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0* Resonance in the He compound system

Position at E; = - 8.2 MeV, i.e. above the 3H-p threshold
['=270x70 keV - Strong evidence in electron scattering

G. Koebschall et al./ Quasi bound state in “He - Nucl. Phys. A405, 648 (1983)
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With electron scattering one can study not only
the energy E_ of the resonance,

but also
the variation of the strength with q,
l.e. the momentum transferred from the electron to the nucleus
(different resolutions !)

In fact:

do = o,.9%9F_(q,F)
d Q dE_

Long
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With electron scattering one can study not only
the energy E_ of the resonance,

but also
the variation of the strength with q,
l.e. the momentum transferred from the electron to the nucleus
(different resolutions !)

In fact:

do = o,.9%9F_(q,F)
d Q dE_

Long

at ERit is called “transition f.f.”
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The longitudinal form factor F (q,E) is given by

F (g )=;n |<n|p(q)|0>]|*6(E-E + E )
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The longitudinal form factor F (q,E) is given by

F (g )=;n |<n|p(q)|0>]|*6(E-E + E )

where

H [n>=E |[n>andH is the nuclear Hamiltonian
A Z

p(q)= Zi expliq-r] (1+ ’Ci3) / 2 is the charge density operator

n > is in the continuum (N-body scattering state)
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The longitudinal form factor F (q,E) is given by

F (g )=;n |<n|p(q)|0>]|*6(E-E + E )

where

H [n>=E |n>andH is the nuclear Hamiltonian

A
p(q)= Zi expliq-r] (1+ ’ci3) / 2 is the charge density operator

\

We have calculated the isoscalar L=0 (monopole) component i.e.
A
Py (@)= 2 (an) Y,
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Notice!

F (q, )=In |<n|p(q)|0>|?8(E-E+E)
can be rewritten as

F (q.,5) = Im{{0| p! (o) (E+E,-H+i €)1 p (q) |0)}
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Calculation with “continuum discretization”

F (q,E) = Im{(0| p, (q) (E+E,-H+i €)1 p (q) |0)}

L im}mi|=1I L nXn|=1

where | N ) is a square integrable basis
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Calculation with “continuum discretization”

F(q.5) = Im{(0| p,(q) (E+E,B+i €)1 p, () |0)}

Llm}m|=1I L nXn|=1

By diagonalizin ne obtains eigenvalues & and eigenfunctions [ )

and F_becomes a sum of delta functions centered in §_
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Calculation with “continuum discretization”

F(q.5) = Im{{0| p,/(0) (E+E,B+i €)1 p, () |0)}

Llm}m|=1I L nXn|=1

By diagonalizin ne obtains eigenvalues & and eigenfunctions [ )

and F_becomes a sum of delta functions centered in §_

L

F(a £ =2 K8, Ip, @ [0 )8 (&)
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Calculation with “continuum discretization”

F(q.E) = Im{(0] p,/(a) (E+E,4B+i €)1 p, (a) |0)}

Llm}m|=1I L nXn|=1

By diagonalizin ne obtains eigenvalues & and eigenfunctions [ )

and F_becomes a sum of delta functions centered in §_

L

F(a £ =2 K8, Ip, @ [0 )8 (&)

Approximation: continuum has been discretized!
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We have calculated F (g, ) with the Lorentz

Integral Transform (LIT) method, which allows
to reduce the continuum problem
to a bound state-like problem,
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lllustration of the LIT
F (q.5) = Im{{0| p, () (E+E,~H+i €)1 p (q) |0)}
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lllustration of the LIT
F (q.E) = Im{(0l p, (@) (E+E,-H+i €)1 p (q) [0)}

'

Q =%

® (q,0,)
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lllustration of the LIT
F(q,E) = Im{{0] p, (@) (E4+E,-H+i €)1 p, (q) |0)}

' '

ot finite!

\J
®'(q, )=f F(q.E)L(E G, G)
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lllustration of the LIT
F (q.5) = Im{{0| p, () (E+E,~H+i €)1 p (q) |0)}

4 /

P '(q )=_[ F(q . E)L( G)
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lllustration of the LIT
F.(q.E) = Im{{0] p, () (E+E,-H+i€) ! p (q) |O)}

l
@«

P

®'(q,0,) =IdE F(9.E)L(E c_, G)

\J
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To get F (q,E) one has to invert
the transform

) ay” .
@ '(q, )=IdE F(q,E)L(E © , 0)
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We have calculated

@)

® (9.5, )=Im{(0| p. (q) (5 +E,-H+ic, )L p, (q)|0)}

Because of a finite ¢, now it is perfectly legitimate to solve the
problem on a square integrable basis
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We have calculated

o

® (9.5, )=Im{(0] p, (q) (5, +E,-H+ic, )L p, (q)|0)}

Because of a finite g7 now it is perfectly legitimate to plve the

em on a square integrable basis

L ImXm|= L nXn|=1
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We have calculated

o

® (9.5, )= Im{(0] p () (5, +E,LH)}ic, )t p (q)[0)}

Llm}m|=1I L nXn|=1

By diagonalizing ne obtains eigenvalues & and eigenfunctions [ )

and @ becomes a sum of Lorentzians centered in § of width
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We have calculated

o

®'(q,5,)=Im{(0] p (q) (6, +ELHic, )L p, (q)[0)}

Llm}m|=1I L nXn|=1

By diagonalizing@one obtains eigenvalues & and eigenfunctions [€ )
and @ becomes a sum of Lorentzians centered in § of width

G 1
o =)
9.9, v (6, +E,~E ) + o/
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We have calculated

o

® '(q.5,)=Im{(0] p, (q)( +Eo@+ic. )t p, (@) ]0)}

Llm}m|=1I L nXn|=1

By diagonalizing@one obtains eigenvalues & and eigenfunctions [€ )
and @ becomes a sum of Lorentzians centered in § of width

q;GI(q )=Z I<E |p, (@) ]0) |7 1
. V ( +EO—§V)2+ >
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®(q,c, ) is NOT F(q,F)

even if G isveryvery small
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Let' s test this statement on deuteron photodisintegration

qg=E= FL(q') >Gy( )

o (q) ~ D



Let' s test this statement on deuteron photodisintegration

“exact”

| n> = h.o. basis:
fix 6121 \Yi (Y%

® [MeV]



Let' s test this statement on deuteron photodisintegration

“exact”

| n> = h.o. basis:
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Fix a high
N ho=2400
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Let' s test this statement on deuteron photodisintegration

“exact”
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Let' s test this statement on deuteron photodisintegration

“exact”

0,=05MeV

| n> = h.o. basis:
Fix a high
N ho=2400

G|:1 \Y (\Y4

W [MeV]



with a large 0 =10 MeV

+ inversion (regularization)

Two almost equal
curves at N =150

and Nh0:2400

Per cent difference

40 G0 =0 100
® [MeV]




with a large 0 =10 MeV

+ inversion (regularization)

Two almost equal
curves at N =150

and Nh0:2400

Per cent difference

40 60 8O 100
® [MeV]




Message:

* Calculate the LIT where discretization is correct
% Convergence is much faster

% Invert the result using regularization with continuum
functions



We have calculated
® (q.0,)=Im{<0] p, (q) (c_+E,-H+ic )t p, (q)[0)}

Because of a finite ¢, now it is perfectly legitimate to solve the
problem on a square integrable basis

We have used the Hyperspherical Harmonics
basis and the Suzuki-Lee unitary transformation to speed up
the convergence (EIHH)

As potentials we have used either
AV18+UIX or N3BLO+N2LO
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Some results:
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Some results:
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Some results:
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Of 200,000 “states” only very few
are close to threshold
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The present precision of the calculation does not
allow to resolve the shape of the resonance,
therefore the width cannot be determined.
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The present precision of the calculation does not
allow to resolve the shape of the resonance,
therefore the width cannot be determined.
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too few states!
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The present precision of the calculation does not
allow to resolve the shape of the resonance,
therefore the width cannot be determined.

However, the strength of the resonance
can be determined!

Of course not by taking the strength of the state |§v>!!
but by arranging the inversion in a suitable way:

Giuseppina Orlandini, INT, Sept 21, 2012



- Inversion

Standard LIT inversion method

1) Take the following ansatz for the response function F (q ,E)
M

F(q.0)=2X% _ c X (q.50)

with given set of functions X, and unknown coefficients C



- Inversion

Standard LIT inversion method

1) Take the following ansatz for the response function F (q ,E)
M

F(q.0)=2X% _ c X (q.50)

with given set of functions X, and unknown coefficients C

2) Calculate: ¢ (q,0,) =IdE X, (q.E,0) L(E o, G)



- Inversion

Standard LIT inversion method

1) Take the following ansatz for the response function F (q ,E)
M

F(q.0)=2X% _ c X (q.50)

with given set of functions X, and unknown coefficients C
2) Calculate:  ¢,(q.,0,)=JdE X _(q.E,0) L(E, o, 5)

3) Construct ® (q,0, ) = Zm=1 c_¢(q,0,)



- Inversion

Standard LIT inversion method

1) Take the following ansatz for the response function F (q ,E)
M

F(q.0)=2X% _ c X (q.50)

with given set of functions X, and unknown coefficients C
2) Calculate:  ¢,(q.,0,)=JdE X _(q.E,0) L(E, o, 5)
3) Construct ® (q,0, ) = Zm=1 c_¢(q,0,)

4) Determine ¢ _ and o, by best fiton @ (q,0, )



0* Resonance in the He compound system

Position at E; = - 8.2 MeV, i.e. above the 3H-p threshold
['=270x70 keV - Strong evidence in electron scattering

G. Koebschall et al./ Quasi bound state in “He - Nucl. Phys. A405, 648 (1983)
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Inversion in the case of an
(unresolved) resonance

1) Subtract a Lorentzian centered in E,= energy of the big
peak close to threshold, with parameter f , i.e.

'‘(q.o,f )= @(q,0)-f, /[(Eg -0.)% +07]
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Inversion in the case of an
(unresolved) resonance

1) Subtract a Lorentzian centered in E,= energy of the big
peak close to threshold, with parameter f , i.e.

'‘(q.o,f )= @(q,0)-f, /[(Eg -0.)% +07]

2) Include in the inversion a basis function with resonant
structure

X (E) = fo [ [(E-E)2 +T2/4]
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Inversion in the case of an
(unresolved) resonance

1) Subtract a Lorentzian centered in E,= energy of the big
peak close to threshold, with parameter f , i.e.

'‘(q.o,f )= @(q,0)-f, /[(Eg -0.)% +07]

2) Include in the inversion a basis function with resonant
structure

X (E) = fo [ [(E-E)2 +T2/4]

3) Reduce the strength f up to the point that the inversion does
not show any resonant structure at the resonance energy Eg
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Inversion results with
different f, values
AV18+UIX, g=300 MeV/c

(0 =5 MeV)

1
|72}
o
G
jan
P
g
@
| 8]
Rt
e
o
=
| —
<
-
[

Giuseppina Orlandini, INT, Sept 21, 2012



preliminary

a1 Koebschall et al. ["83]
MN3LLE Walcher [*70]

2 - Frosch et al. ["68]
—— Hivama et al. 200
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ENERGIES

AV18
E_EXp. UIX

_._l_I_I_LIJ_I_LIJ.*xLI

9 -89-88-87-86-85-84-83-82-81 8 -19-78-1.7-76-15-14713-12-T1 -1

15 th. 2" th. N3LO
(p-°H) (n-*He) N2LO

Giuseppina Orlandini, INT, Sept 21, 2012



Sum Rules and Collectivity

my(@) = | F(q,E) dE = (0] p,! (@) p, (a) [0)

m, (@) = [ F(q,E) E dE = (0| p] (@) H p, (a) [0)

m_(q) = JF(q,E)/E dE = QL = compressibility



Sum Rules and Collectivity

m,(a) = | F(q,E) dE = (0] p, () p,, (q) 0)

m, (@) = [ F(q,E) E dE = (0| p] (@) H p, (a) [0)

m_(q) = JF(q,E)/E dE = 206M= compressibility

In many-body theories the fraction of total strength (m_) exhausted by
the strength of a resonance Is considered an index of how much a
resonance is the result of a collective motion (typical example: GDR).



Sum Rules and Collectivity

m (d) = (0l p, (@ H p, () 0)=
- 1/240| [p, (@), [H., p,, (@]] |0}

In the limitq-->0 P, (q) —> Zi r % and m_--->Qg°A [ m <r*>

Since m_happens to be “model independent”, in this case itis the
fraction of m_exhausted by the monopole resonance strength that Is

considered an index of how much a resonance is the result of a
collective motion.



Sum Rules and Collectivity




Sum Rules and Collectivity
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COLLECTIVITY ??2?




conclusions

* The form factor at the 0" resonant energy seems to
be a good observable to discriminate potential
models.

* Strength obtained from continuum discretization
can be very different from the true continuum result.
LIT+regularization inversion may give the good
result

* |s the monopole resonance in “He a collective
state?
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