\mathbf{E} F_{I}(\mathbf{q}, \mathbf{E}) L(\mathbf{E}, \sigma_{R}, \sigma_{I})$

To get F_L(q,E) one has to invert the transform

$$\Phi_{L}^{\sigma_{I}}(q,\sigma_{R}) = \int dE F_{L}(q,E) L(E,\sigma_{R},\sigma_{I})$$

$$\Phi_{L}^{\sigma}(\mathbf{q}, \sigma_{\mathbf{R}}) = \operatorname{Im}\{\langle 0 | \rho_{M}^{\dagger}(\mathbf{q}) (\sigma_{\mathbf{R}} + E_{0} - H + i \sigma_{\mathbf{I}})^{-1} \rho_{M}(\mathbf{q}) | 0 \rangle\}$$

Because of a finite σ_{I} , now it is perfectly legitimate to solve the problem on a square integrable basis

$$\Phi_{L}^{\sigma_{I}}(q,\sigma_{R}) = \sum_{V}$$

$$(\sigma_{R} + E_{0} - \xi_{v})^{2} + \sigma_{I}^{2}$$

$$\Phi_{L}^{\sigma_{I}}(\mathbf{q},\sigma_{R}) = \sum_{V} |\langle \xi_{V} | \rho_{M}(\mathbf{q}) | 0 \rangle |^{2} \frac{1}{(\sigma_{R} + E_{0} - \xi_{V})^{2} + \sigma_{I}^{2}}$$

$\Phi_{L}^{\sigma_{I}}(\mathbf{q}, \sigma_{R})$ is NOT $F_{L}(\mathbf{q}, \mathbf{E})$

even if σ_{T} is very very small

$\mathbf{q} = \mathbf{E} = \mathbf{0} \quad \mathbf{F}_{\mathsf{L}}(\mathbf{q}, \mathbf{E}) \longrightarrow \mathbf{\sigma}_{\gamma}(\mathbf{0})$ $\rho_{\mathsf{M}}(\mathbf{q}) \longrightarrow \mathbf{D}$

 $|n\rangle = h.o.$ basis: fix $\sigma_{I} = 1$ MeV

with a large $\sigma_{I} = 10 \text{ MeV}$ + inversion (regularization)

3 (a) (b) 3 Φ $\sigma_{\gamma}^{\rm d}\,[{\rm mb}]$ F 2 1 0 0 3 % % 0 -1 -2 -2 100 20 $\sigma_{R} [MeV]^{40}$ 80 20 40 80 100 0 60 0 ω[MeV]

Two almost equal curves at N_{ho} =150 and N_{ho} =2400

Per cent difference

with a large $\sigma_I = 10 \text{ MeV}$ + inversion (regularization)

3 (a) (b) 3 Φ $\sigma_{\gamma}^{\rm d}\,[{\rm mb}]$ F 2 1 0 3 % % 0 -1 -2 $\sigma_{\rm R} [{\rm MeV}]^{60}$ 20 80 100 20 40 80 100 60 ω [MeV]

N_{ho}=150 is enough for accuracies at the % level!!

Two almost equal curves at N_{ho} =150 and N_{ho} =2400

Per cent difference

Message:

- Calculate the LIT where discretization is correct
- * Convergence is much faster
- Invert the result using regularization with continuum functions

 $\Phi_{\mathbf{Q}}(\mathbf{q}, \mathbf{\sigma}_{\mathbf{R}}) = \operatorname{Im}\{\langle 0 | \rho_{\mathbf{M}}(\mathbf{q}) (\mathbf{\sigma}_{\mathbf{R}} + E_{0} - H + i \mathbf{\sigma}_{\mathbf{N}})^{-1} \rho_{\mathbf{M}}(\mathbf{q}) | 0 \rangle\}$

Because of a finite σ_{l} , now it is perfectly legitimate to solve the problem on a square integrable basis

We have used the Hyperspherical Harmonics basis and the Suzuki-Lee unitary transformation to speed up the convergence (EIHH)

> As potentials we have used either AV18+UIX or N3LO+N2LO

Of 200,000 "states" only very few are close to threshold

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined. The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

too few states!

The present precision of the calculation does not allow to resolve the shape of the resonance, therefore the width cannot be determined.

However, the strength of the resonance can be determined!

Of course **not** by taking the strength of the state $|\xi_{v}\rangle$!! but by arranging **the inversion** in a suitable way:

Standard LIT inversion method

1) Take the following ansatz for the response function $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E})$ $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E}) = \sum_{m=1}^{M} \mathbf{c}_{m} \, \boldsymbol{\chi}_{m}(\mathbf{q}, \mathbf{E}, \boldsymbol{\alpha}_{i})$ with given set of functions $\boldsymbol{\chi}_{m}$, and unknown coefficients \mathbf{c}_{m}

Standard LIT inversion method

1) Take the following ansatz for the response function $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E}) = \prod_{m=1}^{M} \mathbf{C}_{m} \boldsymbol{\chi}_{m}(\mathbf{q}, \mathbf{E}, \boldsymbol{\alpha}_{i})$ with given set of functions $\boldsymbol{\chi}_{m}$, and unknown coefficients \mathbf{C}_{m}

2) Calculate: $\phi_{L}(q,\sigma_{R}) = \int dE \chi_{m}(q,E,\alpha_{I}) L(E,\sigma_{R},\sigma_{I})$

Standard LIT inversion method

1) Take the following ansatz for the response function $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E})$ $M_{\mathbf{F}_{L}}(\mathbf{q}, \mathbf{E}) = \sum_{m=1}^{M} \mathbf{C}_{m} \, \boldsymbol{\chi}_{m}(\mathbf{q}, \mathbf{E}, \boldsymbol{\alpha}_{i})$ with given set of functions $\boldsymbol{\chi}_{m}$, and unknown coefficients \mathbf{C}_{m}

2) Calculate: $\phi_{L}(q,\sigma_{R}) = \int dE \chi_{m}(q,E,\alpha_{I}) L(E,\sigma_{R},\sigma_{I})$

3) Construct $\Phi_{\mathbf{L}}(\mathbf{q}, \sigma_{\mathbf{R}}) = \sum_{m=1}^{\mathbf{C}} \mathbf{c}_{\mathbf{m}} \phi_{\mathbf{m}}(\mathbf{q}, \sigma_{\mathbf{R}})$

Standard LIT inversion method

1) Take the following ansatz for the response function $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E})$ $\mathbf{F}_{L}(\mathbf{q}, \mathbf{E}) = \sum_{m=1}^{M} \mathbf{c}_{m} \, \boldsymbol{\chi}_{m}(\mathbf{q}, \mathbf{E}, \boldsymbol{\alpha}_{i})$ with given set of functions $\boldsymbol{\chi}_{m}$, and unknown coefficients \mathbf{c}_{m}

2) Calculate: $\phi_{L}(q,\sigma_{R}) = \int dE \chi_{m}(q,E,\alpha_{I}) L(E,\sigma_{R},\sigma_{I})$

3) Construct $\Phi_{\mathbf{L}}(\mathbf{q},\sigma_{\mathbf{R}}) = \sum_{m=1}^{\mathbf{C}} \mathbf{c}_{\mathbf{m}} \phi_{\mathbf{m}}(\mathbf{q},\sigma_{\mathbf{R}})$

4) Determine $\mathbf{c}_{\mathbf{m}}$ and $\boldsymbol{\alpha}_{\mathbf{i}}$ by best fit on $\Phi_{\mathbf{i}}(\mathbf{q}, \sigma_{\mathbf{R}})$

O⁺ Resonance in the ⁴He compound system

Position at $E_R = -8.2$ MeV, i.e. **above** the ³H-p threshold $\Gamma = 270\pm70$ keV - **Strong** evidence in electron scattering

Giuseppina Orlandini, INT, Sept 21, 2012

Inversion in the case of an (unresolved) resonance

1) Subtract a Lorentzian centered in $E_R = energy$ of the big peak close to threshold, with parameter f_R , i.e.

 $\Phi'_{L}(\mathbf{q},\sigma_{\mathbf{R}},\mathbf{f}_{\mathbf{R}}) \equiv \Phi_{L}(\mathbf{q},\sigma_{\mathbf{R}}) - \mathbf{f}_{\mathbf{R}} / [(\mathbf{E}_{\mathbf{R}} - \sigma_{\mathbf{R}})^{2} + \sigma_{\mathbf{I}}^{2}]$

Inversion in the case of an (unresolved) resonance

1) Subtract a Lorentzian centered in $E_R = energy$ of the big peak close to threshold, with parameter f_R , i.e.

$$\Phi'_{L}(\mathbf{q},\sigma_{R},\mathbf{f}_{R}) \equiv \Phi_{L}(\mathbf{q},\sigma_{R}) - \mathbf{f}_{R} / [(\mathsf{E}_{R} - \sigma_{R})^{2} + \sigma_{I}^{2}]$$

2) Include in the inversion a basis function with resonant structure

$$\chi_{R}(E) = f_{R} / [(E_{R} - E)^{2} + \Gamma^{2} / 4]$$

Inversion in the case of an (unresolved) resonance

1) Subtract a Lorentzian centered in $E_R = energy$ of the big peak close to threshold, with parameter f_R , i.e.

$$\Phi'_{L}(\mathbf{q},\sigma_{R},\mathbf{f}_{R}) \equiv \Phi_{L}(\mathbf{q},\sigma_{R}) - \mathbf{f}_{R} / [(\mathsf{E}_{R} - \sigma_{R})^{2} + \sigma_{I}^{2}]$$

2) Include in the inversion a basis function with resonant structure

$$\chi_{R}(E) = f_{R} / [(E_{R} - E)^{2} + \Gamma^{2} / 4]$$

3) Reduce the strength f_{R} up to the point that the inversion does not show any resonant structure at the resonance energy E_{R}

Inversion results with different f_R values AV18+UIX, q=300 MeV/c ($\sigma = 5$ MeV)

 $m_{0}(q) = \int F(q,E) dE = \langle 0 | \rho_{M}^{\dagger}(q) \rho_{M}(q) | 0 \rangle$ $m_{1}(q) = \int F(q,E) E dE = \langle 0 | \rho_{M}^{\dagger}(q) H \rho_{M}(q) | 0 \rangle$ $m_{1}(q) = \int F(q,E) / E dE = \alpha_{M} = \text{compressibility}$

 $\mathbf{m}_{0}(\mathbf{q}) = \int F(\mathbf{q}, \mathbf{E}) d\mathbf{E} = \langle \mathbf{0} | \rho_{M}^{\dagger}(\mathbf{q}) \rho_{M}(\mathbf{q}) | \mathbf{0} \rangle$ $\mathbf{m}_{1}(\mathbf{q}) = \int F(\mathbf{q}, \mathbf{E}) \mathbf{E} d\mathbf{E} = \langle \mathbf{0} | \rho_{M}^{\dagger}(\mathbf{q}) \mathbf{H} \rho_{M}(\mathbf{q}) | \mathbf{0} \rangle$ $\mathbf{m}_{1}(\mathbf{q}) = \int F(\mathbf{q}, \mathbf{E}) / \mathbf{E} d\mathbf{E} = 2\alpha_{M} = \text{compressibility}$

In many-body theories the fraction of **total strength (m_o)** exhausted by the strength of a resonance is considered an index of how much a resonance is the result of a collective motion (typical example: GDR).

 $m_{1}(q) = \langle 0 | \rho_{M}^{\dagger}(q) H \rho_{M}(q) | 0 \rangle =$ $= 1/2 \langle 0 | [\rho_{M}^{\dagger}(q), [H, \rho_{M}(q)]] | 0 \rangle$

In the limit q --> 0
$$\rho_{M}$$
 (q) ---> q² Σ_{1} r₁² and m₁ ---> q²A / m 2>

Since m_1 happens to be "model independent", in this case it is the fraction of m_1 exhausted by the monopole resonance strength that is considered an index of how much a resonance is the result of a collective motion.

COLLECTIVITY ???

q	F(q,E ^{,⊦})/m₀	E _R F(q,E _R)]/m ₁
[MeV/c]	%	%
50.	50	26
100.	45	29
150.	39	24
200.	32	18

conclusions

* The form factor at the 0⁺ resonant energy seems to be a good observable to discriminate potential models.

 Strength obtained from continuum discretization can be very different from the true continuum result.
 LIT+regularization inversion may give the good result

Is the monopole resonance in ⁴He a collective state?