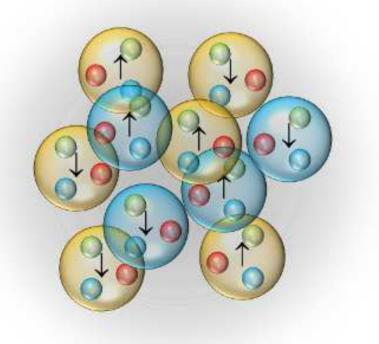
Insight into the structure of light nuclei through short- and long-range correlations

Thomas Neff INT Workshop "Structure of Light Nuclei" Seattle, USA

October 8-12, 2012



Overview

Two-body densities in (very) light Nuclei Unitary Correlation Operator Method Fermionic Molecular Dynamics

- ³He(α , γ)⁷Be Radiative Capture Reaction
- bound and scattering states
- astrophysical S-factor

Cluster States in ¹²C

- FMD and microscopic cluster model
- form factors, expansion in HO basis, two-body densities

Short-Range Correlations

Two-body densities for A=2-4 nuclei from few-body calculations with AV8' interaction

preliminary:

Two-body densities for ⁴He using NCSM and SRG evolved AV18 interactions

Two-body densities for ⁴He using NCSM, SRG evolved AV18 and N3LO interactions and SRG transformed two-body density operators

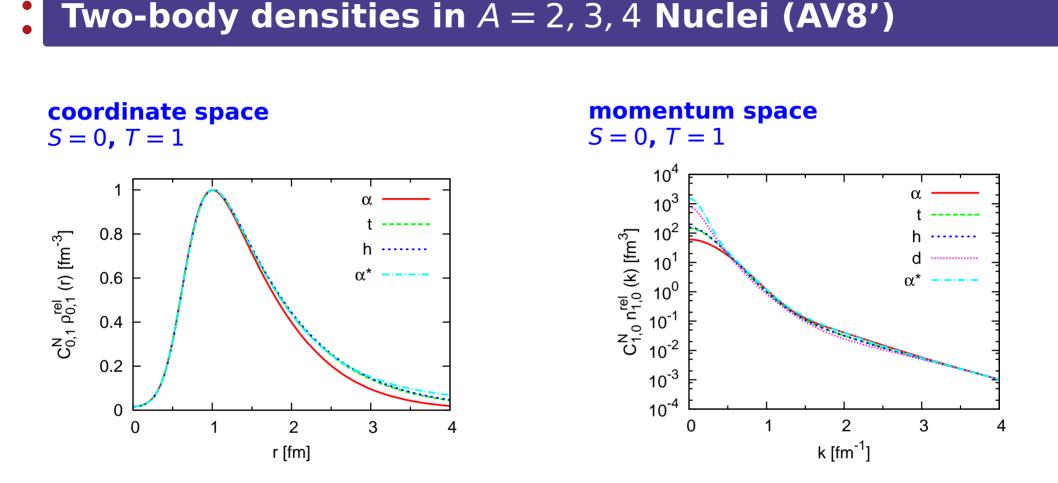
Short-range correlations

One-body densities (AV8')

coordinate space momentum space 10^{2} 0.35 α 10¹ 0.3 10⁰ 0.25 $n^{(1)}(k_1)/A \ [fm^3]$ o⁽¹⁾ (r₁) [fm⁻³] 10^{-1} 0.2 10^{-2} 0.15 10^{-3} 0.1 10^{-4} 0.05 10⁻⁵ 0 2 3 1 2 3 0 4 4 0 k₁ [fm⁻¹] r₁ [fm]

- one-body densities calculated from exact wave functions (Correlated Gaussians) for AV8' interaction
- coordinate space densities reflect different sizes and densities of 2 H, 3 H, 3 He, 4 He and the 0 $^{+}_{2}$ state in 4 He
- similar high-momentum tails in the one-body momentum distribution

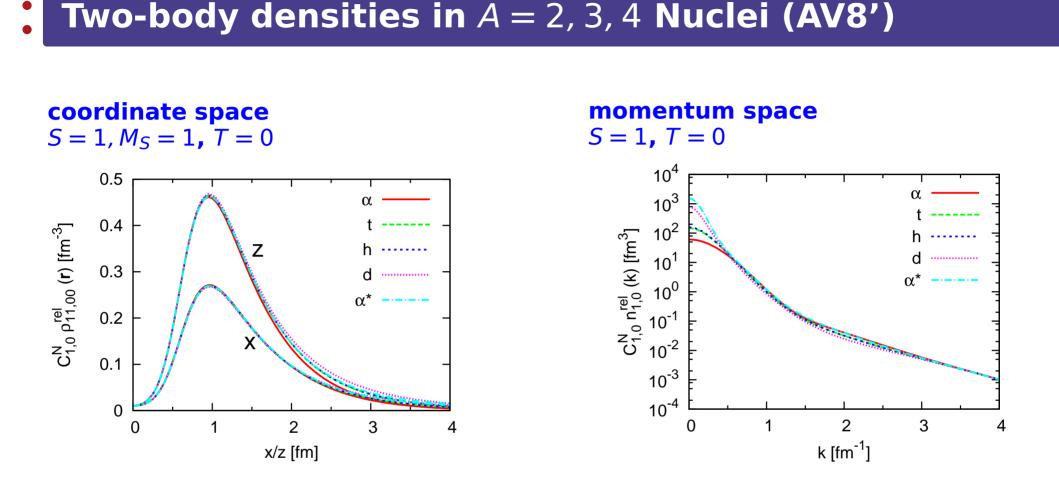
Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)



- normalize two-body density in coordinate space at r=1.0 fm
- normalized two-body densities in coordinate space are identical at short distances for all nuclei
- use the same normalization factor in momentum space high momentum tails agree for all nuclei

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)

Short-range correlations



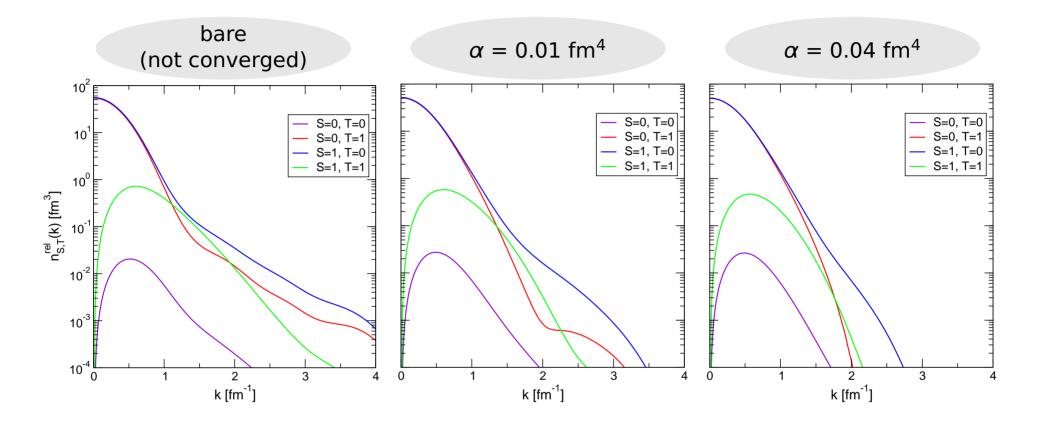
- normalize two-body density in coordinate space at r=1.0 fm averaged over all angles
- normalized two-body densities in coordinate space are identical at short distances for all nuclei
- use the same normalization factor in momentum space high momentum tails agree for all nuclei

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)

Short-range correlations

Two-body densities

⁴He: SRG evolved AV18, unevolved density operator

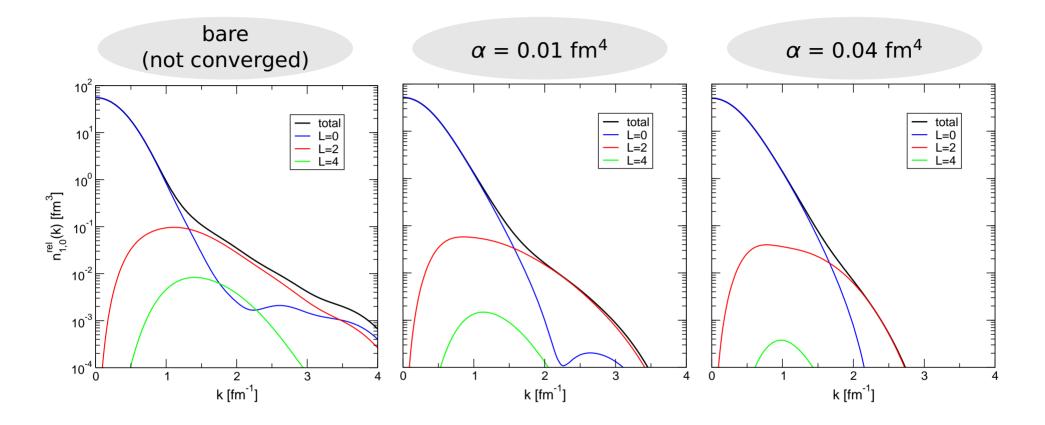


- NCSM calculations with $N_{max} = 16$

- bare interaction: 2.99 pairs in S = 1, T = 0 channel, 2.57 pairs in S = 0, T = 1 channel and 0.43 pairs in S = 1, T = 1 channel tensor force induces three-body correlations
- high-momentum components reduced for evolved interactions
- number of S = 1, T = 1 pairs reduced for evolved interactions weaker threebody correlations

Two-body densities S = 1, T = 0

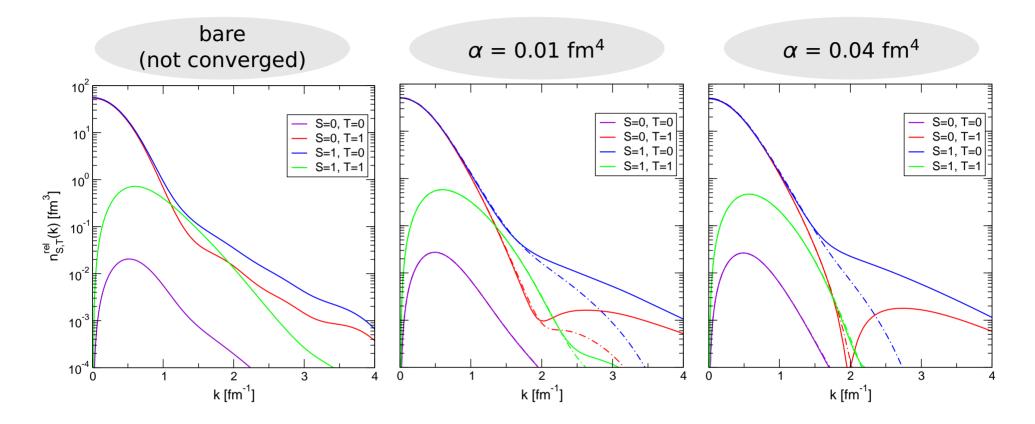
⁴He: SRG evolved AV18, unevolved density operator



- in the intermediate momentum region, momentum distribution dominated by *D*-wave contributions
- caused by tensor force, explains the enhancement of *np*-pairs versus *pp*-pairs above the Fermi momentum
- *D*-wave contributions reduced for evolved interactions tensor force no longer connects to high momenta

Two-body densities

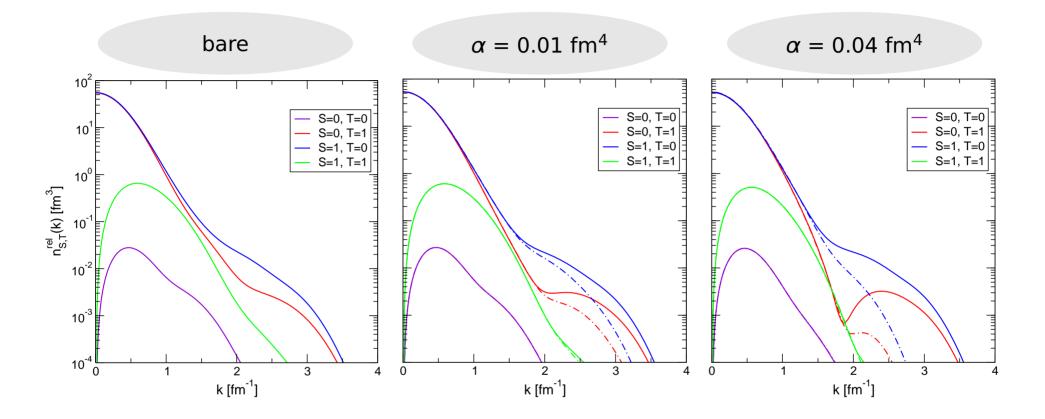
⁴He: SRG evolved AV18, evolved density operator



- use SRG transformed two-body density
- high-momentum components recovered
- significant differences for medium momenta SRG done on two-body level for Hamiltonian and two-body density, three-body correlations important

Two-body densities

⁴He: SRG evolved N3LO, evolved density operator



- use SRG transformed two-body density
- high-momentum components recovered
- significant differences for medium momenta SRG done on two-body level for Hamiltonian and two-body density

Unitary Correlation Operator Method

Short-range Correlations

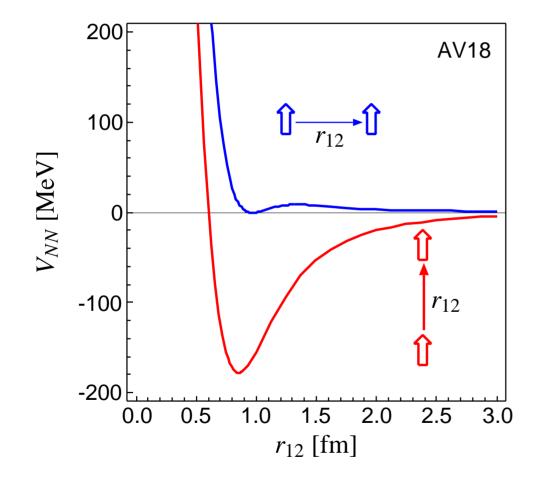
Unitary Correlation Operator Method

- Unitary Transformation
- Central and Tensor Correlations
- Interaction in Momentum Space
- Few-body Calculations

Unitary Correlation Operator Method Nuclear Force

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector



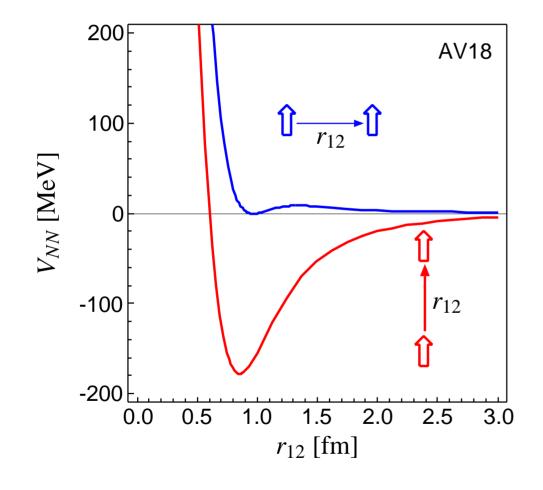
- strong repulsive core: nucleons can not get closer than ≈ 0.5 fm
- central correlations

- strong dependence on the orientation of the spins due to the tensor force
- tensor correlations

Unitary Correlation Operator Method Nuclear Force

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector



 strong repulsive core: nucleons can not get closer than ≈ 0.5 fm

- central correlations

 strong dependence on the orientation of the spins due to the tensor force

tensor correlations

the nuclear force will induce strong short-range correlations in the nuclear wave function

UCOM Unitary Correlation Operator Method

Correlation Operator

• induce short-range (two-body) central and tensor correlations into the many-body state

$$\mathcal{L} = \mathcal{L}_{\Omega} \mathcal{L}_{r} = \exp\left[-i \sum_{i < j} \mathcal{Q}_{\Omega, ij}\right] \exp\left[-i \sum_{i < j} \mathcal{Q}_{r, ij}\right] \quad , \quad \mathcal{L}^{\dagger} \mathcal{L} = \mathbb{1}$$

 correlation operator should conserve the symmetries of the Hamiltonian and should be of finite-range, correlated interaction phase shift equivalent to bare interaction by construction

Correlated Operators

• correlated operators will have contributions in higher cluster orders

$$\hat{C}^{\dagger} \hat{O} \hat{C} = \hat{Q}^{[1]} + \hat{Q}^{[2]} + \hat{Q}^{[3]} + \dots$$

 two-body approximation: correlation range should be small compared to mean particle distance

Correlated Interaction

$$\mathcal{L}^{\dagger}(\mathcal{I} + \mathcal{V}) \mathcal{L} = \mathcal{I} + \mathcal{V}_{UCOM} + \mathcal{V}_{UCOM}^{[3]} + \dots$$

• UCOM

Central and Tensor Correlations

$$\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega$$
$$\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p} \frac{\mathbf{r}}{r} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}$$

• UCOM

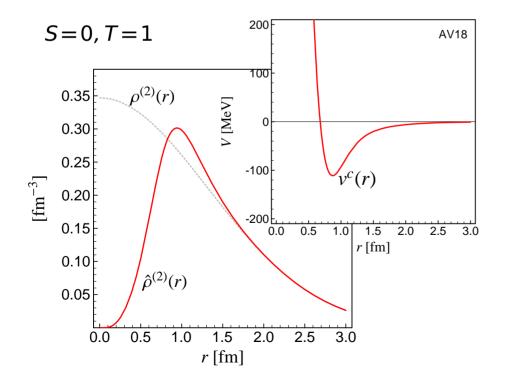
Central and Tensor Correlations

$$\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega$$
$$\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p} \frac{\mathbf{r}}{r} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}$$

Central Correlations

$$c_r = \exp\left\{-\frac{i}{2}\left\{p_r s(r) + s(r)p_r\right\}\right\}$$

 probability density shifted out of the repulsive core



• UCOM

Central and Tensor Correlations

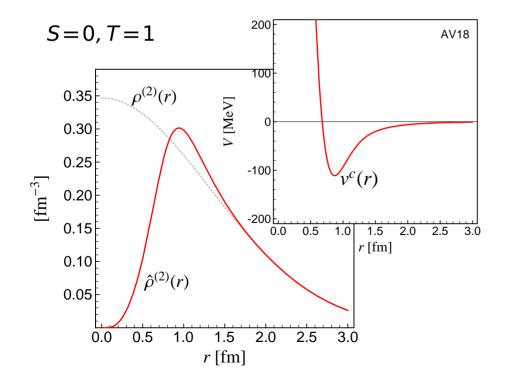
 $C = C_{\Omega}C_{r}$

$\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega$ $\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p} \frac{\mathbf{r}}{r} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}$

Central Correlations

$$c_r = \exp\left\{-\frac{i}{2}\{p_r s(r) + s(r)p_r\}\right\}$$

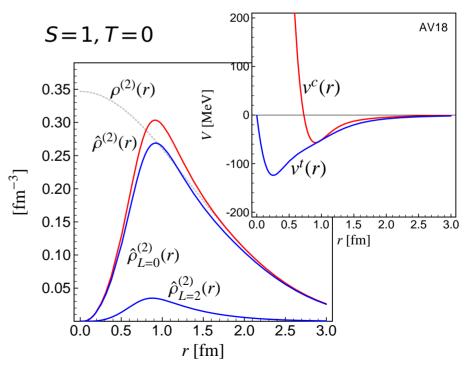
 probability density shifted out of the repulsive core



Tensor Correlations

$$c_{\Omega} = \exp\left\{-i\vartheta(r)\left\{\frac{3}{2}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{p}_{\Omega})(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{r}) + \frac{3}{2}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{r})(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{p}_{\Omega})\right\}\right\}$$

 tensor force admixes other angular momenta



 \mathbf{p}_r

p

UCOM

Central and Tensor Correlations

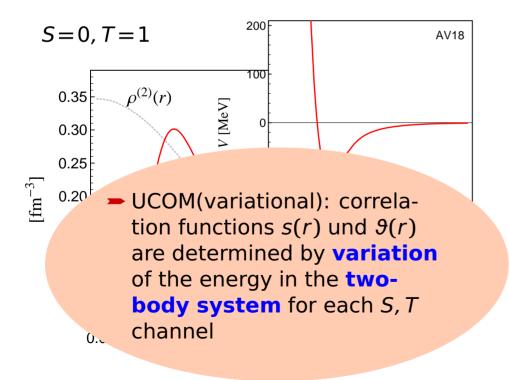
 $\underset{\sim}{C} = \underset{\sim}{C}_{\Omega}\underset{\sim}{C}_{r}$

$\mathbf{p} = \mathbf{p}_r + \mathbf{p}_\Omega$ $\mathbf{p}_r = \frac{1}{2} \left\{ \frac{\mathbf{r}}{r} \left(\frac{\mathbf{r}}{r} \mathbf{p} \right) + \left(\mathbf{p} \frac{\mathbf{r}}{r} \right) \frac{\mathbf{r}}{r} \right\}, \qquad \mathbf{p}_\Omega = \frac{1}{2r} \left\{ \mathbf{I} \times \frac{\mathbf{r}}{r} - \frac{\mathbf{r}}{r} \times \mathbf{I} \right\}$

Central Correlations

$$c_r = \exp\left\{-\frac{i}{2}\{p_r s(r) + s(r)p_r\}\right\}$$

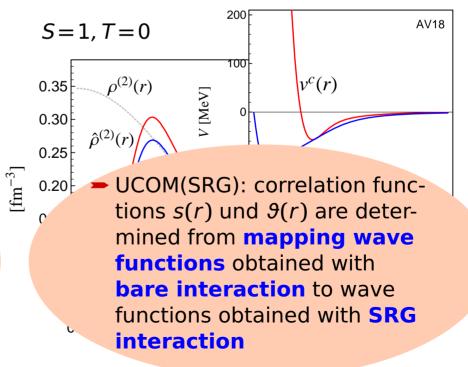
 probability density shifted out of the repulsive core



Tensor Correlations

$$c_{\Omega} = \exp\left\{-i\vartheta(r)\left\{\frac{3}{2}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{p}_{\Omega})(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{r}) + \frac{3}{2}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{r})(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{p}_{\Omega})\right\}\right\}$$

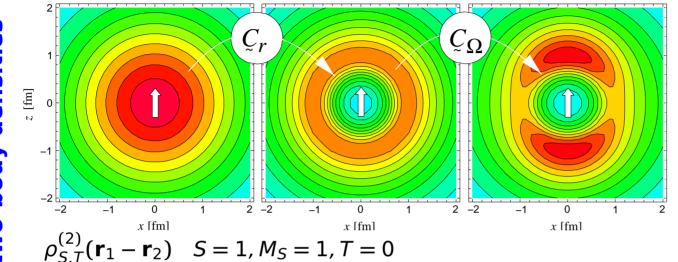
 tensor force admixes other angular momenta



 \mathbf{p}_r

 \mathbf{p}_{Ω}

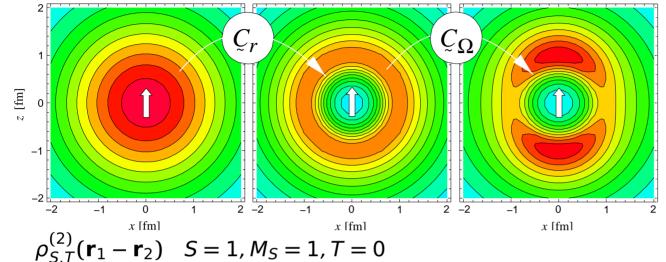
Unitary Correlation Operator Method Correlations and Energies



central correlator C_r shifts density out of the repulsive core tensor correlator C_{Ω} aligns density with spin orientation

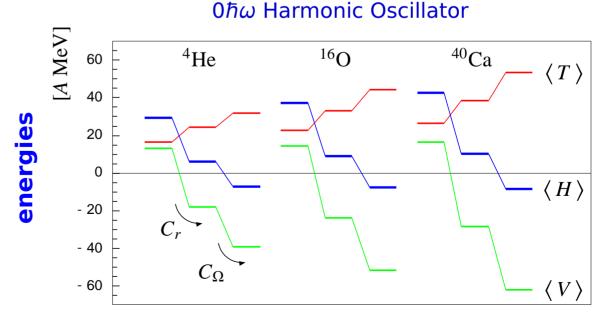
Neff and Feldmeier, Nucl. Phys. A713 (2003) 311

Unitary Correlation Operator Method Correlations and Energies



central correlator C_r shifts density out of the repulsive core tensor correlator C_{Ω} aligns density with spin orientation

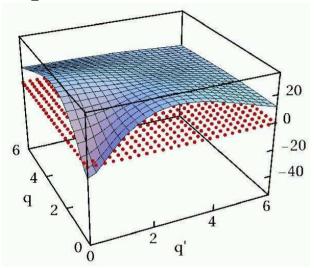
both central and tensor correlations are essential for binding



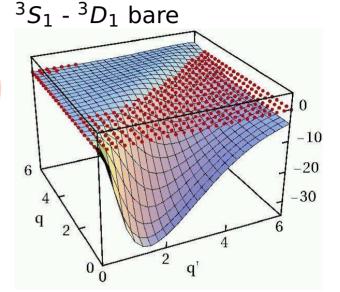
Neff and Feldmeier, Nucl. Phys. A713 (2003) 311

Unitary Correlation Operator Method Correlated Interaction in Momentum Space

${}^{3}S_{1}$ bare

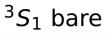


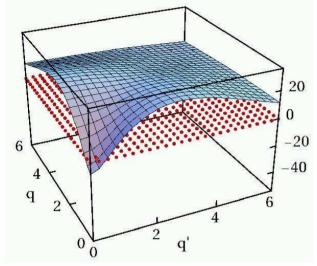
bare interaction has strong off-diagonal matrix elements connecting to high momenta



Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)

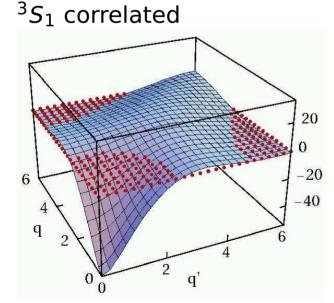
Unitary Correlation Operator Method Correlated Interaction in Momentum Space





bare interaction has strong off-diagonal matrix elements connecting to high momenta

correlated interaction is **more attractive** at low momenta

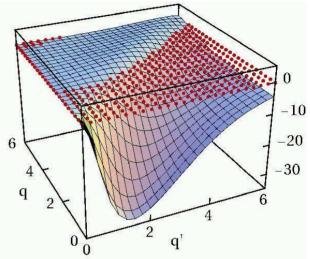


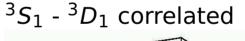
off-diagonal matrix elements connecting low- and high- momentum

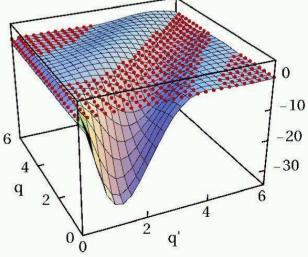
states are strongly reduced

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)

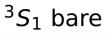
${}^{3}S_{1} - {}^{3}D_{1}$ bare

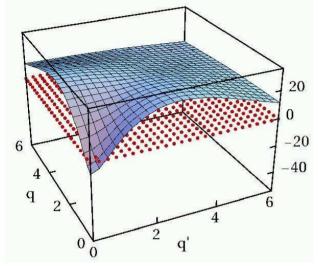






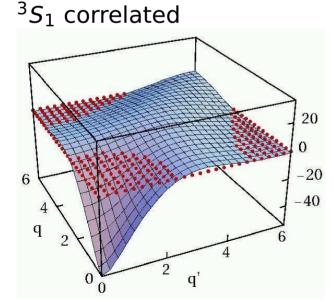
Unitary Correlation Operator Method Correlated Interaction in Momentum Space





bare interaction has strong off-diagonal matrix elements connecting to high momenta

correlated interaction is **more attractive** at low momenta

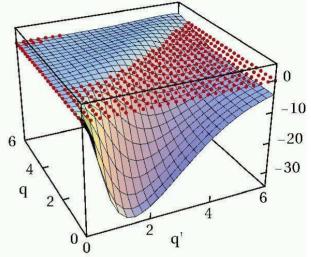


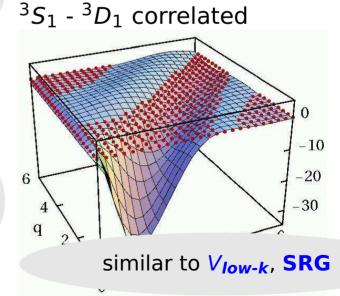
off-diagonal matrix elements connecting low- and

high- momentum states are strongly reduced

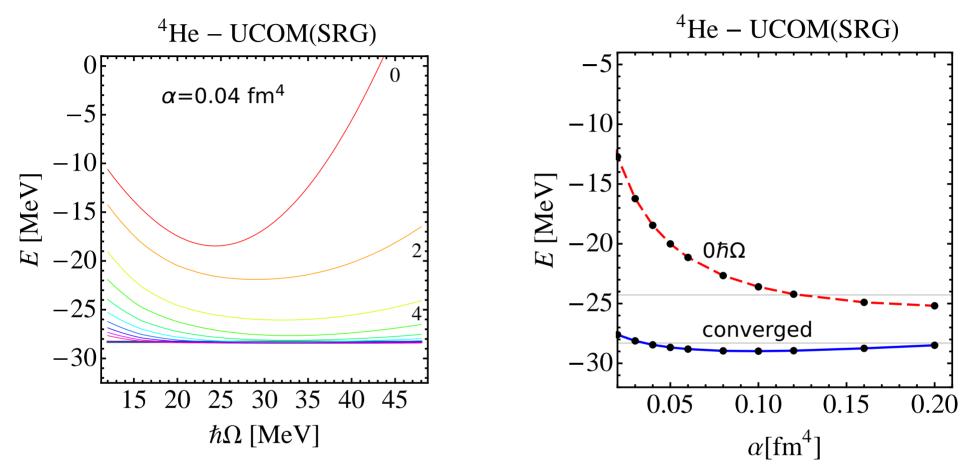
Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)

${}^{3}S_{1} - {}^{3}D_{1}$ bare





UCOM(SRG) No-Core Shell Model Calculations



- convergence much improved compared to bare interaction
- effective interaction in two-body approximation converges to different energy then bare interaction
- transformed interaction can be tuned to obtain simultaneously (almost) exact ³He and ⁴He binding energies

Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. 65, 50 (2010)

Fermionic

Slater determinant

$$\boldsymbol{Q} \rangle = \mathcal{A}\left(\left| \boldsymbol{q}_1 \right\rangle \otimes \cdots \otimes \left| \boldsymbol{q}_A \right\rangle \right)$$

• antisymmetrized A-body state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357 Antisymmetrization

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle st

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357 see also Antisymmetrized Molecular Dynamics

Horiuchi, Kanada-En'yo, Kimura, . . .

Antisymmetrization

(One-body) Kinetic Energy

 $\langle q_{k} | \underline{\mathcal{T}} | q_{l} \rangle = \langle a_{k} \mathbf{b}_{k} | \underline{\mathcal{T}} | a_{l} \mathbf{b}_{l} \rangle \langle \chi_{k} | \chi_{l} \rangle \langle \xi_{k} | \xi_{l} \rangle$

$$\langle a_k \mathbf{b}_k | \underline{T} | a_l \mathbf{b}_l \rangle = \frac{1}{2m} \left(\frac{3}{a_k^* + a_l} - \frac{(\mathbf{b}_k^* - \mathbf{b}_l)^2}{(a_k^* + a_l)^2} \right) R_{kl}$$

(Two-body) Potential

- fit radial dependencies by (a sum of) Gaussians $G(\mathbf{x}_1 - \mathbf{x}_2) = \exp\left\{-\frac{(\mathbf{x}_1 - \mathbf{x}_2)^2}{2\kappa}\right\}$
- Gaussian integrals

$$a_{k}\mathbf{b}_{k}, a_{l}\mathbf{b}_{l} \left| \mathcal{G} \right| a_{m}\mathbf{b}_{m}, a_{n}\mathbf{b}_{n} \right\rangle = R_{km}R_{ln} \left(\frac{\kappa}{\alpha_{klmn} + \kappa}\right)^{3/2} \exp\left\{-\frac{\boldsymbol{\rho}_{klmn}^{2}}{2(\alpha_{klmn} + \kappa)}\right\}$$

- analytical expressions for matrix elements

$$\alpha_{klmn} = \frac{a_k^* a_m}{a_k^* + a_m} + \frac{a_l^* a_n}{a_l^* + a_n}$$

$$\boldsymbol{\rho}_{klmn} = \frac{a_m \mathbf{b}_k^* + a_k^* \mathbf{b}_m}{a_k^* + a_m} - \frac{a_n \mathbf{b}_l^* + a_l^* \mathbf{b}_m}{a_l^* + a_n}$$
$$R_{km} = \langle a_k \mathbf{b}_k | a_m \mathbf{b}_m \rangle$$

 $C^{\dagger}(T+V)C = T$ one-body kinetic energy $+\sum_{cT} \hat{V}_{c}^{ST}(r) + \frac{1}{2} (p_{r}^{2} \hat{V}_{p^{2}}^{ST}(r) + \hat{V}_{p^{2}}^{ST}(r) p_{r}^{2}) + \hat{V}_{l^{2}}^{ST}(r) \mathbf{L}^{2}$ **central** potentials $+\sum_{\tau} \hat{V}_{ls}^{T}(r) \mathbf{\underline{l}} \cdot \mathbf{\underline{s}} + \hat{V}_{l^{2}ls}^{T}(r) \mathbf{\underline{l}}^{2} \mathbf{\underline{l}} \cdot \mathbf{\underline{s}}$ **spin-orbit** potentials + $\sum_{\tau} \hat{V}_t^{T}(r) \sum_{12} (\mathbf{r}, \mathbf{r}) + \hat{V}_{trp_{\Omega}}^{T}(r) p_r \sum_{12} (\mathbf{r}, \mathbf{p_{\Omega}}) + \hat{V}_{tll}^{T}(r) \sum_{12} (\mathbf{I}, \mathbf{I}) +$ $\hat{V}_{tn_{\Omega}n_{\Omega}}^{T}(r) \underset{\sim}{S}_{12}(\mathbf{p}_{\Omega}, \mathbf{p}_{\Omega}) + \hat{V}_{l^{2}tp_{\Omega}p_{\Omega}}^{T}(r) \underset{\sim}{\mathbf{I}}^{2} \underset{\sim}{S}_{12}(\mathbf{p}_{\Omega}, \mathbf{p}_{\Omega})$ **tensor** potentials bulk of tensor force mapped onto central part of correlated interaction tensor correlations also change the spin-orbit part of the interaction

Nucl. Phys. **A745** (2004) 3

FMD PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

$$\mathop{\mathbb{P}}_{\sim}^{\pi} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying **constraints** on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface for heavier nuclei

$$\mathop{\mathbb{P}}_{\sim}^{\pi} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) \stackrel{R}{\sim} (\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimizing the energy in the projected energy surface for heavier nuclei

Multiconfiguration Calculations

• **diagonalize** Hamiltonian in a set of projected intrinsic states

$$\left\{ \left| \, \mathbf{Q}^{(a)} \, \right\rangle \,, \quad a = 1, \ldots, N \right\}$$

$$\underset{\sim}{P^{\pi}} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

$$\sum_{K'b} \langle \mathbf{Q}^{(\alpha)} \left| \underbrace{HP}_{KK'}^{J^{\pi}} \underbrace{P^{\mathbf{P}=0}}_{KK'} \left| \mathbf{Q}^{(b)} \right\rangle \cdot c_{K'b}^{\alpha} = E^{J^{\pi}\alpha} \sum_{K'b} \langle \mathbf{Q}^{(\alpha)} \left| \underbrace{P}_{KK'}^{J^{\pi}} \underbrace{P^{\mathbf{P}=0}}_{KK'} \left| \mathbf{Q}^{(b)} \right\rangle \cdot c_{K'b}^{\alpha} \right\}$$

³He(α , γ)⁷Be radiative capture

one of the key reactions in the solar pp-chains

Effective Nucleon-Nucleon interaction:

UCOM(SRG) $\alpha = 0.20 \text{ fm}^4 - \lambda \approx 1.5 \text{ fm}^{-1}$

Many-Body Approach:

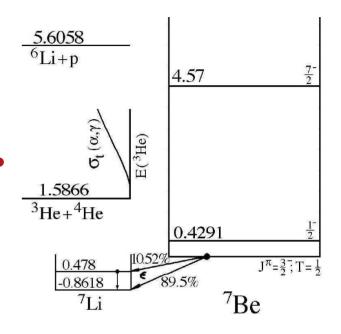
Fermionic Molecular Dynamics

- Internal region: VAP configurations with radius constraint
- External region: Brink-type cluster configurations
- Matching to Coulomb solutions: Microscopic *R*-matrix method

Results:

- ⁷Be bound and scattering states
- Astrophysical S-factor

T. Neff, Phys. Rev. Lett. 106 (2011) 042502



Frozen configurations

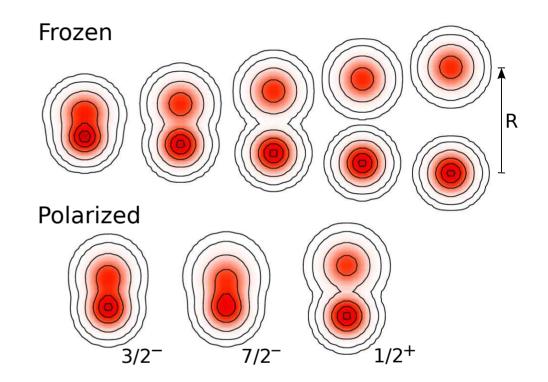
• antisymmetrized wave function built with ⁴He and ³He FMD clusters up to channel radius α =12 fm

Polarized configurations

FMD wave functions obtained by VAP on 1/2⁻, 3/2⁻, 5/2⁻, 7/2⁻ and 1/2⁺, 3/2⁺ and 5/2⁺ combined with radius constraint in the interaction region

Boundary conditions

 Match relative motion of clusters at channel radius to Whittaker/Coulomb functions with the microscopic *R*matrix method of the Brussels group D. Baye, P.-H. Heenen, P. Descouvemont



Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Bound states

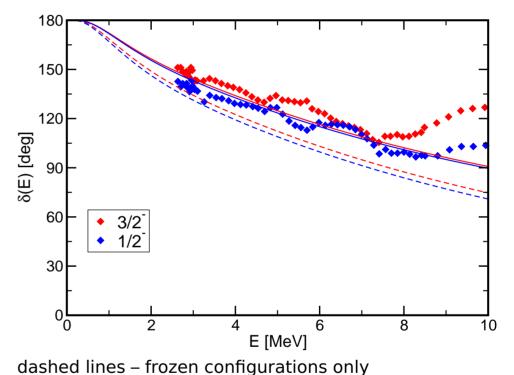
		Experiment	FMD
⁷ Be	E _{3/2-}	-1.59 MeV	-1.49 MeV
	E _{1/2-}	-1.15 MeV	-1.31 MeV
	r _{ch}	2.647(17) fm	2.67 fm
	Q	-	-6.83 e fm²
⁷ Li	E _{3/2-}	-2.467 MeV	-2.39 MeV
	E _{1/2-}	-1.989 MeV	-2.17 MeV
	r _{ch}	2.444(43) fm	2.46 fm
	Q	-4.00(3) e fm ²	-3.91 e fm²

- centroid of bound state energies well described if polarized configurations included
- tail of wave functions tested by charge radii and quadrupole moments

Thomas Neff — INT Structure of Light Nuclei, 10/10/12

Phase shift analysis:

Spiger and Tombrello, PR 163, 964 (1967)



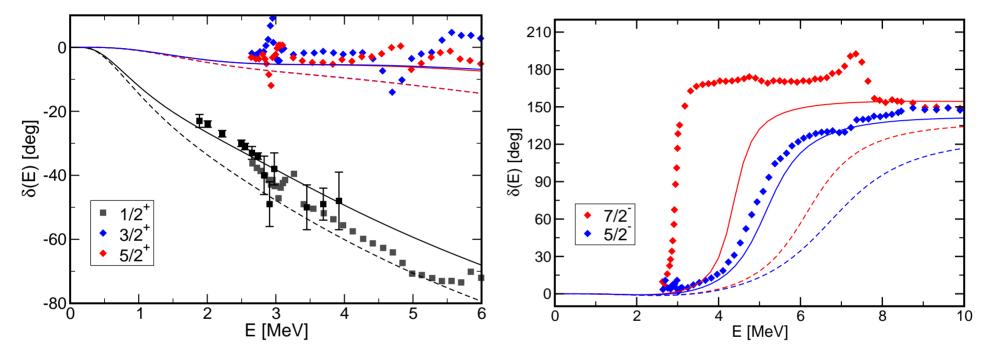
solid lines – polarized configurations in interaction re-

Scattering phase shifts well described,

polarization effects important

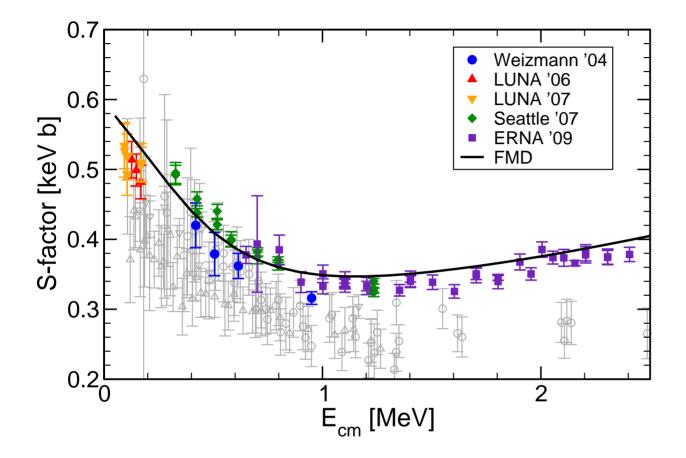
gion included

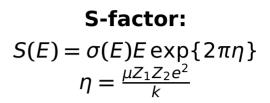
³He(α, γ)⁷Be S-, d- and f-wave Scattering States



dashed lines – frozen configurations only – solid lines – FMD configurations in interaction region included

- polarization effects important
- s- and d-wave scattering phase shifts well described
- 7/2⁻ resonance too high, 5/2⁻ resonance roughly right, consistent with no-core shell model calculations



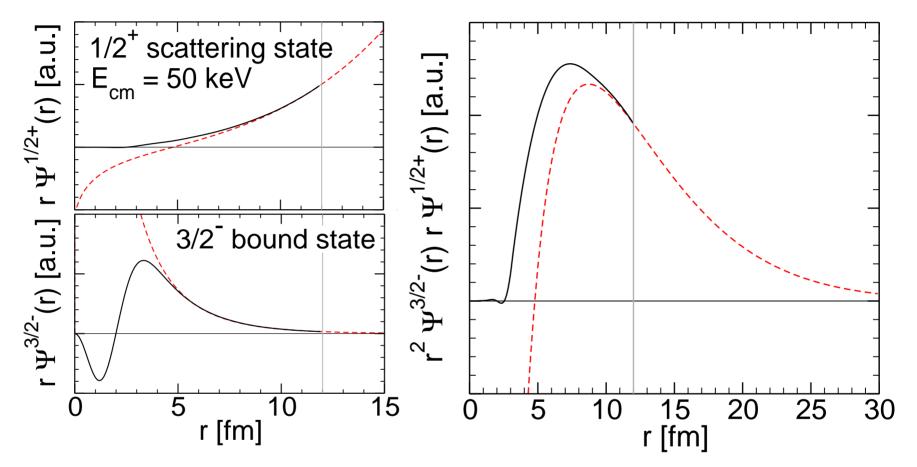


Nara Singh *et al.*, PRL **93**, 262503 (2004) Bemmerer *et al.*, PRL **97**, 122502 (2006) Confortola *et al.*, PRC **75**, 065803 (2007) Brown *et al.*, PRC **76**, 055801 (2007) Di Leva *et al.*, PRL **102**, 232502 (2009)

- dipole transitions from $1/2^+$, $3/2^+$, $5/2^+$ scattering states into $3/2^-$, $1/2^-$ bound states
- FMD is the only model that describes well the energy dependence and normalization of new high quality data
- fully microscopic calculation, bound and scattering states are described consistently

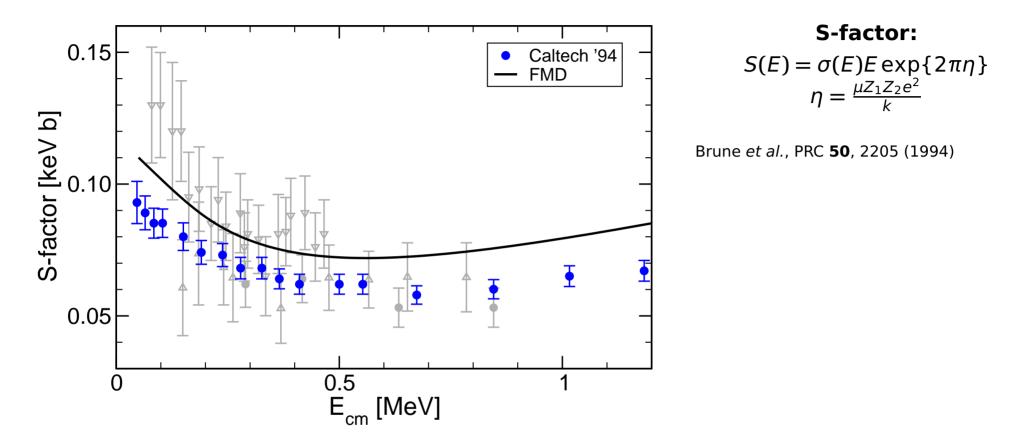
T. Neff, Phys. Rev. Lett. 106 (2011) 042502

³He(α, γ)⁷Be **Overlap Functions and Dipole Matrixelements**

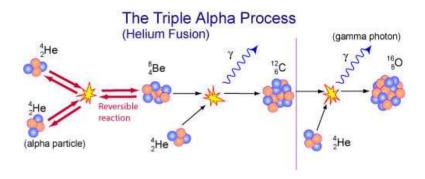


- Overlap functions from projection on RGM-cluster states
- Coulomb and Whittaker functions matched at channel radius a=12 fm
- Dipole matrix elements calculated from overlap functions reproduce full calculation within 2%
- cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified

³H(α, γ)⁷Li **S-Factor**



- isospin mirror reaction of ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$
- ⁷Li bound state properties and phase shifts well described
- FMD calculation describes energy dependence of Brune et al. data but cross section is larger by about 15%



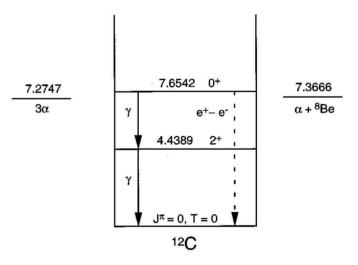
Cluster States in ¹²C

Astrophysical Motivation

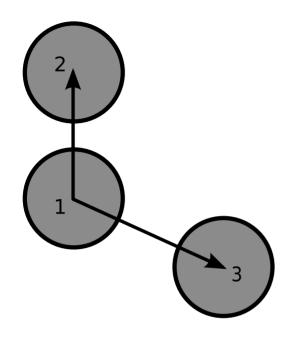
 Helium burning: triple alpha-reaction

Structure

- Is the Hoyle state a pure α -cluster state ?
- Other excited 0⁺ and 2⁺ states
- Compare FMD results to microscopic α -cluster model
- Intrinsic structure from two-body densities
- Analyze wave functions in harmonic oscillator basis



Cluster States in ¹²C Microscopic *α*-Cluster Model



 $R_{12} = (2, 4, \dots, 10) \text{ fm}$ $R_{13} = (2, 4, \dots, 10) \text{ fm}$ $\cos(\vartheta) = (1.0, 0.8, \dots, -1.0)$

alltogether 165 configurations

Kamimura, Nuc. Phys. **A351** (1981) 456 Funaki et al., Phys. Rev. C **67** (2003) 051306(R)

Basis States

• describe Hoyle State as a system of 3 ⁴He nuclei

 $\begin{aligned} \Psi_{3\alpha}(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}); JMK\pi \rangle &= \\ P^{J}_{MK}P^{\pi}\mathcal{A}\left\{ \left| \psi_{\alpha}(\mathbf{R}_{1}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{2}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{3}) \right\rangle \right\} \end{aligned}$

Volkov Interaction

- simple central interaction
- parameters adjusted to give reasonable α binding energy and radius, $\alpha - \alpha$ scattering data, adjusted to reproduce ¹²C ground state energy
- ✗ only reasonable for ⁴He, ⁸Be and ¹²C nuclei

'BEC' wave functions

- interpretation of the Hoyle state as a Bose-Einstein Condensate of α -particles by Funaki, Tohsaki, Horiuchi, Schuck, Röpke
- same interaction and α -cluster parameters used

Basis States

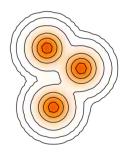
Cluster States in¹²C

FMD

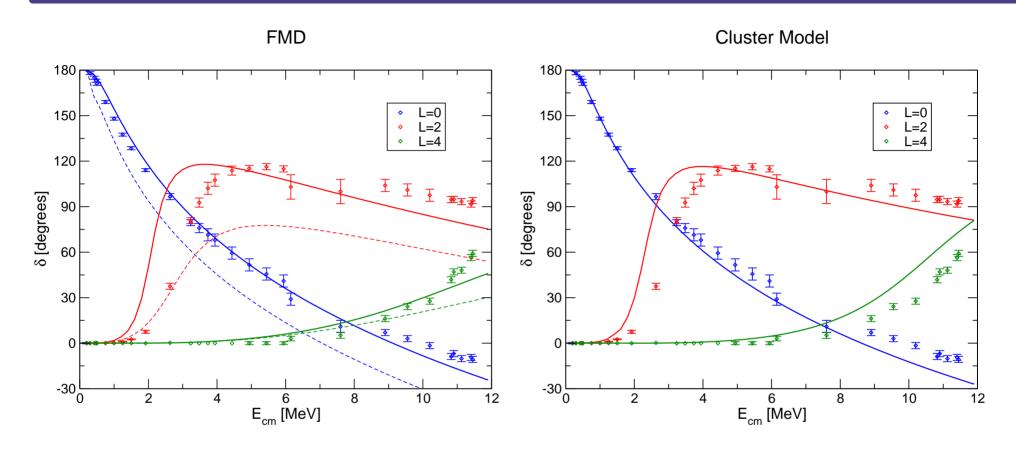
- 20 FMD states obtained in Variation after Projection on 0⁺ and 2⁺ with constraints on the radius
- 42 FMD states obtained in Variation after Projection on parity with constraints on radius and quadrupole deformation
- 165 α -cluster configurations
- projected on angular momentum and linear momentum

Interaction

- UCOM interaction (I_9 =0.30 fm³ with phenomenological two-body correction term (momentumdependent central and spin-orbit) fitted to doublymagic nuclei
- not tuned for α - α scattering or ¹²C properties



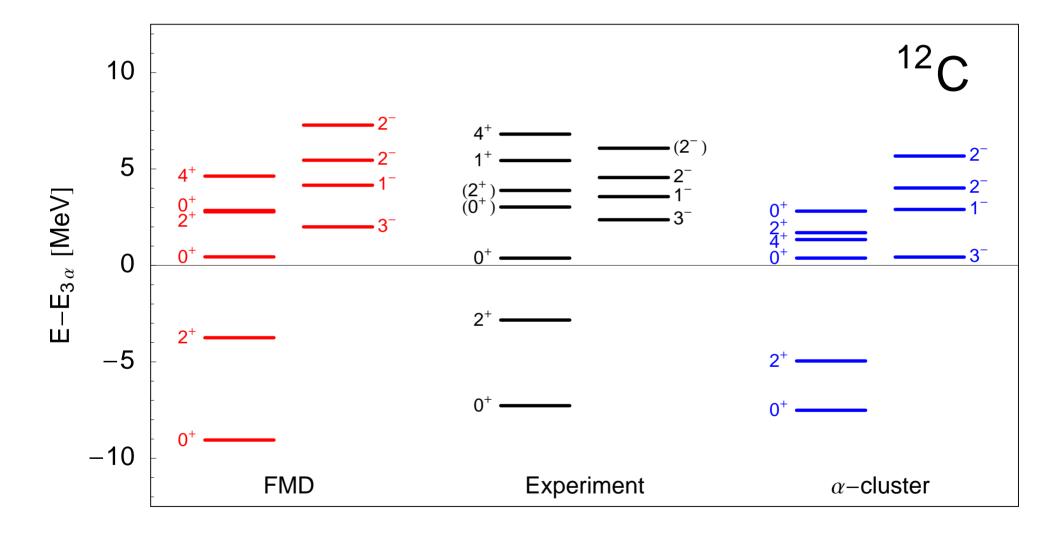
Cluster States in ¹²C α - α Phaseshifts



- Phaseshifts calculated with cluster configurations only (dashed lines)
- Phaseshifts calculated with additional FMD VAP configurations in the interaction region (solid lines)

 only cluster configurations included

- similar quality for description of α - α -scattering



Cluster States in¹²C Comparison

	Exp ¹	Exp ²	FMD	α-cluster	'BEC' ³
$E(0_{1}^{+})$	-92.16		-92.64	-89.56	-89.52
$E^{*}(2_{1}^{+})$	4.44		5.31	2.56	2.81
Ε(3α)	-84.89		-83.59	-82.05	-82.05
$E(0_{2}^{+}) - E(3\alpha)$	0.38		0.43	0.38	0.26
$E(0_{3}^{+}) - E(3\alpha)$	(3.0)	2.7(3)	2.84	2.81	
$E(2^{+}_{2}) - E(3\alpha)$	(3.89)	2.6(3)	2.77	1.70	
$r_{\rm charge}(0^+_1)$	2.47(2)		2.53	2.54	
$r(0^+_1)$			2.39	2.40	2.40
$r(0^{-}_{2})$			3.38	3.71	3.83
$r(0_{3}^{+})$			4.62	4.75	
$r(2_{1}^{+})$			2.50	2.37	2.38
$r(2^{+}_{2})$			4.43	4.02	
$M(E0, 0^+_1 \rightarrow 0^+_2)$	5.4(2)		6.53	6.52	6.45
$B(E2,2_1^+ \rightarrow 0_1^+)$	7.6(4)		8.69	9.16	
$B(E2,2_1^+ \rightarrow 0_2^+)$	2.6(4)		3.83	0.84	
$B(E2,2^+_2\rightarrow 0^+_1)$?		0.46	1.99	

experimental situation for 0^+_3 and 2^+_2 states still unsettled (?)

 2^+_2 resonance at 1.8 MeV above treshold included in NACRE compilation

¹ Ajzenberg-Selove, Nuc. Phys. **A506**, 1 (1990) ² Itoh et al., Nuc. Phys. **A738**, 268 (2004)

³ Funaki et al., Phys. Rev. C **67**, 051306(R) (2003)

Cluster States in¹²C Comparison

	Exp ¹	Exp ²	FMD	α-cluster	'BEC' ³
$E(0_{1}^{+})$	-92.16		-92.64	-89.56	-89.52
$E^{*}(2_{1}^{+})$	4.44		5.31	2.56	2.81
Ε(3α)	-84.89		-83.59	-82.05	-82.05
$E(0_{2}^{+}) - E(3\alpha)$	0.38		0.43	0.38	0.26
$E(0_{3}^{+}) - E(3\alpha)$	(3.0)	2.7(3)	2.84	2.81	
$E(2^{+}_{2}) - E(3\alpha)$	(3.89)	2.6(3)	2.77	1.70	
$r_{\rm charge}(0^+_1)$	2.47(2)		2.53	2.54	
$r(0^+_1)$			2.39	2.40	2.40
$r(0^{+}_{2})$			3.38	3.71	3.83
$r(0_{3}^{+})$			4.62	4.75	
r(2 ⁺ ₁)			2.50	2.37	2.38
$r(2^{+}_{2})$			4.43	4.02	
$M(E0, 0^+_1 \rightarrow 0^+_2)$	5.4(2)		6.53	6.52	6.45
$B(E2, 2_1^+ \to 0_1^+)$	7.6(4)		8.69	9.16	
$B(E2,2_1^+ \rightarrow 0_2^+)$	2.6(4)		3.83	0.84	
$B(E2,2_2^+ \rightarrow 0_1^+)$?		0.46	1.99	

experimental situation for 0^+_3 and 2^+_2 states still unsettled (?)

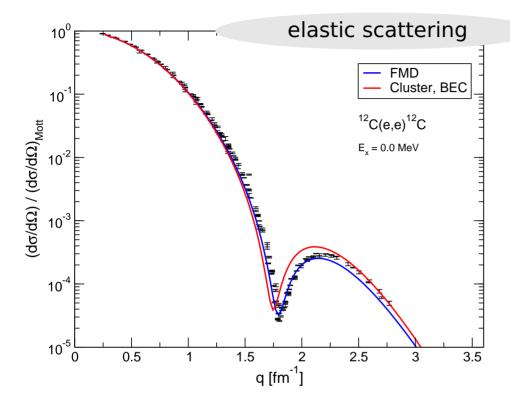
 2^+_2 resonance at 1.8 MeV above treshold included in NACRE compilation

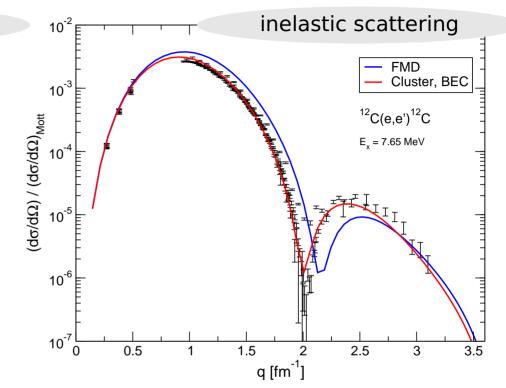
calculated in bound state approximation

¹ Ajzenberg-Selove, Nuc. Phys. **A506**, 1 (1990) ² Itoh et al., Nuc. Phys. **A738**, 268 (2004)

³ Funaki et al., Phys. Rev. C **67**, 051306(R) (2003)

Cluster States in ¹²C Electron Scattering Data





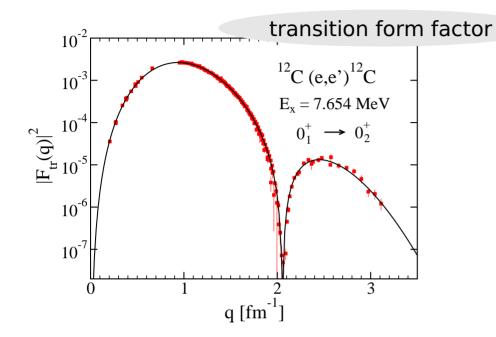
- compare with precise electron scattering data up to high momenta in Distorted Wave Born Approximation
- use intrinsic density

$$\rho(\mathbf{x}) = \sum_{k=1}^{A} \langle \Psi \, \big| \, \delta(\mathbf{x}_{k} - \mathbf{X} - \mathbf{x}) \, \big| \Psi \rangle$$

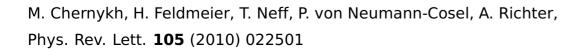
- elastic cross section described very well by FMD
- transition cross section better described by cluster model

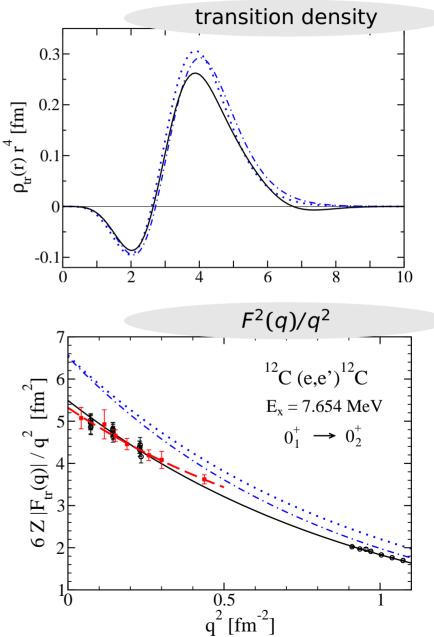
M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Phys. Rev. Lett. 98 (2007) 032501

Cluster States in ¹²C Monopole Matrix Element



- *M*(*E*0) determines the pair decay width
- model-independent self-consistent determination of transition formfactor/density in DWBA
- data at high momentum transfer necessary to constrain M(E0) matrix element

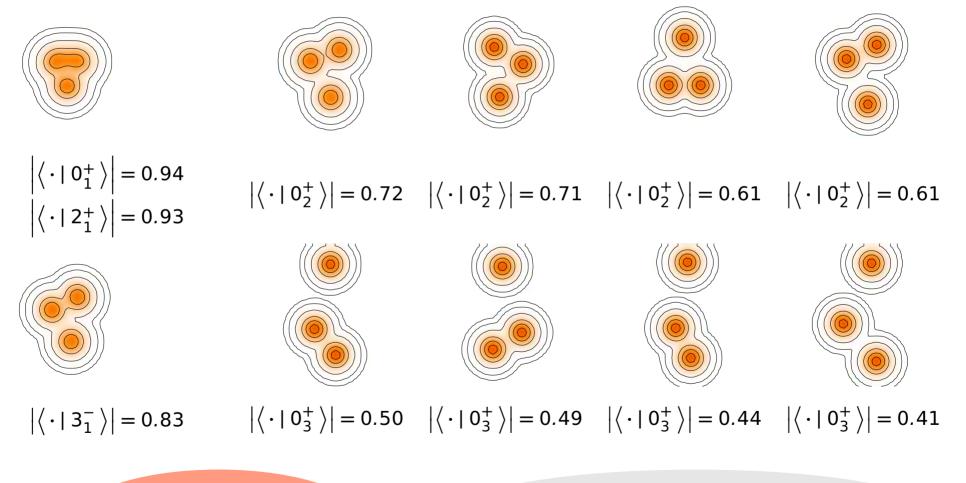




Thomas Neff — INT Structure of Light Nuclei, 10/10/12

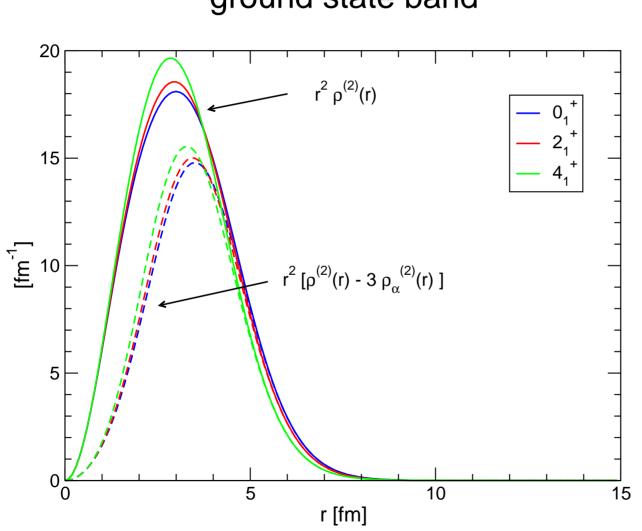
Cluster States in ¹²C Important Configurations

• Calculate the overlap with FMD basis states to find the most important contributions to the Hoyle state



FMD basis states are not orthogonal!

 0^+_2 and 0^+_3 states have no rigid intrinsic structure



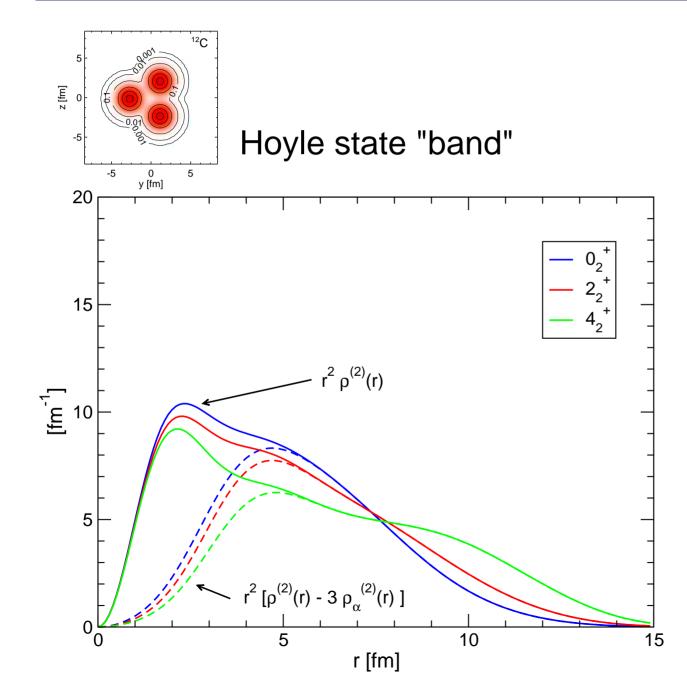
ground state band

Cluster Model

$$\rho^{(2)}(r) = \langle \Psi \big| \sum_{i < j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \big| \Psi \rangle$$

- substract contributions from α's to extract "αα" correlations
- (substracted) two-body density peaks at 3.5 fm
- consistent with
 compact triangular
 structure

Cluster States in ¹²C Two-body Densities and Intrinsic Structure

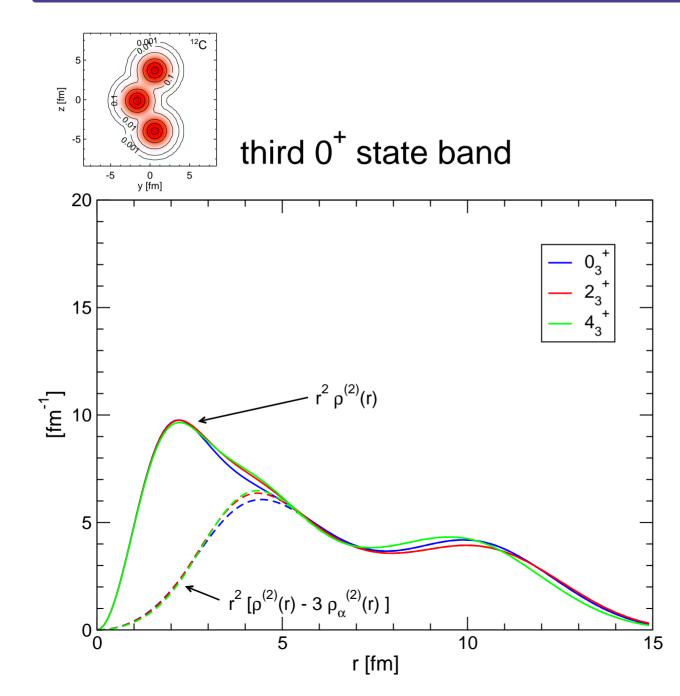


Cluster Model

$$\rho^{(2)}(r) = \langle \Psi \big| \sum_{i < j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \big| \Psi \rangle$$

- substract contributions from α 's to extract " α - α correlations"
- Hoyle state two-body density peaks at 5 fm, extended tail
- consistent with
 triangular structure
- tail in 2⁺₂ and 4⁺₂ states more pronounced
- admixture of open triangle configurations

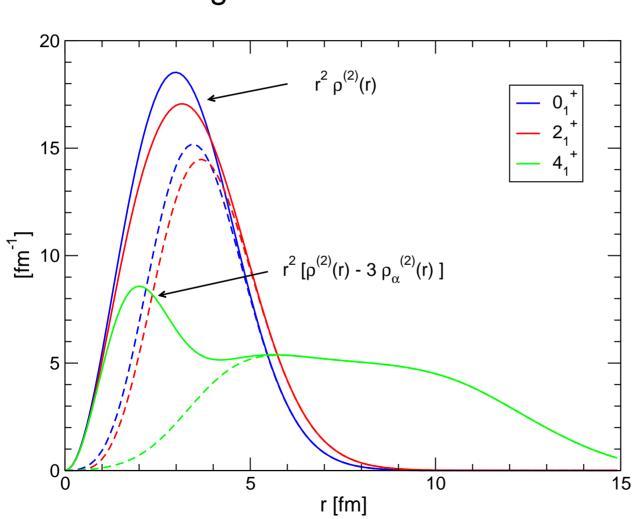
Cluster States in ¹²C Two-body Densities and Intrinsic Structure



Cluster Model

$$\rho^{(2)}(r) = \langle \Psi \big| \sum_{i < j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \big| \Psi \rangle$$

- substract contributions from α's to extract "αα" correlations
- two-body density peaks at 4.5 fm and 10 fm
- consistent with
 open triangle/chain
 configuration



ground state band

FMD

$$\rho^{(2)}(r) = \langle \Psi \big| \sum_{i < j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \big| \Psi \rangle$$

- substract contributions from α 's to extract α - α correlations
- (corrected) two-body density peaks at 3.5 fm for 0⁺ and 2⁺
- 4⁺ state strongly mixed with cluster configurations



FMD

$$\rho^{(2)}(r) = \langle \Psi \big| \sum_{i < j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \big| \Psi \rangle$$

- substract contributions from α 's to extract α - α correlations
- Hoyle state two-body density peaks at 5 fm, extended tail
- consistent with extended triangular structure
- 2^+_2 and 4^+_2 states have different intrinsic structure
- admixture of open triangle configurations



FMD

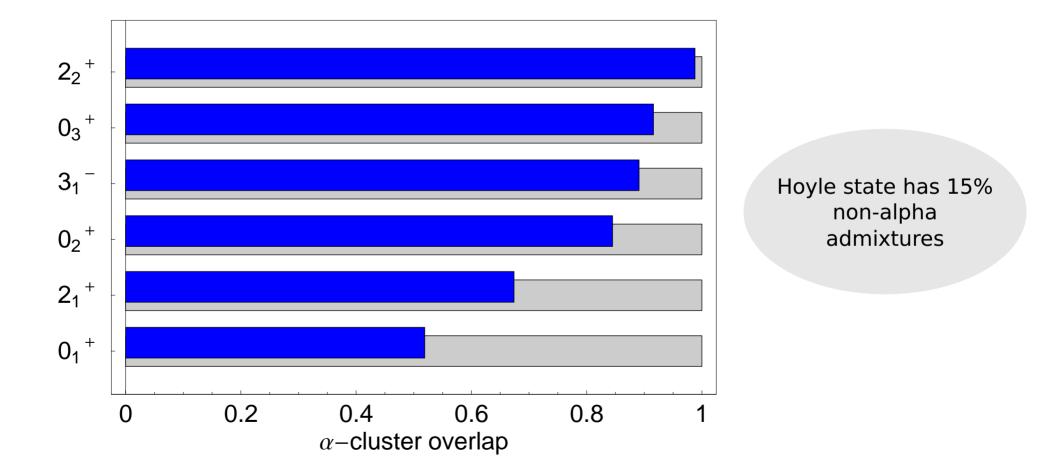
$$\rho^{(2)}(r) = \langle \Psi \big| \sum_{i < j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \big| \Psi \rangle$$

- substract contributions from α 's to extract α - α correlations
- two-body density peaks at 4.5 fm and 10 fm
- consistent with
 chain configuration

Cluster States in ¹²C Overlap with Cluster Model Space

Calculate the overlap of FMD wave functions with pure α -cluster model space

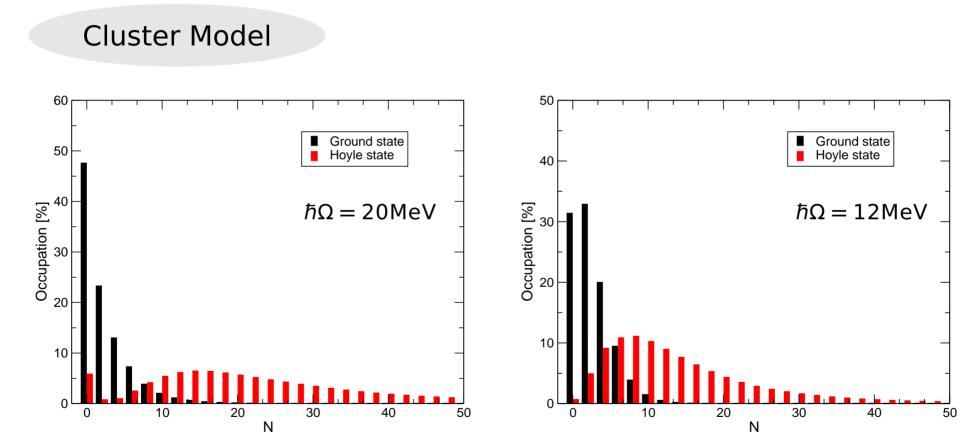
$$N_{\alpha} = \langle \Psi \left| \underbrace{P}_{\Im \alpha} \right| \Psi \rangle$$



Cluster States in ¹²C Harmonic Oscillator NħΩ Excitations

Y. Suzuki et al., Phys. Rev. C 54 2073, (1996):

$$\operatorname{Occ}(N) = \langle \Psi \left| \delta \left(\sum_{i} (\mathcal{H}_{i}^{HO} / \hbar \Omega - 3/2) - N \right) \right| \Psi \rangle$$



• Hoyle state very difficult to converge in no-core shell model

T. Neff, H. Feldmeier, Few-Body Syst. 45, 145 (2009)

Summary

Short-range correlations in light nuclei

- short-range and high-momentum behavior of two-body densities identical in A=2,3,4 nuclei
- Two-body densities in ⁴He with SRG evolved interactions

³He(α , γ)⁷Be Radiative Capture

- Bound states, resonance and scattering wave functions
- S-Factor: energy dependence and normalization
- Analyzed in terms of overlap functions

Cluster States in ¹²**C**

- Consistent description of ground state band and Hoyle state
- Investigate Hoyle state structure with electron scattering
- Two-body densities are a model independent tool for investigating structure
- Cluster states need tremendous model space in harmonic oscillator basis

Thanks to my collaborators:

Hans Feldmeier (GSI), Wataru Horiuchi (Hokkaido), Karlheinz Langanke (GSI), Robert Roth (TUD), Yasuyuki Suzuki (Niigata), Dennis Weber (GSI)