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Overview

Two-body densities in (very) light Nuclei

Unitary Correlation Operator Method

Fermionic Molecular Dynamics

3He(α,γ)7Be Radiative Capture Reaction

• bound and scattering states

• astrophysical S-factor

Cluster States in 12C

• FMD and microscopic cluster model

• form factors, expansion in HO basis, two-body densities
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Short-Range Correlations

Two-body densities for A=2-4 nuclei from few-body
calculations with AV8’ interaction

preliminary:

Two-body densities for 4He using NCSM and SRG
evolved AV18 interactions

Two-body densities for 4He using NCSM, SRG
evolved AV18 and N3LO interactions and SRG
transformed two-body density operators
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One-body densities (AV8’)
Short-range correlations

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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• one-body densities calculated from exact wave functions (Correlated

Gaussians) for AV8’ interaction

• coordinate space densities reflect different sizes and densities of 2H, 3H, 3He,
4He and the 0+

2
state in 4He

• similar high-momentum tails in the one-body momentum distribution

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)
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Two-body densities in A = 2,3,4 Nuclei (AV8’)
Short-range correlations

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

coordinate space
S = 0, T = 1
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• normalize two-body density in coordinate space at r=1.0 fm

• normalized two-body densities in coordinate space are identical at short

distances for all nuclei

• use the same normalization factor in momentum space – high momentum tails

agree for all nuclei

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)
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Two-body densities in A = 2,3,4 Nuclei (AV8’)
Short-range correlations

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

coordinate space
S = 1,MS = 1, T = 0
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S = 1, T = 0
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• normalize two-body density in coordinate space at r=1.0 fm averaged over all

angles

• normalized two-body densities in coordinate space are identical at short dis-

tances for all nuclei

• use the same normalization factor in momentum space – high momentum tails

agree for all nuclei

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)

6



4He: SRG evolved AV18, unevolved density operator
Two-body densities

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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(not converged) α = 0.01 fm4 α = 0.04 fm4

➼ NCSM calculations with Nmx = 16

• bare interaction: 2.99 pairs in S = 1, T = 0 channel, 2.57 pairs in S = 0, T = 1

channel and 0.43 pairs in S = 1, T = 1 channel — tensor force induces three-

body correlations

• high-momentum components reduced for evolved interactions

• number of S = 1, T = 1 pairs reduced for evolved interactions — weaker three-

body correlations
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4He: SRG evolved AV18, unevolved density operator
Two-body densities S = 1, T = 0

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

0 1 2 3 4

k [fm
-1

]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

nre
l

1,
0(k

) 
[fm

3 ]

total
L=0
L=2
L=4

0 1 2 3 4

k [fm
-1

]

total
L=0
L=2
L=4

0 1 2 3 4

k [fm
-1

]

total
L=0
L=2
L=4

bare

(not converged) α = 0.01 fm4 α = 0.04 fm4

• in the intermediate momentum region, momentum distribution dominated by

D-wave contributions

• caused by tensor force, explains the enhancement of np-pairs versus pp-pairs

above the Fermi momentum

• D-wave contributions reduced for evolved interactions – tensor force no longer

connects to high momenta
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4He: SRG evolved AV18, evolved density operator
Two-body densities

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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(not converged) α = 0.01 fm4 α = 0.04 fm4

➼ use SRG transformed two-body density

• high-momentum components recovered

• significant differences for medium momenta — SRG done on two-body level for

Hamiltonian and two-body density, three-body correlations important
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4He: SRG evolved N3LO, evolved density operator
Two-body densities

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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bare α = 0.01 fm4 α = 0.04 fm4

➼ use SRG transformed two-body density

• high-momentum components recovered

• significant differences for medium momenta – SRG done on two-body level for

Hamiltonian and two-body density
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Unitary Correlation Operator Method

Short-range Correlations

Unitary Correlation Operator Method

• Unitary Transformation

• Central and Tensor Correlations

• Interaction in Momentum Space

• Few-body Calculations
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Nuclear Force
Unitary Correlation Operator Method

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the

relative distance vector
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• strong repulsive core:

nucleons can not get closer

than ≈ 0.5 fm

➼ central correlations

• strong dependence on the

orientation of the spins due

to the tensor force

➼ tensor correlations
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Nuclear Force
Unitary Correlation Operator Method

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the

relative distance vector
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• strong repulsive core:

nucleons can not get closer

than ≈ 0.5 fm

➼ central correlations

• strong dependence on the

orientation of the spins due

to the tensor force

➼ tensor correlations

the nuclear force will induce

strong short-range

correlations in the nuclear

wave function
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Unitary Correlation Operator Method
UCOM

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Correlation Operator

• induce short-range (two-body) central and tensor correlations into the many-body state
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• correlation operator should conserve the symmetries of the Hamiltonian and should be

of finite-range, correlated interaction phase shift equivalent to bare interaction by

construction

Correlated Operators

• correlated operators will have contributions in higher cluster orders
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[3] + . . .

• two-body approximation: correlation range should be small compared to mean particle

distance

Correlated Interaction
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∼
) C
∼
= T
∼
+ V
∼ UCOM
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UCOM + . . .
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Central and Tensor Correlations
UCOM

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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Central and Tensor Correlations
UCOM

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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Central and Tensor Correlations
UCOM

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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Central and Tensor Correlations
UCOM

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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➼ UCOM(variational): correla-

tion functions s(r) und ϑ(r)

are determined by variation

of the energy in the two-

body system for each S, T

channel

➼ UCOM(SRG): correlation func-

tions s(r) und ϑ(r) are deter-

mined from mapping wave

functions obtained with

bare interaction to wave

functions obtained with SRG

interaction
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Correlations and Energies
Unitary Correlation Operator Method

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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Correlations and Energies
Unitary Correlation Operator Method

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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Correlated Interaction in Momentum Space
Unitary Correlation Operator Method

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

3S1 bare
3S1 -

3D1 bare
bare interaction has

strong

off-diagonal matrix

elements connecting

to high momenta

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)
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Correlated Interaction in Momentum Space
Unitary Correlation Operator Method

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

3S1 bare
3S1 -

3D1 bare
bare interaction has

strong

off-diagonal matrix

elements connecting

to high momenta

3S1 correlated
3S1 -

3D1 correlated

correlated interaction

is more attractive

at low momenta

off-diagonal

matrix elements

connecting low- and

high- momentum

states are strongly

reduced

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)
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Correlated Interaction in Momentum Space
Unitary Correlation Operator Method

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

3S1 bare
3S1 -

3D1 bare
bare interaction has

strong

off-diagonal matrix

elements connecting

to high momenta

3S1 correlated
3S1 -

3D1 correlated

correlated interaction

is more attractive

at low momenta

off-diagonal

matrix elements

connecting low- and

high- momentum

states are strongly

reduced similar to Vlow-k, SRG

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)
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No-Core Shell Model Calculations
UCOM(SRG)

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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• convergence much improved compared to bare interaction

• effective interaction – in two-body approximation – converges to different energy then

bare interaction

• transformed interaction can be tuned to obtain simultaneously (almost) exact 3He and
4He binding energies

Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. 65, 50 (2010)
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Fermionic Molecular Dynamics
FMD

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Fermionic

Slater determinant

�

�Q
�

= A
∼

�

�

�q1
�

⊗ · · · ⊗
�

�qA
�

�

• antisymmetrized A-body state

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655

Neff, Feldmeier, Nucl. Phys. A738 (2004) 357
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Fermionic Molecular Dynamics
FMD

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Fermionic

Slater determinant
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= A
∼
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⊗ · · · ⊗
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• antisymmetrized A-body state

Molecular

single-particle states
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• Gaussian wave-packets in phase-space (complex parameter b en-

codes mean position and mean momentum), spin is free, isospin is

fixed

• width  is an independent variational parameter for each wave

packet

• use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655

Neff, Feldmeier, Nucl. Phys. A738 (2004) 357
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Fermionic Molecular Dynamics
FMD

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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fixed

• width  is an independent variational parameter for each wave
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• use one or two wave packets for each single particle state

Antisymmetrization

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655

Neff, Feldmeier, Nucl. Phys. A738 (2004) 357
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Fermionic Molecular Dynamics
FMD

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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fixed

• width  is an independent variational parameter for each wave
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• use one or two wave packets for each single particle state

Antisymmetrization

see also

Antisymmetrized

Molecular Dynamics

Horiuchi, Kanada-En’yo,

Kimura, . . .Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655

Neff, Feldmeier, Nucl. Phys. A738 (2004) 357
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Interaction Matrix Elements
FMD

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

(One-body) Kinetic Energy
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�

Rk

(Two-body) Potential

➼ fit radial dependencies by (a sum of) Gaussians

G(x1 − x2) = exp

�

−
(x1 − x2)

2

2κ

�

➼ Gaussian integrals
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➼ analytical expressions for matrix elements
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Operator Representation of VUCOM

FMD

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

C
∼

†(T
∼
+ V
∼
)C
∼

= T
∼

+
∑

ST

V̂ST
c
(r) +

1

2

�

pr
∼

2 V̂ST
p2
(r) + V̂ST

p2
(r) pr
∼

2�+ V̂ST
2
(r) l
∼

2

+
∑

T

V̂T
s
(r) l
∼
· s
∼
+ V̂T

2s
(r) l
∼

2 l
∼
· s
∼

+
∑

T

V̂T
t
(r) S
∼12
(r, r) + V̂T

trpΩ
(r) pr
∼
S
∼12
(r,pΩ) + V̂

T
t
(r) S
∼12
(l, l)+

V̂T
tpΩpΩ

(r) S
∼12
(pΩ,pΩ) + V̂

T
2tpΩpΩ

(r) l
∼

2S
∼12
(pΩ,pΩ)

one-body kinetic energy

central potentials

spin-orbit potentials

tensor potentials

bulk of tensor force mapped onto central part

of correlated interaction

tensor correlations also change the spin-orbit

part of the interaction

Nucl. Phys. A745 (2004) 3
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PAV, VAP and Multiconfiguration
FMD

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Projection After Variation (PAV)

• mean-field may break symmetries of Hamiltonian

• restore inversion, translational and rotational

symmetry by projection on parity, linear and angular

momentum

P
∼

π =
1

2
(1+ π

∼
)

P
∼

J

MK =
2J+ 1

8π2

∫

d3Ω D
J

MK

⋆

(Ω) R
∼
(Ω)

P
∼

P =
1

(2π)3

∫

d3X exp{−(P
∼
−P)·X}
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PAV, VAP and Multiconfiguration
FMD

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Projection After Variation (PAV)

• mean-field may break symmetries of Hamiltonian

• restore inversion, translational and rotational

symmetry by projection on parity, linear and angular

momentum

P
∼

π =
1

2
(1+ π

∼
)

P
∼

J

MK =
2J+ 1

8π2

∫

d3Ω D
J

MK

⋆

(Ω) R
∼
(Ω)

P
∼

P =
1

(2π)3

∫

d3X exp{−(P
∼
−P)·X}

Variation After Projection (VAP)

• effect of projection can be large

• full Variation after Angular Momentum

and Parity Projection (VAP) for light nuclei

• perform VAP in GCM sense by applying constraints on radius, dipole

moment, quadrupole moment or octupole moment and minimizing

the energy in the projected energy surface for heavier nuclei
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PAV, VAP and Multiconfiguration
FMD

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Projection After Variation (PAV)

• mean-field may break symmetries of Hamiltonian

• restore inversion, translational and rotational

symmetry by projection on parity, linear and angular

momentum

P
∼

π =
1

2
(1+ π

∼
)

P
∼

J

MK =
2J+ 1

8π2

∫

d3Ω D
J

MK

⋆

(Ω) R
∼
(Ω)

P
∼

P =
1

(2π)3

∫

d3X exp{−(P
∼
−P)·X}

Variation After Projection (VAP)

• effect of projection can be large

• full Variation after Angular Momentum

and Parity Projection (VAP) for light nuclei

• perform VAP in GCM sense by applying constraints on radius, dipole

moment, quadrupole moment or octupole moment and minimizing

the energy in the projected energy surface for heavier nuclei

Multiconfiguration Calculations

• diagonalize Hamiltonian in a set of projected

intrinsic states

�

�

�Q()
�

,  = 1, . . . , N

�

∑

K ′b




Q()
�

�H
∼
P
∼

Jπ

KK ′P∼
P=0
�

�Q(b)
�

· cα
K ′b
=

EJ
πα
∑

K ′b




Q()
�

�P
∼

Jπ

KK ′P∼
P=0
�

�Q(b)
�

· cα
K ′b
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3He(α,γ)7Be radiative capture

one of the key reactions in the solar pp-chains

Effective Nucleon-Nucleon interaction:

UCOM(SRG) α = 0.20 fm4 – λ ≈ 1.5 fm−1

Many-Body Approach:

Fermionic Molecular Dynamics
• Internal region: VAP configurations with radius constraint

• External region: Brink-type cluster configurations

• Matching to Coulomb solutions: Microscopic R-matrix method

Results:

• 7Be bound and scattering states

• Astrophysical S-factor

T. Neff, Phys. Rev. Lett. 106 (2011) 042502
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FMD model space

3He(α,γ)7Be

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

R

3/2 7/2 1/2+
__

Frozen

Polarized

Frozen configurations

• antisymmetrized wave function built

with 4He and 3He FMD clusters up to

channel radius =12 fm

Polarized configurations

• FMD wave functions obtained by VAP on

1/2−, 3/2−, 5/2−, 7/2− and 1/2+, 3/2+

and 5/2+ combined with radius con-

straint in the interaction region

Boundary conditions

• Match relative motion of clusters at

channel radius to Whittaker/Coulomb

functions with the microscopic R-

matrix method of the Brussels group

D. Baye, P.-H. Heenen, P. Descouvemont
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p-wave Bound and Scattering States

3He(α,γ)7Be

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Bound states

Experiment FMD
7Be E3/2− -1.59 MeV -1.49 MeV

E1/2− -1.15 MeV -1.31 MeV

rch 2.647(17) fm 2.67 fm

Q – -6.83 e fm2

7Li E3/2− -2.467 MeV -2.39 MeV

E1/2− -1.989 MeV -2.17 MeV

rch 2.444(43) fm 2.46 fm

Q -4.00(3) e fm2 -3.91 e fm2

Phase shift analysis:

Spiger and Tombrello, PR 163, 964 (1967)
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E [MeV]
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δ(
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) 
[d

eg
]

3/2
-

1/2
-

dashed lines – frozen configurations only

solid lines – polarized configurations in interaction re-

gion included

• centroid of bound state energies well de-

scribed if polarized configurations

included

• tail of wave functions tested by charge

radii and quadrupole moments
• Scattering phase shifts well described,

polarization effects important
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s-, d- and ƒ -wave Scattering States

3He(α,γ)7Be

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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7/2
-
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-

dashed lines – frozen configurations only – solid lines – FMD configurations in interaction region included

• polarization effects important

• s- and d-wave scattering phase shifts well described

• 7/2− resonance too high, 5/2− resonance roughly right, consistent

with no-core shell model calculations
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S-Factor

3He(α,γ)7Be

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

0 1 2
Ecm [MeV]

0.2

0.3

0.4

0.5

0.6

0.7

S
-f

ac
to

r 
[k

eV
 b

]

Weizmann ’04
LUNA ’06
LUNA ’07
Seattle ’07
ERNA ’09
FMD

S-factor:

S(E) = σ(E)Eexp{2πη}

η =
μZ1Z2e

2

k

Nara Singh et al., PRL 93, 262503 (2004)
Bemmerer et al., PRL 97, 122502 (2006)
Confortola et al., PRC 75, 065803 (2007)
Brown et al., PRC 76, 055801 (2007)
Di Leva et al., PRL 102, 232502 (2009)

• dipole transitions from 1/2+, 3/2+, 5/2+ scattering states into 3/2−, 1/2− bound states

➼ FMD is the only model that describes well the energy dependence and normalization of

new high quality data

➼ fully microscopic calculation, bound and scattering states are described consistently

T. Neff, Phys. Rev. Lett. 106 (2011) 042502
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Overlap Functions and Dipole Matrixelements

3He(α,γ)7Be

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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Ψ
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.]
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.]

1/2
+
 scattering state

Ecm = 50 keV

0 5 10 15
r [fm]

r 
Ψ

3/
2-

(r
) 

[a
.u

.] 3/2- bound state

• Overlap functions from projection on RGM-cluster states

• Coulomb and Whittaker functions matched at channel radius =12 fm

• Dipole matrix elements calculated from overlap functions reproduce full calculation

within 2%

• cross section depends significantly on internal part of wave function,

description as an “external” capture is too simplified
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S-Factor

3H(α,γ)7Li

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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Caltech ’94
FMD

S-factor:

S(E) = σ(E)Eexp{2πη}

η =
μZ1Z2e

2

k

Brune et al., PRC 50, 2205 (1994)

• isospin mirror reaction of 3He(α,γ)7Be

• 7Li bound state properties and phase shifts well described

➼ FMD calculation describes energy dependence of Brune et al. data but cross section is

larger by about 15%
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Cluster States in 12C

Astrophysical Motivation

• Helium burning:

triple alpha-reaction

Structure

• Is the Hoyle state a pure α-cluster state ?

• Other excited 0+ and 2+ states

➼ Compare FMD results to microscopic α-cluster model

➼ Intrinsic structure from two-body densities

➼ Analyze wave functions in harmonic oscillator basis
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Microscopic α-Cluster Model
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

R12 = (2,4, . . . ,10) fm

R13 = (2,4, . . . ,10) fm

cos(ϑ) = (1.0,0.8, . . . ,−1.0)

alltogether 165

configurations

Basis States

• describe Hoyle State as a system of 3 4He nuclei

�

�Ψ3α(R1,R2,R3); JMKπ
�

=

P
J

MKP
π
A
¦�

�ψα(R1)
�

⊗
�

�ψα(R2)
�

⊗
�

�ψα(R3)
�
©

Volkov Interaction

• simple central interaction

• parameters adjusted to give reasonable α binding

energy and radius, α − α scattering data, adjusted

to reproduce 12C ground state energy

✘ only reasonable for 4He, 8Be and 12C nuclei

‘BEC’ wave functions

• interpretation of the Hoyle state as a Bose-Einstein

Condensate of α-particles by Funaki, Tohsaki,

Horiuchi, Schuck, Röpke

• same interaction and α-cluster parameters used
Kamimura, Nuc. Phys. A351 (1981) 456

Funaki et al., Phys. Rev. C 67 (2003) 051306(R)
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FMD
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Basis States

• 20 FMD states obtained in Variation after Projection

on 0+ and 2+ with constraints on the radius

• 42 FMD states obtained in Variation after Projection

on parity with constraints on radius and quadrupole

deformation

• 165 α-cluster configurations

➼ projected on angular momentum and

linear momentum

Interaction

• UCOM interaction (ϑ=0.30 fm3 with phenomeno-

logical two-body correction term (momentum-

dependent central and spin-orbit) fitted to doubly-

magic nuclei

• not tuned for α-α scattering or 12C properties
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α-α Phaseshifts
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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Cluster Model

• Phaseshifts calculated with cluster

configurations only (dashed lines)

• Phaseshifts calculated with addi-

tional FMD VAP configurations in

the interaction region (solid lines)

• only cluster configurations in-

cluded

➼ similar quality for description of α-α-scattering
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Comparison
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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Comparison
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Exp1 Exp2 FMD α-cluster ‘BEC’3

E(0+
1
) -92.16 -92.64 -89.56 -89.52

E∗(2+
1
) 4.44 5.31 2.56 2.81

E(3α) -84.89 -83.59 -82.05 -82.05

E(0+
2
)− E(3α) 0.38 0.43 0.38 0.26

E(0+
3
)− E(3α) (3.0) 2.7(3) 2.84 2.81

E(2+
2
)− E(3α) (3.89) 2.6(3) 2.77 1.70

rchrge(0
+
1
) 2.47(2) 2.53 2.54

r(0+
1
) 2.39 2.40 2.40

r(0+
2
) 3.38 3.71 3.83

r(0+
3
) 4.62 4.75

r(2+
1
) 2.50 2.37 2.38

r(2+
2
) 4.43 4.02

M(E0,0+
1
→ 0+

2
) 5.4(2) 6.53 6.52 6.45

B(E2,2+
1
→ 0+

1
) 7.6(4) 8.69 9.16

B(E2,2+
1
→ 0+

2
) 2.6(4) 3.83 0.84

B(E2,2+
2
→ 0+

1
) ? 0.46 1.99

experimental

situation for 0+
3
and

2+
2
states still

unsettled (?)

2+
2
resonance at

1.8 MeV above

treshold included in

NACRE compilation

1 Ajzenberg-Selove, Nuc. Phys. A506, 1 (1990)
2 Itoh et al., Nuc. Phys. A738, 268 (2004)
3 Funaki et al., Phys. Rev. C 67, 051306(R) (2003)
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Cluster States in 12C
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Exp1 Exp2 FMD α-cluster ‘BEC’3

E(0+
1
) -92.16 -92.64 -89.56 -89.52

E∗(2+
1
) 4.44 5.31 2.56 2.81

E(3α) -84.89 -83.59 -82.05 -82.05

E(0+
2
)− E(3α) 0.38 0.43 0.38 0.26

E(0+
3
)− E(3α) (3.0) 2.7(3) 2.84 2.81

E(2+
2
)− E(3α) (3.89) 2.6(3) 2.77 1.70

rchrge(0
+
1
) 2.47(2) 2.53 2.54

r(0+
1
) 2.39 2.40 2.40

r(0+
2
) 3.38 3.71 3.83

r(0+
3
) 4.62 4.75

r(2+
1
) 2.50 2.37 2.38

r(2+
2
) 4.43 4.02

M(E0,0+
1
→ 0+

2
) 5.4(2) 6.53 6.52 6.45

B(E2,2+
1
→ 0+

1
) 7.6(4) 8.69 9.16

B(E2,2+
1
→ 0+

2
) 2.6(4) 3.83 0.84

B(E2,2+
2
→ 0+

1
) ? 0.46 1.99

experimental

situation for 0+
3
and

2+
2
states still

unsettled (?)

2+
2
resonance at

1.8 MeV above

treshold included in

NACRE compilation

calculated in bound

state approximation

1 Ajzenberg-Selove, Nuc. Phys. A506, 1 (1990)
2 Itoh et al., Nuc. Phys. A738, 268 (2004)
3 Funaki et al., Phys. Rev. C 67, 051306(R) (2003)
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Electron Scattering Data
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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C
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• compare with precise electron scattering

data up to high momenta in Distorted

Wave Born Approximation

• use intrinsic density

ρ(x) =

A
∑

k=1
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�

� δ(x
∼k
−X
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− x)
�

�Ψ
�
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12
C(e,e’)

12
C

Ex = 7.65 MeV

➼ elastic cross section described very well

by FMD

➼ transition cross section better described

by cluster model

elastic scattering inelastic scattering

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Phys. Rev. Lett. 98 (2007) 032501
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Monopole Matrix Element
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12
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• M(E0) determines the pair decay width

• model-independent self-consistent

determination of transition form-

factor/density in DWBA

• data at high momentum transfer neces-

sary to constrain M(E0) matrix element
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transition form factor transition density

F2(q)/q2

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter,

Phys. Rev. Lett. 105 (2010) 022501
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Important Configurations
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

• Calculate the overlap with FMD basis states to find the most important contributions to

the Hoyle state
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0+
2
and 0+

3
states have no rigid

intrinsic structure
FMD basis states are

not orthogonal!
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Two-body Densities and Intrinsic Structure
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Cluster Model

ρ(2)(r) =
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• substract contributions

from α’s to extract “α-

α” correlations

• (substracted) two-body

density peaks at 3.5 fm

➼ consistent with

compact triangular

structure
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Two-body Densities and Intrinsic Structure
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Cluster Model
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12C

• substract contributions

from α’s to extract “α-α

correlations”

• Hoyle state two-body

density peaks at 5 fm,

extended tail

➼ consistent with

triangular structure

• tail in 2+
2
and 4+

2
states

more pronounced

➼ admixture of open

triangle configurations
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Two-body Densities and Intrinsic Structure
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Cluster Model

ρ(2)(r) =



Ψ
�

�

∑

<j

δ(r− r
∼j
)
�

�Ψ
�

0 5 10 15
r [fm]

0

5

10

15

20

[fm
-1

]

03
+

23
+

43
+

third 0
+
 state band

r
2 ρ(2)

(r)

r
2
 [ρ(2)

(r) - 3 ρα
(2)

(r) ]

-5 0 5
y [fm]

-5

0

5

z 
[fm

]

0.001

0.001

0.01

0.01

0.
1

0.
1

-5 0 5
y [fm]

-5

0

5

z 
[fm

]

12C

• substract contributions

from α’s to extract “α-

α” correlations

• two-body density peaks

at 4.5 fm and 10 fm

➼ consistent with

open triangle/chain

configuration
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Two-body Densities and Intrinsic Structure
Cluster States in 12C

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

FMD
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• substract contributions

from α’s to extract α-α

correlations

• (corrected) two-body

density peaks at 3.5 fm

for 0+ and 2+

• 4+ state strongly mixed

with cluster configura-

tions
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Two-body Densities and Intrinsic Structure
Cluster States in 12C
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FMD
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• substract contributions

from α’s to extract α-α

correlations

• Hoyle state two-body

density peaks at 5 fm,

extended tail

➼ consistent with

extended triangular

structure

• 2+
2
and 4+

2
states have

different intrinsic struc-

ture

➼ admixture of open

triangle configurations
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Two-body Densities and Intrinsic Structure
Cluster States in 12C
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FMD

ρ(2)(r) =



Ψ
�

�

∑

<j

δ(r− r
∼j
)
�

�Ψ
�

0 5 10 15
r [fm]

0

5

10

15

20

[fm
-1

]

03
+

23
+

43
+

third 0
+
 state band

r
2 ρ(2)

(r)

r
2
 [ρ(2)

(r) - 3 ρα
(2)

(r) ]

• substract contributions

from α’s to extract α-α

correlations

• two-body density peaks

at 4.5 fm and 10 fm

➼ consistent with

chain configuration
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Overlap with Cluster Model Space
Cluster States in 12C
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Calculate the overlap of FMD wave functions with pure α-cluster model space

Nα =
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Hoyle state has 15%

non-alpha

admixtures
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Harmonic Oscillator NℏΩ Excitations
Cluster States in 12C
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Y. Suzuki et al., Phys. Rev. C 54 2073, (1996):
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ℏΩ = 20MeV ℏΩ = 12MeV

• Hoyle state very difficult to converge in no-core shell model

T. Neff, H. Feldmeier, Few-Body Syst. 45, 145 (2009)
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Summary

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Short-range correlations in light nuclei

• short-range and high-momentum behavior of two-body densities identical in

A=2,3,4 nuclei

• Two-body densities in 4He with SRG evolved interactions

3He(α,γ)7Be Radiative Capture

• Bound states, resonance and scattering wave functions

• S-Factor: energy dependence and normalization

• Analyzed in terms of overlap functions

Cluster States in 12C

• Consistent description of ground state band and Hoyle state

• Investigate Hoyle state structure with electron scattering

• Two-body densities are a model independent tool for investigating structure

• Cluster states need tremendous model space in harmonic oscillator basis

Thanks to my collaborators:

Hans Feldmeier (GSI), Wataru Horiuchi (Hokkaido), Karlheinz Langanke (GSI),

Robert Roth (TUD), Yasuyuki Suzuki (Niigata), Dennis Weber (GSI)
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