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0+ Resonance in the 4He compound system

Position  at ER = - 8.2 MeV, i.e. above the 3H-p threshold

 = 270±70 keV -  Strong evidence in electron scattering 

G. Koebschall et al./ Quasi bound state in 4He - Nucl. Phys. A405, 648 (1983)   
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With  electron scattering one can study not only 
the energy E

R 
of the resonance,

 but also  
the variation of the  strength  with q, 

i.e. the  momentum  transferred from the electron to the nucleus 
 (different resolutions !)

In fact:

dσ            =    σ
Mott

 q
μ

4/q4  F
L
 (q,E)

Long
d Ω dE

e
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at E=E
R 
it is called “transition f.f.” 
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The longitudinal form factor F
L
 (q,E) is given by 

F
L
 (q ,E) = Σ

n 
|< n |ρ (q)|0 >|2 δ ( E – E

n
+ E

0
) ∫ 



Giuseppina Orlandini, INT, Sept 21, 2012

F
L
 (q ,E) = Σ

n 
|< n |ρ (q)|0 >|2 δ ( E – E

n
+ E

0
) ∫ 

The longitudinal form factor F
L
 (q,E) is given by 

H |n > = E
n 
|n > and H is the nuclear Hamiltonian

where

Z

|n > is in the continuum (N-body scattering state)

ρ (q) = Σ
i 
exp [ i q  r

i
]  (1+ 

i
3) / 2 is the charge density operator.

A
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We have calculated the isoscalar L=0 (monopole) component i.e.
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The longitudinal form factor F
L
 (q,E) is given by 
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isoscalar

isovector

Negligible !

Bacca et al. 
Phys.Rev.C76:014003(2007)
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can be rewritten as
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where |n is a square integrable basis   

Calculation with “continuum discretization”
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n
|n n|= I  Σ

n
|mm|= I 
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n
|n n|= I  Σ

n
|mm|= I 

By diagonalizing H
mn

 one obtains eigenvalues 

and eigenfunctions 




 

 
and F

L
 becomes  a sum of delta functions centered in 
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Approximation: continuum has been discretized!
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We have calculated F
L
 (q ,E) with the Lorentz 

Integral Transform (LIT) method, which allows 
to reduce the continuum problem 

to a bound state-like problem, rigorously 
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now it is perfectly legitimate to solve the 

problem  on a square integrable basis  
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Let' s test this statement on deuteron photodisintegration
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with a large σ
Ι
=10 MeV 

+ inversion (regularization)

Per cent difference  
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N
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=150 is  enough for accuracies  at the % level!!
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Message:Message:

 Calculate the LIT where discretization is correct

 Convergence is much faster

 Invert the result using regularization  with continuum 
functions



Giuseppina Orlandini, INT, Sept 21, 2012


LL
((q q ,,

RR
 ) )= = ImIm{{00   ρρ

MM
 ( (qq) ) ((

RR
+E+E

00––H+H+i i 
II
  ))-1-1  ρρ

MM
 ( (qq)) |0 |0}}

Because of a finite 
I
,
 
now it is perfectly legitimate to solve the 

problem  on a square integrable basis  
 

We have used the Hyperspherical Harmonics
 basis and the Suzuki-Lee unitary transformation to speed up 

the convergence (EIHH)

As potentials we have used either 
AV18+UIX or N3LO+N2LO

We have calculated
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Some results:Some results:

 I = 5 MeV
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I = 1 MeV

Some results:Some results:

 I = 5 MeV

 I = 1 MeV
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i =0.001 MeV

I = 1 MeV

Some results:Some results:
 I = 0.001 MeV

 I = 5 MeV

 I = 1 MeV
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i =0.001 MeV

 I = 0.001 MeV

Some results:Some results:

Of 200,000 “states” only very few 
are close to threshold 
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The present precision of the calculation does not 
allow to resolve the shape of the resonance, 
therefore the width cannot be determined.
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The present precision of the calculation does not 
allow to resolve the shape of the resonance, 
therefore the width cannot be determined.

}
too few states!
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The present precision of the calculation does not 
allow to resolve the shape of the resonance, 
therefore the width cannot be determined.

However, the strength of the resonance 
can be determined!

Of course not by taking the strength of the state 

 

but by arranging the inversion in a suitable way:



LIT - Inversion

Standard LIT inversion method
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0+ Resonance in the 4He compound system

Position  at ER = - 8.2 MeV, i.e. above the 3H-p threshold

 = 270±70 keV -  Strong evidence in electron scattering 

G. Koebschall et al./ Quasi bound state in 4He - Nucl. Phys. A405, 648 (1983)   
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1)  Subtract a Lorentzian centered in ER= energy of the big 

peak close to threshold,  with parameter f
R
, i.e.                   

'
L
(q ,

R
,f

R
 ) ≡  

L
(q ,

R
) - fR  / [(ER –

R
)2  

] 

Inversion in the case of an 
(unresolved) resonance 
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1)  Subtract a Lorentzian centered in ER= energy of the big 

peak close to threshold,  with parameter f
R
, i.e.                   
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2) Include in the inversion a basis function with resonant  
    structure


R
(E) = fR / [(ER –E)2  ]

Inversion in the case of an 
(unresolved) resonance 
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1)  Subtract a Lorentzian centered in ER= energy of the big 

peak close to threshold,  with parameter f
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3) Reduce  the strength fR up to the point that the inversion does        

    not show any resonant structure at the resonance energy  ER

2) Include in the inversion a basis function with resonant  
    structure


R
(E) = fR / [(ER –E)2  ]

Inversion in the case of an 
(unresolved) resonance 
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Inversion results with 
different fR values
AV18+UIX, q=300 MeV/c

         ( 
I
= 5 MeV)

0.

0.01
0.02

fR

0.028

0.0295

0.0290



Giuseppina Orlandini, INT, Sept 21, 2012

preliminary
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ENERGIES

1st th. 
(p-3H)

2nd th. 
(n-3He)

E
R
 Exp.

AV18
UIX

N3LO
N2LO
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= compressibility= compressibility
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 F(q,F(q,) dE) dEmm
00
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In many-body theories the fraction of In many-body theories the fraction of total strength (mtotal strength (m
0 0 
)) exhausted by  exhausted by 

thethe
    
 strength of a resonance is considered an index of how much a  strength of a resonance is considered an index of how much a 

resonance is the result of  a collective motion (typical example: GDR).  resonance is the result of  a collective motion (typical example: GDR).  



In the limit q --> 0  In the limit q --> 0  ρρ
MM

 ( (qq))  --->  q  --->  q22  ΣΣ
ii
 r r

ii
  2    2  andand m m

1 1 
 ---> q ---> q22A / m <rA / m <r22>>

Since Since mm
11
 happens to be “model independent”, i happens to be “model independent”, in this case  it is  the n this case  it is  the 

fraction of fraction of mm
11
  exhausted by theexhausted by the

      
monopole resonance strength  that  is monopole resonance strength  that  is 

considered an index of how much a resonance is the result of  a considered an index of how much a resonance is the result of  a 
collective motion.  collective motion.  
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COLLECTIVITY ???

F(q,E
R

E
R
F(q,E

R



conclusionsconclusions
    The form factor at the 0The form factor at the 0+ + resonant energy seems to resonant energy seems to 

be a good observable to be a good observable to discriminate potential discriminate potential 
models.models.

    Strength obtained from continuum discretization Strength obtained from continuum discretization 
can be very different from the true continuum  result. can be very different from the true continuum  result. 
LIT+regularization inversionLIT+regularization inversion may give the good  may give the good 
resultresult

    Is the monopole resonance in Is the monopole resonance in 44He a He a collectivecollective  
state?state?
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