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•  Experimental situation 
–  3/2- g.s. resonance at 0.43 MeV above n + 6He  

•  6He Borromean halo system 
–  5/2- resonance established 
–  Controversy about 1/2- resonance 

•  Low-lying narrow 
•  Broad at 3 MeV 
•  Extremely broad  

Unbound exotic 7He 

3 

Experiments very challenging: three-body background 



Unbound exotic 7He 

4 
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Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])
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An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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•  Experimental situation 
–  Controversy about 1/2- resonance 

•  Low-lying narrow [8He+12C fragmentation] 
•  Broad at 3 MeV [d(6He,p)7He,2H(8Li,3He)7He] 
•  Extremely broad [p+6He: isospin analog]  

Ab initio calculations based on bound-state techniques cannot give any insight 



Chiral Effective Field Theory 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 

•  For now a good place to start: 
•  Inter-nucleon forces from chiral 

effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD (mu≈md≈0), 
spontaneously broken with pion as the 
Goldstone boson 

•  Degrees of freedom: nucleons + pions 
–  Systematic low-momentum expansion to 

a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 



The ab initio no-core shell model (NCSM)   

•  The NCSM is a technique for the solution of the A-nucleon bound-state problem 

•  Realistic nuclear Hamiltonian 

–  High-precision nucleon-nucleon potentials 

–  Three-nucleon interactions  

•  Finite harmonic oscillator (HO) basis  

–  A-nucleon HO basis states 

–  complete NmaxhΩ model space 

•  Effective interaction tailored to model-space truncation for NN(+NNN) potentials 

–  Okubo-Lee-Suzuki unitary transformation  

•  Or a sequence of unitary transformations in momentum space: 
–  Similarity-Renormalization-Group (SRG) evolved NN(+NNN) potential 

Convergence to exact solution with increasing Nmax 
for bound states. No coupling to continuum.  

A 
ΨA = cNiΦNi

A

i
∑

N=0

Nmax

∑

1max += NN



 4He from chiral EFT interactions:  
g.s. energy convergence 

•  Chiral N3LO NN plus N2LO NNN 
potential 

–  Bare interaction (black line) 
•  Strong short-range 

correlations 
§  Large basis needed 

–  SRG evolved effective 
interaction (red line) 

•  Unitary transformation 

•  Two- plus three-body 
components, four-body 
omitted 

•  Softens the interaction 
§  Smaller basis sufficient 

2 4 6 8 10 12 14 16 18 20 22

N
max

−29

−28

−27

−26

−25

−24

E
 [

M
e
V

]

bare (36)

SRG (2.0/28)4
He

NN + NNN

N
3
LO (500 MeV)

Hα =Uα HUα
+ ⇒

dHα

dα
= T,Hα[ ],Hα
"# $% α = 1

λ 4( )

A=3 binding energy and half life constraint 
cD=-0.2, cE=-0.205, Λ=500 MeV 



         6He and 8He with SRG-evolved chiral N3LO NN + N2LO NNN  

–  3N matrix elements in coupled-J single-particle basis: 
•  Introduced and implemented by Robert Roth et al.  
•  Now also in  my codes: Jacobi-Slater-Determinant transformation & NCSD code 
•  Example: 6He, 8He NCSM calculations up to Nmax=10 done with moderate resources  
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8He NN+3N(500) 
SRG Λ=1.7 fm-1

hΩ=16 MeV

8He 6He 4He 
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Nmax
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-23

-22

E gs
 [M

eV
]

NCSM
Exp fit
extrap

6He NN+3N(500) 
SRG Λ=1.7 fm-1

hΩ=16 MeV

A=3 binding energy & half life constraint  
cD=-0.2, cE=-0.205, Λ=500 MeV 



•  6He and 8He with SRG-evolved chiral N3LO NN + N2LO 3N  
–  chiral N3LO NN: 4He underbound, 6He and 8He unbound  
–  chiral N3LO NN + N2LO 3N(500): 4He OK, both 6He and 8He bound 

9 

4 6 8
A

-32

-30

-28

-26

-24

E gs
 [M

eV
]

NN
NN+3N(500)
Expt

4He 6He

8HeNNN interaction important  

to bind neutron rich nuclei 

A=3 binding energy & half life constraint  
cD=-0.2, cE=-0.205, Λ=500 MeV 

8He 6He 4He 



•  6He and 8He with SRG-evolved chiral N3LO NN + N2LO 3N  
–  chiral N3LO NN: 4He underbound, 6He and 8He unbound  
–  chiral N3LO NN + N2LO 3N(400): 4He fitted, 6He barely unbound, 8He unbound 

•  describes quite well binding energies of 12C, 16O, 40Ca, 48Ca 
–  chiral N3LO NN + N2LO 3N(500): 4He OK, both 6He and 8He bound 

•  does well up to A=10, overbinds 12C, 16O, Ca isotopes  

–  SRG-N3LO NN Λ=2.02 fm-1: 4He OK, both 6He and 8He bound 
•  16O, Ca strongly overbound 

10 
4 6 8

A
-32

-30

-28

-26

-24

E gs
 [M

eV
]

NN
NN+3N(400)
NN+3N(500)
NN-srg 2.02
Expt

4He 6He

8He

Our knowledge of  the 3N interaction  
is incomplete 

NNN interaction important  

to bind neutron rich nuclei 

A=3 binding energy & half life constraint  
cD=-0.2, cE=-0.205, Λ=500 MeV 

4He binding energy & 3H half life constraint  
cD=-0.2, cE=+0.098, Λ=400 MeV 



NCSM calculations of 6He and 7He g.s. energies 

12 13 14 15 16 17 18 19 20 21 22
hΩ [MeV]

-30

-28
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-22
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-16
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-12

E gs
 [M

eV
]

Nmax= 2
Nmax= 4
Nmax= 6
Nmax= 8
Nmax=10
Nmax=12
extrap

6He SRG-N3LO NN 
Λ=2.02 fm-1 

0 2 4 6 8 10 12 14
Nmax

-30
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-28

-27

-26
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-24

-23

-22

-21

-20

E gs
 [M

eV
]

NCSM
Exp fit
extrap

7He

SRG-N3LO NN
Λ=2.02 fm-1

hΩ=16 MeV

3/2-

0+6He

ü  Nmax convergence OK 
ü  Extrapolation feasible 

•  6He: Egs=-29.25(15) MeV (Expt. -29.269 MeV)  
•  7He: Egs=-28.27(25) MeV (Expt. -28.84(30) MeV) 

•  7He unbound (+0.430(3) MeV), width 0.182(5) MeV 
•  NCSM: no information about the width 

 

7He 

unbound 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In
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E x [M
eV

]

6He
SRG-N3LO  Λ = 2.02 fm−1

h- Ω = 16 MeV

2h- Ω 4h- Ω 6h- Ω 8h- Ω 10h- Ω 12h- Ω Expt
0+
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0+

(2+,1-,0+)

FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.



The ab initio NCSM/RGM in a snapshot 

•  Ansatz: 

Hamiltonian kernel Norm kernel 

§  Many-body Schrödinger equation: 

ê 

eigenstates of  
H(A-a) and H(a)  
in the ab initio  
NCSM basis 

realistic nuclear Hamiltonian 

12 



•  Consider the T = ½ case: 5He ( 5Li ) 
–  Five-nucleon cluster unbound; 4He tightly bound, not easy to deform 

 
 

§  Satisfactory description of n-4He ( p-4He ) scattering at low 
excitation energies within single-channel approximation 

§  However, both n(p) + 4He and d + 3H(3He) channels needed to 
describe 3H(d,n)4He [3He(d,p)4He] fusion! 

Energy�

4He 
n 

3H 
d 

3H n 
p 

+ + +  …     

0�
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19.8�
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MeV �



Unbound A=5 nuclei: 5Heèn+4He, 5Lièp+4He 

•  NCSM/RGM calculations  

–  SRG-N3LO NN potential with Λ=2.02 fm-1 

•  Differential cross section and analyzing  
power @17 MeV neutron energy 

–  Polarized neutron experiment at Karlsruhe 

4He 
n 

NNN missing: Good agreement only for energies beyond low-lying 3/2- resonance 
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How about 7He as n+6He?  

15 
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•  All 6He excited states above 2+
1 broad resonances or states in continuum 

•  Convergence of the NCSM/RGM n+6He calculation slow with number of 6He states 
•  Negative parity states also relevant  
•  Technically not feasible to include more than ~ 5 states 



New approach: NCSM with continuum 
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NCSMC formalism 
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4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P
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In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as
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Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets
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That is, the eigenproblem
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The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.
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At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT
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NCSM sector: 

NCSM/RGM sector: 

3

The cluster states |A − a α1I
π1
1 T1〉, |a α2I

π2
2 T2〉 and

the A-body states |AλJπT 〉 are obtained by NCSM di-
agonalization of the microscopic Hamiltonians Ĥ(A−a),

Ĥ(a) and Ĥ , for A − a, a and A nucleons respectively,
using the same frequency !ω for the harmonic oscillator
(HO) basis. The size of the NCSM model space is de-
fined by the maximum number Nmax of HO excitation
quanta on top of the lowest configuration and it is the
same for all NCSM eigenstates of the same parity, and
differ by one unit for states of opposite parity. The NC-
SMC basis used in Eq. (1) is then an extension of the
NCSM/RGM basis, by inclusion of a NCSM sector. Or,
equivalently, the NCSM is extended by the inclusion of
clusterized states, which makes the theory able to handle
the scattering physics of the system. In other words, the
coupling of the NCSM with the continuum.

The A-nucleon microscopic Hamiltonian can be writ-
ten in the form

Ĥ = T̂rel + V̂rel + V̂C(r) + Ĥ(A−a) + Ĥ(a) (5)

where T̂rel is the relative kinetic energy between tar-
get and projectile and V̂rel includes all the interactions
between nucleons belonging to different clusters after
subtraction of the average Coulomb interaction between
them (see [17] for a detailed discussion on this point).

B. Kernels in the NCSM/RGM sector

We present here some details of the construction of the
norm and Hamiltonian kernels in the NCSM/RGM sec-
tor. This also represents a necessary introduction to un-
derstand the NCSMC equations and how to solve them.

As the channel states |ΦJπT
νr 〉 are not orthonormal to

each other, it is preferable to couple the NCSM states
|AλJπT 〉 with orthonormalized binary-cluster states

∑

ν′

∫

dr′r′
2 N− 1

2
νν′ (r, r′) Âν′ |ΦJπT

ν′r′ 〉, (6)

where use has been made of the inverse square root of
the NCSM/RGM norm kernel

N JπT
νν′ (r, r′) = 〈ΦJπT

νr |ÂνÂν′ |ΦJπT
ν′r′ 〉. (7)

When computing the above kernel, the “exchange” term
arising from the permutations in Âν that differ from the
identity is obtained by expanding the radial dependence
of the basis states of Eq. 2 on HO radial wave functions
Rnl(r). This HO basis has the same frequency used in
the NCSM cluster calculations. The HO model space is
indicated as P and its size is consistent with the model
space used in the cluster diagonalizations. The expansion
of the channel basis states reads

|ΦJπT
νr 〉 =

∑

n∈P

Rnl(r)|ΦJπT
νn 〉

(8)

with

|ΦJπT
νn 〉 =

=
[

(|A − a α1I
π1
1 T1〉|a α2I

π2
2 T2〉)(sT ) Y#(r̂A−a,a)

](JπT )

×Rnl(rA−a,a). (9)

Hence, using the expression of Eqs. 3 and 9, the r-space
representation of the NCSM/RGM norm kernel N can be
written as

N JπT
νν′ (r, r′) =

= δνν′

δ(r − r′)

rr′
+ N ex
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]
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where we introduced the model-space NCSM/RGM norm
kernel
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νn |P̂A−1,A|ΦJπT

ν′n′ 〉 Rn′l′(r
′).

(11)

The last line of Eq. 10 shows that the r-space represen-
tation of the kernel is given by the convolution of the
model-space kernel plus a correction due to the finite size
of the model space P . One can finally define the square

roots N± 1
2

νν′ (r, r′) as

N± 1
2

νν′ (r, r′) =

[

δνν′

δ(r − r′)
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′)

]

+
∑

nn′∈P

Rnl(r)N
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2
νnν′n′Rn′l′(r

′) (12)

where the square root of the model-space Nνnν′n′ is ob-
tained from the spectral theorem.

The NCSM/RGM-sector Hamiltonian H in the orthog-
onalized basis

Hνν′(r, r′) =

=
∑

µµ′

∫ ∫

dydy′y2y′2N− 1
2

νµ (r, y)Hµµ′ (y, y′)N− 1
2

µ′ν′(y′, r′)(13)
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clusterized states, which makes the theory able to handle
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get and projectile and V̂rel includes all the interactions
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•  Since we are using NCSM wave functions, it is convenient to 
introduce Jacobi channel states in the HO space 

–  The coordinate space channel states are given by 

 

•  We used the closure properties of HO radial wave functions 

–  Target and projectile wave functions are both translational invariant  NCSM eigenstates 
calculated in the Jacobi coordinate basis  
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•  Define SD channel states in which the eigenstates of the heaviest of 
the two clusters (target) are described by a SD wave function: 
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•  More in detail: 

•  The spurious motion of the c.m. is mixed with the intrinsic motion 

•  Translational invariance preserved (exactly!) also with SD channels 

•  Transformation is general: same for different A’s or different a’s 
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•  SD to Jacobi transformation is general and exact 

•  Can use powerful second quantization representation 
–  Matrix elements of translational invariant operators can be expressed in 

terms of matrix elements of density operators on the target eigenstates 
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
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(Ĥ
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See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
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)
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1 ḡ
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)
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where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′
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1
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0 0

0 δνν′
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rr′ −
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)

+

(
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)(

1 ḡλν′n′
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)± 1
2
(
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)

. (22)

Inserting the identity N− 1
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2 in Eq. 15, and multiply-
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)
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χ

)
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(
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χ

)
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That is, the eigenproblem
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= E
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)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

Start from 
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account for virtual breakup effects. The contribution of
the pseudostates is expected to be suppressed in the NC-
SMC approach. Extension of the NCSMC formalism to
the case of composite projectiles, the inclusion of three-
nucleon interactions, and the coupling of three-body clus-
ters are under way.
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APPENDIX A

The orthogonalized cluster form factor in r-space representation reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rn$(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn ≡

∑

n∈P

Rn$(r)
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn ≡
∑

n∈P

Rn$(r)ḡλνn , (A1)

where

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn ≡

∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn (A2)

is the model-space orthogonalized cluster form factor.
The model-space non-orthogonalized cluster form factor gλνn is given by

gλνn = 〈AλJπT |ÂνΦJπT
νn 〉

=
1

〈n"00, "|00n", "〉 1
(A−1)

∑

j

(−1)I1+J+j ŝĵ

{

I1
1
2 s

" J j

}

1

Ĵ T̂
〈AλJπT |||a†

n$j 1
2
|||ΦJπT

νn 〉SD , (A3)

and it is computed by expanding the channel cluster states on a Slater determinant (SD) basis and removing the
spurious center-of-mass component. The Moshinky brakets 〈n"00, "|00n", "〉 allows us to transform from the SD to
the Jacobi-coordinate states. This expression was first derived in Ref. [33] where further details on the derivation can
be found.

The orthogonalized coupling form factor in r-space representation reads

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Ĥ|Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rn$(r)
∑

ν′n′∈P

〈AλJπT |Ĥ|Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn + Rnmax+1 $(r)〈AλJπT |ÂνΦJπT

νnmax
〉〈nmax"|T̂rel|nmax + 1 "〉

≡
∑

n∈P

Rn$(r)h̄λνn + Rnmax+1 $(r) 〈nmax"|T̂rel|nmax + 1 "〉 gλνnmax
, (A4)

where

h̄λνn =
∑

ν′n′∈P

〈AλJπT |H̄|Âν′ΦJπT
ν′n′ 〉N− 1

2
ν′n′,νn ≡

∑

ν′n′∈P

hλν′n′N− 1
2

ν′n′,νn (A5)

is the model-space orthogonalized coupling form factor.

Calculation of g from SD wave functions: 



•  Obtained as  

•  Not the final result to 
be compared to 
experiment, rather 
input in the NCSMC 
calculations 

7He spectroscopic factors 
9

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−
1 0+

−p 3
2

0.56 0.59 0.53 0.565 0.512(18)[36]

0.64(9) [50]

0.37(7) [45]

3/2−
1 2+

1 −p 1
2

0.001 0.06 0.006

3/2−
1 2+

1 −p 3
2

1.97 1.15 2.02

3/2−
1 2+

2 −p 1
2

0.12 0.09

3/2−
1 2+

2 −p 3
2

0.42 0.30

1/2− 0+
−p 1

2
0.94 0.69 0.91

1/2− 2+
1 −p 3

2
0.34 0.60 0.26

1/2− 2+
2 −p 3

2
0.93

5/2− 2+
1 −p 1

2
0.77 0.85 0.81

5/2− 2+
1 −p 3

2
0.49 0.52 0.37

5/2− 2+
2 −p 1

2
0.26

5/2− 2+
2 −p 3

2
1.30

3/2−
2 0+

−p 3
2

0.06 0.06 0.05

3/2−
2 2+

1 −p 1
2

1.10 1.05 1.07

3/2−
2 2+

1 −p 3
2

0.08 0.32 0.03

3/2−
2 2+

2 −p 1
2

0.03

3/2−
2 2+

2 −p 3
2

0.25

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [51] and VMC/GFMC [1, 52, 53] calculations
and experiment. NCSM calculations were performed with the
SRG-N3LO NN potential with Λ=2.02 fm−1, Nmax=12 and
the HO frequency of !Ω=16 MeV. The CK results should in
principle be still multiplied by A/(A−1) to correct for the
center of mass motion.

of an almost pure s=5/2 component (with s the channel
spin defined in Eq. (4)). Spectroscopic factors are not
observables. However they provide a valuable informa-
tion on the structure of wave functions. We stress again
that in our present calculations, the overlap functions
and spectroscopic factors are not the final products to be
compared to experiment but, on the contrary, inputs to
more sophisticated NCSMC calculations.

B. 7He NCSM/RGM and NCSMC calculations

The NCSM/RGM calculations for the n+6He sys-
tem presented in the following were obtained by in-
cluding up to the three lowest eigenstates of 6He, i.e.,
0+, 2+

1 , and 2+
2 , in the neutron-6He binary-cluster ba-

sis. These results will be compared to NCSMC calcu-
lations, which to the above neutron-6He binary-cluster
states couple the 6 lowest negative parity NCSM eigen-
states of 7He (3/2−1 , 1/2−, 5/2−, 3/2−2 , 3/2−3 , 3/2−4 ) as
well as the four lowest 7He positive-parity eigenstates
(1/2+, 5/2+

1 , 3/2+, 5/2+
2 ).

First, we study the dependence of the 3/2− ground-
state phase shifts on the number of 6He eigenstates in-
cluded in the calculations. NCSM/RGM (panel (a)) and
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FIG. 4: (color online). Dependence of the NCSM/RGM (a)
and NCSMC (b) 6He+n phase shifts of the 7He 3/2− ground
state on the number of 6He states included in the binary-
cluster basis. The short-dashed green curve, the dashed blue
curve and the solid red curve correspond to calculations with
6He 0+ ground state only, 0+, 2+ states and 0+, 2+, 2+ states,
respectively. The SRG-N3LO NN potential with Λ = 2.02
fm−1, the Nmax=12 basis size and the HO frequency of !Ω=16
MeV were used. See text for further details.

NCSMC (panel (b)) results are shown in Fig. 4. Here,
we adopt the standard notation 2s+1!J for the channel
quantum numbers, i.e., 2P3/2 for the ground-state reso-
nance in Fig. 4, where the total spin s of the two clusters
and the relative orbital angular momentum ! are coupled
to the total spin of the system "J = "s+"! (cf. Eq. (4)). We
observe that the NCSM/RGM calculation with the 6He
target restricted to its ground state does not produce a
7He 3/2− resonance (the phase shift does not reach 90
degrees and is less than 70 degrees up to 5 MeV). A
2P3/2 resonance does appear once the 2+

1 state of 6He
is coupled, and the resonance position further moves to
lower energy with the inclusion of the second 2+ state
of 6He. On the contrary, the 2P3/2 resonance is already
present in the NCSMC calculation with only the ground
state of 6He. In fact, this NCSMC model space is al-
ready enough to obtain the 7He 3/2− ground state res-
onance at about 1 MeV above threshold, which is lower

Sλν = gλνn
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n
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′
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. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel
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2

ν′ν (r′, r)
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and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel
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2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P
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. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as
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1 ḡλν′n′
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Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets
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That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian
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2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)
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2
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)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

4

is obtained from the Hamiltonian kernel
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See Ref. [17] for more details about the NCSM/RGM
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A detailed expression for the above form factors can be
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non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P
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That is, the eigenproblem
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sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions
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A detailed expression for the above form factors can be
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non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
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the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P
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That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

Orthogonalization: 

5

and

uJπT
ν (r) =

i

2
v
− 1

2
ν [δνiH

−
l (ην ,κνr)−SJπT

νi H+
l (ην ,κνr)], for larger

(28)
for bound and scattering states, respectively. Wl(ην ,κνr)
are Wittaker functions and H±

l (ην ,κνr) are the incom-
ing and outgoing Coulomb functions. The scattering
states are defined through the scattering matrix SJπT

νi be-
tween the initial state i and the channel ν. The function
uJπT

ν (r) stands for either the non-orthogonalized func-
tion χJπT

ν (r) or for the orthogonalized χ̄JπT
ν (r). (note:

plus some detail and then refering to PRC79 and papers
on the subject)

One of the advantages of the R-matrix method is that
the wave function uJπT

ν (r) in the internal region can be
expanded on a set of square-integrable functions. We
adopted here the set of Lagrange functions fn(r) associ-
ated with the shifted Lagrange polynomials and defined
on the mesh points rn ∈ [0, a]. When the Gauss-Legendre
quadrature approximation is adopted, the Lagrange func-
tions are orthogonal to each other. n indeces the mesh
points, whose number has to be large enough to have a
correct representation of the wave functions.

The match between the internal and the external re-
gions and hence the imposition of the asymptotic be-
havior of Eqs. 27 and 28, is ensured by using the Bloch
surface operator

L̂ν =

(

0 0
0 1

2δ(r − a)( d
dr − Bν

r )

)

(29)

and solving the Bloch-Schrödinger equations

(Ĥ + L̂ − E)

(

c̄
χ̄

)

= L̂

(

c̄
χ̄

)

. (30)

H + L̂ is Hermitian when the boundary parameter Bν

is real. Because of the Bloch operator, the wave func-
tion in the right hand side of Eq. 30 is approximated by
its asymptotic behavior. When searching for the bound
states, Bν is chosen in such a way that the r.h.s. vanishes,
and one is left with the diagonalization problem

(H + L̂)

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

. (31)

For the scattering states, the R matrix and the scattering
matrix S are computed from the NCSMC/RGM sector of
the H +L̂ Hermitian operator, for each impinging kinetic
energy Ekin of the projectile. The phase shifts δ(Ekin)
should then be extracted from an analysis of the scat-
tering matrix in the complex plane [ref.]. In this work,
we approximate the phase shifts by extracting them from
the diagonal elements of the scattering matrix, by writ-
ing them as e2iδ. Open and closed channels are treated
on equal footing when applying the R-matrix method.

E. Cluster and coupling form factors

(We could expand the text to two columns for this
subsection.)

The orthogonalized cluster form factor in r-space rep-
resentation reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rnl(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

n∈P

Rnl(r)
∑
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gλν′n′ N− 1
2

ν′n′,νn ≡
∑

n∈P

Rnl(r)ḡλνn

(32)

where

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn (33)

is the model-space orthogonalized cluster form factor.
The proof of Eq. (32) is in App. A.

The model-space non-orthogonalized cluster form fac-
tor gλνn is given by

gλνn = 〈AλJπT |ÂνΦJπT
νn 〉

=
1

〈nl00, l|00nl, l〉 1
(A−1)

×
∑

j

(−1)I1+J+j ŝĵ

{

I1 1/2 s
l J j

}

1

Ĵ T̂

×〈AλJπT |||a†

nlj 1
2
|||ΦJπT

νn 〉SD

(34)

and it is computed by expanding the channel cluster
states on a Slater determinant (SD) basis and removing
the spurious center-of-mass component. The Moshinky
brakets 〈nl00, l|00nl, l〉 allows us to transform from the
SD to the Jacobi-coordinate states. The proof of Eq. (34)
is also in App. A.

The orthogonalized coupling form factor in r-space rep-
resentation reads
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(35)
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the wave function uJπT
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E. Cluster and coupling form factors

(We could expand the text to two columns for this
subsection.)

The orthogonalized cluster form factor in r-space rep-
resentation reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rnl(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

n∈P

Rnl(r)
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn ≡
∑

n∈P

Rnl(r)ḡλνn

(32)

where

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn (33)

is the model-space orthogonalized cluster form factor.
The proof of Eq. (32) is in App. A.

The model-space non-orthogonalized cluster form fac-
tor gλνn is given by

gλνn = 〈AλJπT |ÂνΦJπT
νn 〉

=
1

〈nl00, l|00nl, l〉 1
(A−1)

×
∑

j

(−1)I1+J+j ŝĵ

{

I1 1/2 s
l J j

}

1

Ĵ T̂

×〈AλJπT |||a†

nlj 1
2
|||ΦJπT

νn 〉SD

(34)

and it is computed by expanding the channel cluster
states on a Slater determinant (SD) basis and removing
the spurious center-of-mass component. The Moshinky
brakets 〈nl00, l|00nl, l〉 allows us to transform from the
SD to the Jacobi-coordinate states. The proof of Eq. (34)
is also in App. A.

The orthogonalized coupling form factor in r-space rep-
resentation reads

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Ĥ|Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rnl(r)
∑

ν′n′∈P

〈AλJπT |Ĥ|Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

+Rnmax+1l(r)〈AλJπT |ΦJπT
νnmax

〉〈ΦJπT
νnmax

|T̂rel|ΦJπT
νnmax+1

〉

≡
∑

n∈P

Rnl(r)h̄λνn

+ Rnmax+1l(r) 〈nmaxl|T̂rel|nmax+1l〉 gλνnmax

(35)
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

Start from 



•  Separation into “internal” and “external” regions at the channel radius a 

 

 

–  This is achieved through the Bloch operator: 

–  System of Bloch-Schrödinger equations: 

–  Internal region: expansion on square-integrable basis 

–  External region: asymptotic form for large r 
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•  After projection on the basis fn(r):	


	


 

1.  Solve for Acn  

2.  Match  internal and external solutions at channel radius, a	


	

	


•  In the process introduce R-matrix, projection of the Green’s function 
operator on the channel-surface functions 
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3.  Solve equation with respect to the scattering matrix U  

4.  You can demonstrate that the solution is given by: 

 

 

•  Scattering phase shifts are extracted from the scattering matrix elements 
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tion for the 6He + n threshold energy is within ∼ 1 MeV
from the experimental value when a low-momentum res-
olution λ = 2.02 fm−1 is used. This allows us to per-
form qualitatively and quantitatively meaningful calcu-
lations and to discuss the physics involved in the scat-
tering process. All calculations shown in this work are
done with λ = 2.02 fm−1 two-body low-momentum inter-
actions, while the implementation of 3NF is in progress
[Ref.] and its inclusion is left for the future. At variance
with effective interactions that change as a function of
the model-space size (i.e., through the Lee-Suzuki renor-
malization, [Ref.]), the SRG potential enters unaltered
all the calculations. This makes the theories variational.

The NCSM/RGM and the NCSMC phase shifts for
the 7He negative-parity states up to J = 5/2 and for
the Jπ = 1/2+ state are shown in Fig. 2. We adopt
the standard notation 2s+1"Jπ for the channel quantum
numbers, where the total spin s of the two clusters and
the relative orbital angular momentum " add up to give
the total spin of the system #J = #s+#" (cf. Eq. 2). All the
phase shifts in Fig. 2 have been obtained using the lowest
three 6He states (i.e., the 0+ ground state and the two
lowest 2+ excited states). The NCSMC basis includes
also the lowest six (four) 7He negative- (positive-) parity
eigenstates. The neutron kinetic energy corresponding
to a phase shift of π/2 is taken as the resonance centroid
and it is plotted in Fig. 1, while the resonance width is
computed as [Ref.]

Γ =
2

∂δ(Ekin)/∂Ekin

∣

∣

∣

∣

Ekin=ER

(38)

evaluated at the resonance centroid ER and with the
phase shift in radians. Computed centroids and widths
are reported in Tab. I, together with the available ex-
perimental data. While the above procedure to extract
centroid energy and resonance width is safely applicable
to sharp resonances, broad resonances would require an
analysis of the scattering matrix in the complex plane.
As we are more interested in a qualitative discussion of
the results, we extend here the above extraction proce-
dure to broad resonances.

As expected for a variational theory, the introduction
of the additional A-body basis states |AλJπT 〉 and the
coupling to the continuum lead to lower centroid values
for all 7He resonances when going from NCSM/RGM
to NCSMC. In particular, the 7He 3/2− ground state
and 5/2− excited state are sensitevely pushed toward the
6He + n threshold, getting closer to the experiment. The
resonance widths also shrink toward the observed data.

NCSM/RGM and NCSMC theories predict a 1/2− res-
onance above the 5/2− excited state, in contrast with the
NCSM. The latter, though, is not expected to provide a
reliable description for broad resonances, as this requires
a correct description of the coupling to the continuum.

The NCSM and the NCSM/RGM centroid energies for
the 3/2- and 5/2- resonances are just ! 200 keV apart,
while a significant energy shift is brought by the coupling
to the continuum, with a compression of the separation
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FIG. 2: NCSM/RGM (a) and NCSMC (b) 6He + n phase
shifts as a function of the kinetic energy of the impinging
neutron projectile. The phase shifts are taken from the diag-
onal matrix elements of the scattering matrix (see Sect. IID).
The dashed vertical area centered at 0.44 MeV indicates the
experimental centroid and width of the 7He ground state [29].
In all calculations the lowest three 6He states have been in-
cluded in the construcction of the basis states (cf. Eq. 2).

Jπ experiment NCSM NCSM/RGM NCSMC
E Γ Ref. E E Γ E Γ

3/2− 0.44(3) 0.16(3) [29] 1.30 1.42 0.52 0.75 0.31

5/2− 2.9(3) 2.2(3) [30] 4.56 4.58 3.06 3.69 2.57

1/2− 3.54 10 [42] 3.26 4.96 14.95 4.01 15.15

3.04 2 [38]

TABLE I: Experimental and theoretical values for the reso-
nance centroids and widths in MeV for the 3/2− ground state
and the 5/2− and 1/2− excited states of 7He.

energy of about 0.4 MeV, closer to the experimental find-
ings.

All these results show that the coupling to the contin-
uum is strong, which leads to an overcompleteness of the
NCSMC basis. This overcompleteness is at the heart of
the method, which is then able to get converged results
with fewer cluster states than the NCSM/RGM. The lat-
ter often requires many target states |A − a α1I

π1
1 T1〉 to

Best agreement with the neutron 
pick-up and proton-removal 
reactions experiments [11]  

4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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•  Two 3/2- resonances predicted at about 3.7 MeV and 6.5 MeV with widths of 
2.8 MeV and 4.3 MeV, respectively  

–  Experiment: State of undetermined spin and parity at 6.2(3) MeV with the width of 4(1) MeV  

•  Considerable mixing of P-waves in 3/2-
2   

Predictions of other resonances 
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Conclusions and Outlook 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NSM and the NCSM/RGM   

•  We demonstrated its capabilities in calculations of 7He resonances 
–  We find reasonable agreement with experiment for established 3/2- and 5/2- resonances    
–  Our results do not support the existence of a low lying narrow 1/2- resonance 
–  We predict two broad 3/2- resonances 

 

•  Outlook: 
–  Inclusion of 3N interactions 
–  Extension of the formalism to composite projectiles (deuteron, 3H, 3He, 4He) 
–  Extension of the formalism to coupling of three-body clusters  
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