

Ab initio description of the unbound ⁷He

"Light nuclei from first principles"

15th October 2012, Institute for Nuclear Theory

Petr Navratil | TRIUMF

Accelerating Science for Canada

Un accélérateur de la démarche scientifique canadien

Outline

- Why ⁷He?
- No-core shell model calculations for neutron rich He isotopes
- Introducing no-core shell model with continuum (NCSMC)
- ⁷He calculations: Comparison of NCSM/RGM and NCSMC
- The predictions and comparison to experiment
- Outlook

Unbound exotic ⁷He

Experimental situation

- $-3/2^{-}$ g.s. resonance at 0.43 MeV above $n + {}^{6}$ He
 - ⁶He Borromean halo system
- 5/2 resonance established
- Controversy about 1/2⁻ resonance
 - Low-lying narrow
 - Broad at 3 MeV
 - Extremely broad

Experiments very challenging: three-body background

Unbound exotic ⁷He

Experimental situation

- Controversy about 1/2 resonance
 - Low-lying narrow [8He+12C fragmentation]
 - Broad at 3 MeV [d(⁶He,p)⁷He,²H(⁸Li,³He)⁷He]
 - Extremely broad [p+6He: isospin analog]

J^{π}	experiment						
	E_R	Γ	Ref.				
$3/2^{-}$	0.430(3)		[2]				
$5/2^{-}$	3.35(10)	1.99(17)	[40]				
$1/2^{-}$	3.03(10)	2	[11]				
	3.53	10	[15]				
	1.0(1)	0.75(8)	[5]				

[5] M. Meister et al., Phys. Rev. Lett. 88, 102501 (2002).

[11] A. H. Wuosmaa et al., Phys. Rev. C 72, 061301 (2005).

[15] P. Boutachkov et al., Phys. Rev. Lett. 95, 132502 (2005).

Ab initio calculations based on bound-state techniques cannot give any insight

Chiral Effective Field Theory

- First principles for Nuclear Physics:
 QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

The ab initio no-core shell model (NCSM)

- The NCSM is a technique for the solution of the A-nucleon bound-state problem
- Realistic nuclear Hamiltonian
 - High-precision nucleon-nucleon potentials
 - Three-nucleon interactions
- Finite harmonic oscillator (HO) basis
 - A-nucleon HO basis states
 - complete $N_{max}\hbar\Omega$ model space

- Effective interaction tailored to model-space truncation for NN(+NNN) potentials
 - Okubo-Lee-Suzuki unitary transformation
- Or a sequence of unitary transformations in momentum space:
 - Similarity-Renormalization-Group (SRG) evolved NN(+NNN) potential

$$\Psi^A = \sum_{N=0}^{N_{\text{max}}} \sum_i c_{Ni} \Phi_{Ni}^A$$

Convergence to exact solution with increasing $N_{\rm max}$ for bound states. No coupling to continuum.

⁴He from chiral EFT interactions: g.s. energy convergence

PRL 103, 082501 (2009) PHYSICAL REVIEW LETTERS week ending 21 AUGUST 2009

Evolution of Nuclear Many-Body Forces with the Similarity Renormalization Group

E.D. Jurgenson, P. Navrátil, and R.J. Furnstahl

A=3 binding energy and half life constraint c_D =-0.2, c_E =-0.205, Λ =500 MeV

Chiral N³LO NN plus N²LO NNN potential

- Bare interaction (black line)
 - Strong short-range correlations
 - Large basis needed
- SRG evolved effective interaction (red line)
 - Unitary transformation

$$H_{\alpha} = U_{\alpha} H U_{\alpha}^{+} \Rightarrow \frac{dH_{\alpha}}{d\alpha} = \left[\left[T, H_{\alpha} \right], H_{\alpha} \right] \left(\alpha = \frac{1}{\lambda^{4}} \right)$$

- Two- plus three-body components, four-body omitted
- Softens the interaction
 - Smaller basis sufficient

NNN interaction effects in neutron rich nuclei: He isotopes

⁴He

⁶He

8He

⁶He and ⁸He with SRG-evolved chiral N³LO NN + N²LO NNN

– 3N matrix elements in coupled-J single-particle basis:

A=3 binding energy & half life constraint $c_{\rm D}$ =-0.2, $c_{\rm E}$ =-0.205, Λ =500 MeV

- Introduced and implemented by Robert Roth et al.
- Now also in my codes: Jacobi-Slater-Determinant transformation & NCSD code
- Example: 6 He, 8 He NCSM calculations up to $N_{\rm max}$ =10 done with moderate resources

3N interaction effects in neutron rich nuclei: He isotopes

⁴He

⁶He

8He

- ⁶He and ⁸He with SRG-evolved chiral N³LO NN + N²LO 3N
 - chiral N³LO NN: ⁴He underbound, ⁶He and ⁸He unbound
 - chiral N³LO NN + N²LO 3N(500): ⁴He OK, both ⁶He and ⁸He bound

A=3 binding energy & half life constraint $c_{\rm D}$ =-0.2, $c_{\rm E}$ =-0.205, Λ =500 MeV

NNN interaction important to bind neutron rich nuclei

3N interaction effects in neutron rich nuclei: He isotopes

- ⁶He and ⁸He with SRG-evolved chiral N³LO NN + N²LO 3N
 - chiral N³LO NN: ⁴He underbound, ⁶He and ⁸He unbound
 - chiral N³LO NN + N²LO 3N(400): ⁴He fitted, ⁶He barely unbound, ⁸He unbound
 - describes quite well binding energies of ¹²C, ¹⁶O, ⁴⁰Ca, ⁴⁸Ca
 - chiral N³LO NN + N²LO 3N(500): ⁴He OK, both ⁶He and ⁸He bound
 - does well up to A=10, overbinds ¹²C, ¹⁶O, Ca isotopes
 - SRG-N³LO NN Λ=2.02 fm⁻¹: ⁴He OK, both ⁶He and ⁸He bound
 - 16O, Ca strongly overbound

⁴He binding energy & ³H half life constraint c_D =-0.2, c_E =+0.098, Λ=400 MeV

A=3 binding energy & half life constraint c_D =-0.2, c_F =-0.205, Λ =500 MeV

NNN interaction important to bind neutron rich nuclei

Our knowledge of the 3N interaction is incomplete

NCSM calculations of ⁶He and ⁷He g.s. energies

√	N_{max}	convergence	OK
----------	------------------	-------------	----

Extrapolation fe	easible

$E_{\rm g.s.} [{ m MeV}]$	⁴ He	⁶ He	⁷ He
$NCSM N_{max} = 12$	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

• 6He: E_{gs}=-29.25(15) MeV (Expt. -29.269 MeV)

• The: E_{gs}=-28.27(25) MeV (Expt. -28.84(30) MeV)

⁷He unbound (+0.430(3) MeV), width 0.182(5) MeV

NCSM: no information about the width

The ab initio NCSM/RGM in a snapshot

• Ansatz: $\Psi^{(A)} = \sum_{\mathbf{v}} \int d\vec{r} \, \phi_{\mathbf{v}}(\vec{r}) \, \hat{\mathcal{A}} \, \Phi^{(A-a,a)}_{\mathbf{v}\vec{r}}$ eigenstates of $H_{(A-a)}$ and $H_{(a)}$ in the ab initio NCSM basis

Many-body Schrödinger equation:

Example: the five-nucleon system

- Consider the T = ½ case: ⁵He (⁵Li)
 - Five-nucleon cluster unbound; ⁴He tightly bound, not easy to deform

- Satisfactory description of n-4He (p-4He) scattering at low excitation energies within single-channel approximation
- However, both $n(p) + {}^{4}\text{He}$ and $d + {}^{3}\text{H}({}^{3}\text{He})$ channels needed to describe ${}^{3}\text{H}(d,n){}^{4}\text{He} \, [{}^{3}\text{He}(d,p){}^{4}\text{He}]$ fusion!

Unbound A=5 nuclei: ⁵He→n+⁴He, ⁵Li→p+⁴He

NCSM/RGM calculations

⁴He

SRG-N³LO NN potential with Λ=2.02 fm⁻¹

- Differential cross section and analyzing power @17 MeV neutron energy
 - Polarized neutron experiment at Karlsruhe

How about 7 He as $n+{}^{6}$ He?

- All ⁶He excited states above 2⁺₁ broad resonances or states in continuum
- Convergence of the NCSM/RGM n+6He calculation slow with number of 6He states
 - Negative parity states also relevant
 - Technically not feasible to include more than ~ 5 states

New approach: NCSM with continuum

NCSM.

$$\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{Ni} c_{Ni} \left|ANiJ^{\pi}T\right\rangle$$

New developments: NCSM with continuum

NCSM.

$$\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{N_{i}} c_{N_{i}} \left|ANiJ^{\pi}T\right\rangle$$

NCSM/RGM

$$|\Psi_A^{J^{\pi}T}\rangle = \sum_{\nu} \int d\vec{r} \chi_{\nu}(\vec{r}) \hat{A} \Phi_{\nu \vec{r}}^{J^{\pi}T(A-a,a)}$$

$$\mathcal{H}\chi = E\mathcal{N}\chi$$

$$\bar{\chi} = \mathcal{N}^{+\frac{1}{2}} \chi$$

$$\left| (\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}) \bar{\chi} = E \bar{\chi} \right|$$

New developments: NCSM with continuum

NCSM

$$\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{N_{i}} c_{N_{i}} \left|ANiJ^{\pi}T\right\rangle$$

NCSM/RGM

$$|\Psi_A^{J^{\pi}T}\rangle = \sum_{\nu} \int d\vec{r} \chi_{\nu}(\vec{r}) \hat{A} \Phi_{\nu \vec{r}}^{J^{\pi}T(A-a,a)}$$

$$\mathcal{H}\chi = E\mathcal{N}\chi$$

$$\bar{\chi} = \mathcal{N}^{+\frac{1}{2}}\chi$$

$$\left| (\mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}}) \bar{\chi} = E \bar{\chi} \right|$$

NCSMC

$$|\Psi_A^{J^{\pi}T}\rangle = \sum_{\lambda} c_{\lambda} |A\lambda J^{\pi}T\rangle + \sum_{\nu} \int d\vec{r} \left(\sum_{\nu'} \int d\vec{r}' \mathcal{N}_{\nu\nu'}^{-\frac{1}{2}}(\vec{r}, \vec{r}') \bar{\chi}_{\nu'}(\vec{r}')\right) \hat{A} \Phi_{\nu\vec{r}}^{J^{\pi}T(A-a,a)}$$

$$\left| \left(\begin{array}{cc} H_{NCSM} & \bar{h} \\ \bar{h} & \mathcal{N}^{-\frac{1}{2}} \mathcal{H} \mathcal{N}^{-\frac{1}{2}} \end{array} \right) \left(\begin{array}{c} c \\ \bar{\chi} \end{array} \right) = E \left(\begin{array}{cc} 1 & \bar{g} \\ \bar{g} & 1 \end{array} \right) \left(\begin{array}{c} c \\ \bar{\chi} \end{array} \right) \right|$$

NCSMC formalism

Start from

$$\begin{pmatrix} H_{NCSM} & \bar{h} \\ \bar{h} & \overline{\mathcal{H}} \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

NCSM sector:

$$(H_{NCSM})_{\lambda\lambda'} = \langle A\lambda J^{\pi}T|\hat{H}|A\lambda'J^{\pi}T\rangle = \varepsilon_{\lambda}^{J^{\pi}T}\delta_{\lambda\lambda'}$$

NCSM/RGM sector:

$$\overline{\mathcal{H}}_{\nu\nu'}(r,r') = \sum_{\mu\mu'} \int \int dy dy' y^2 y'^2 \mathcal{N}_{\nu\mu}^{-\frac{1}{2}}(r,y) \mathcal{H}_{\mu\mu'}(y,y') \mathcal{N}_{\mu'\nu'}^{-\frac{1}{2}}(y'\!(\mathbf{r'}))$$

How to calculate the NCSM/RGM kernels?

$$\left|\psi^{J^{\pi_{T}}}\right\rangle = \sum_{v} \int \frac{g_{v}^{J^{\pi_{T}}}(r)}{r} \hat{A}_{v} \left[\left(\left|A-a\ \alpha_{1}I_{1}^{\pi_{1}}T_{1}\right\rangle\left|a\ \alpha_{2}I_{2}^{\pi_{2}}T_{2}\right\rangle\right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a})\right]^{(J^{\pi_{T}})} \frac{\delta(r-r_{A-a,a})}{rr_{A-a,a}} r^{2} dr$$

$$\left|\Phi_{vr}^{J^{\pi_{T}}}\right\rangle \quad \text{(Jacobi) channel basis}$$

 Since we are using NCSM wave functions, it is convenient to introduce Jacobi channel states in the HO space

$$\left| \Phi_{vn}^{J^{\pi}T} \right\rangle = \left[\left(\left| A - a \ \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \left| a \ \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} R_{n\ell}(r_{A-a,a})$$

- The coordinate space channel states are given by

$$\left|\Phi_{vr}^{J^{\pi}T}\right\rangle = \sum_{n} R_{n\ell}(r) \left|\Phi_{vn}^{J^{\pi}T}\right\rangle$$

• We used the closure properties of HO radial wave functions

$$\delta(r - r_{A-a,a}) = \sum_{n} R_{n\ell}(r) R_{n\ell}(r_{A-a,a})$$

 Target and projectile wave functions are both translational invariant NCSM eigenstates calculated in the Jacobi coordinate basis

Norm kernel (Pauli principle)

Single-nucleon projectile

$$\left\langle \Phi_{v'r'}^{J^{\pi}T} \left| \hat{A}_{v} \hat{A}_{v} \right| \Phi_{vr}^{J^{\pi}T} \right\rangle = \left\langle \begin{array}{c} (A-1) \\ r' \\ \end{array} \right| \left(a' = 1 \right) \left| \begin{array}{c} 1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \\ \end{array} \right| \left(a = 1 \right) \left| \begin{array}{c} (A-1) \\ r \\ \end{array} \right|$$

Hamiltonian kernel (projectile-target potentials)

Single-nucleon projectile

Direct potential: in the model space (interaction is localized!)

Exchange potential: in the model space

Introduce SD channel states in the HO space

 Define SD channel states in which the eigenstates of the heaviest of the two clusters (target) are described by a SD wave function:

coordinate of the A-a nucleons

Translational invariant matrix elements from SD ones

More in detail:

$$\left|\Phi_{vn}^{J^{\pi}T}\right\rangle_{SD} = \sum_{n_{r}\ell_{r},NL,J_{r}} \hat{\ell}\hat{J}_{r}(-1)^{s+\ell_{r}+L+J} \left\{ \begin{array}{cc} s & \ell_{r} & J_{r} \\ L & J & \ell \end{array} \right\} \left\langle 00,n\ell,\ell \left|n_{r}\ell_{r},NL,\ell\right\rangle_{d=\frac{a}{A-a}} \left[\left|\Phi_{\nu_{r}n_{r}}^{J^{\pi_{r}T}}\right\rangle \varphi_{NL}(\vec{\xi}_{0})\right]^{\left(J^{\pi}T\right)} \right\rangle$$

The spurious motion of the c.m. is mixed with the intrinsic motion

- Translational invariance preserved (exactly!) also with SD channels
- Transformation is general: same for different A's or different a's

Is the SD channel basis advantageous?

- SD to Jacobi transformation is general and exact
- Can use powerful second quantization representation
 - Matrix elements of translational invariant operators can be expressed in terms of matrix elements of density operators on the target eigenstates
 - For example, for a = a' = 1

$$\sum_{SD} \left\langle \Phi_{v'n'}^{J^{\pi}T} \left| P_{A-1,A} \right| \Phi_{vn}^{J^{\pi}T} \right\rangle_{SD} = \frac{1}{A-1} \sum_{jj'K\tau} \hat{s} \hat{s}' \hat{j} \hat{j}' \hat{K} \hat{\tau} (-1)^{I_{1}'+j'+J} (-1)^{T_{1}+\frac{1}{2}+T}$$

$$\times \left\{ \begin{array}{ccc} I_{1} & \frac{1}{2} & s \\ \ell & J & j \end{array} \right\} \left\{ \begin{array}{ccc} I_{1}' & \frac{1}{2} & s' \\ \ell' & J & j' \end{array} \right\} \left\{ \begin{array}{ccc} I_{1} & K & I_{1}' \\ j' & J & j \end{array} \right\} \left\{ \begin{array}{ccc} T_{1} & \tau & T_{1}' \\ \frac{1}{2} & T & \frac{1}{2} \end{array} \right\}$$
One-body density matrix elements
$$\times \left\{ \begin{array}{cccc} A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \\ A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \end{array} \right\} \left\{ \begin{array}{cccc} A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \\ A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \end{array} \right\} \left\{ \begin{array}{cccc} A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \\ A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \end{array} \right\} \left\{ \begin{array}{cccc} A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \\ A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \end{array} \right\} \left\{ \begin{array}{cccc} A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \\ A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \end{array} \right\} \left\{ \begin{array}{cccc} A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \\ A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \end{array} \right\} \left\{ \begin{array}{cccc} A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \\ A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \end{array} \right\} \left\{ \begin{array}{cccc} A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}'T_{1}' \\ A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}' \end{array} \right\} \left\{ \begin{array}{cccc} A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}'T_{1}' \\ A-1 & \alpha_{1}'I_{1}'\pi_{1}'T_{1}$$

NCSMC formalism

Start from

$$\begin{pmatrix} H_{NCSM} & \frac{\bar{h}}{\mathcal{H}} \\ \bar{h} & \frac{\bar{h}}{\mathcal{H}} \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

$$\bar{g}_{\lambda\nu}(r) = \sum_{\nu'} \int dr' r'^2 \langle A\lambda J^{\pi} T | \hat{\mathcal{A}}_{\nu'} \Phi_{\nu'r'}^{J^{\pi}T} \rangle \, \mathcal{N}_{\nu'\nu}^{-\frac{1}{2}}(r',r)$$

$$\bar{h}_{\lambda\nu}(r) = \sum_{\nu'} \int dr' r'^2 \langle A\lambda J^{\pi}T | \hat{H} \hat{\mathcal{A}}_{\nu'} | \Phi_{\nu'r'}^{J^{\pi}T} \rangle \, \mathcal{N}_{\nu'\nu}^{-\frac{1}{2}}(r',r)$$

Calculation of g from SD wave functions:

$$g_{\lambda\nu n} = \langle A\lambda J^{\pi}T | \hat{\mathcal{A}}_{\nu}\Phi_{\nu n}^{J^{\pi}T} \rangle$$

$$= \frac{1}{\langle n\ell 00, \ell | 00n\ell, \ell \rangle_{\frac{1}{(A-1)}}} \sum_{j} (-1)^{I_{1}+J+j} \hat{s}\hat{j} \left\{ \begin{array}{cc} I_{1} & \frac{1}{2} & s \\ \ell & J & j \end{array} \right\} \frac{1}{\hat{J}\hat{T}} \langle A\lambda J^{\pi}T | ||a_{n\ell j\frac{1}{2}}^{\dagger}|||\Phi_{\nu n}^{J^{\pi}T} \rangle_{SD}$$

⁷He spectroscopic factors

Obtained as

$$S_{\lambda \nu} = \sum_{n} g_{\lambda \nu n}^2$$

 Not the final result to be compared to experiment, rather input in the NCSMC calculations

$^{7}\mathrm{He}~J^{\pi}$	$^6\mathrm{He}-n(lj)$	NCSM	СК	VMC	GFMC	Exp.
$3/2_1^-$	$0^+ - p\frac{3}{2}$	0.56	0.59	0.53	0.565	0.512(18)[36]
						0.64(9) [50]
						0.37(7) [45]
$3/2_{1}^{-}$	$2_1^+ - p_{\frac{1}{2}}$	0.001	0.06	0.006		
$3/2_1^-$	$2_1^+ - p\frac{3}{2}$	1.97	1.15	2.02		
$3/2_1^-$	$2^{+}_{2} - p\frac{1}{2}$	0.12		0.09		
$3/2_1^-$	$2^{+}_{2} - p\frac{3}{2}$	0.42		0.30		
$1/2^{-}$	$0^+ - p\frac{1}{2}$	0.94	0.69	0.91		
$1/2^{-}$	$2_1^+ - p\frac{3}{2}$	0.34	0.60	0.26		
$1/2^{-}$	$2^{+}_{2} - p\frac{3}{2}$	0.93				
$5/2^{-}$	$2_1^+ - p\frac{1}{2}$	0.77	0.85	0.81		
$5/2^{-}$	$2_1^+ - p\frac{3}{2}$	0.49	0.52	0.37		
$5/2^{-}$	$2^{+}_{2} - p^{\frac{1}{2}}$	0.26				
$5/2^{-}$	$2^{+}_{2} - p\frac{3}{2}$	1.30				
$3/2_{2}^{-}$	$0^+ - p\frac{3}{2}$	0.06	0.06	0.05		
$3/2_{2}^{-}$	$2_1^+ - p\frac{1}{2}$	1.10	1.05	1.07		
$3/2_{2}^{-}$	$2_1^+ - p\frac{3}{2}$	0.08	0.32	0.03		
$3/2_{2}^{-}$	$2^{+}_{2} - p\frac{1}{2}$	0.03				
$3/2_{2}^{-}$	$2^{+}_{2} - p\frac{3}{2}$	0.25				

NCSMC formalism

Start from

$$\begin{pmatrix} H_{NCSM} & \bar{h} \\ \bar{h} & \overline{\mathcal{H}} \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \bar{g} \\ \bar{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

$$N_{\nu r \nu' r'}^{\lambda \lambda'} = \begin{pmatrix} \delta_{\lambda \lambda'} & \bar{g}_{\lambda \nu'}(r') \\ \bar{g}_{\lambda' \nu}(r) & \delta_{\nu \nu'} \frac{\delta(r - r')}{r r'} \end{pmatrix}$$

Orthogonalization:

$$\overline{H} = N^{-\frac{1}{2}} \begin{pmatrix} H_{NCSM} & \overline{h} \\ \overline{h} & \overline{\mathcal{H}} \end{pmatrix} N^{-\frac{1}{2}} \qquad \begin{pmatrix} \overline{c} \\ \overline{\chi} \end{pmatrix} = N^{+\frac{1}{2}} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

$$\begin{pmatrix} \bar{c} \\ \bar{\chi} \end{pmatrix} = N^{+\frac{1}{2}} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

Solve with generalized microscopic R-matrix

$$(\hat{\overline{H}} + \hat{L} - E) \begin{pmatrix} \bar{c} \\ \bar{\chi} \end{pmatrix} = \hat{L} \begin{pmatrix} \bar{c} \\ \bar{\chi} \end{pmatrix}$$

Bloch operator
$$\longrightarrow \hat{L}_{\nu} = \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{2}\delta(r-a)(\frac{d}{dr} - \frac{B_{\nu}}{r}) \end{pmatrix}$$

Microscopic R-matrix theory

Separation into "internal" and "external" regions at the channel radius a

- This is achieved through the Bloch operator: $L_c = \frac{\hbar^2}{2\mu_c} \delta(r-a) \left(\frac{d}{dr} \frac{B_c}{r} \right)$
- System of Bloch-Schrödinger equations:

$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\right] u_c(r) + \sum_{c'} \int dr' r' W_{cc'}(r, r') u_{c'}(r') = L_c u_c(r)$$

- Internal region: expansion on square-integrable basis $u_c(r) = \sum_n A_{cn} f_n(r)$

External region: asymptotic form for large r

$$u_c(r) \sim C_c W(k_c r)$$
 or $u_c(r) \sim v_c^{-\frac{1}{2}} \big[\delta_{ci} I_c(k_c r) - U_{ci} O_c(k_c r) \big]$ Scattering matrix Scattering state

To find the Scattering matrix

• After projection on the basis $f_n(r)$:

$$\sum_{c'n'} \left[C_{cn,c'n'} - (E - E_c) \delta_{cn,c'n'} \right] A_{c'n'} = \frac{\hbar^2 k_c}{2\mu_c v_c^{1/2}} \left\langle f_n | L_c | I_c \delta_{ci} - U_{ci} O_c \right\rangle$$

$$\left\langle f_n | \hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) | f_{n'} \right\rangle \delta_{cc'} + \left\langle f_n | W_{cc'}(r,r') | f_{n'} \right\rangle$$

- 1. Solve for A_{cn}
- 2. Match internal and external solutions at channel radius, a

with Lagrange mesh: $\{ax_n \in [0,a]\}$

Lagrange basis associated

$$\int_0^1 g(x) dx \approx \sum_{n=1}^N \lambda_n g(x_n)$$

$$\int_0^a f_n(r) f_{n'}(r) dr \approx \delta_{nn'}$$

$$\sum_{c'} R_{cc'} \frac{k_{c'}a}{\sqrt{\mu_{c'}v_{c'}}} \left[I'_{c'}(k_{c'}a)\delta_{ci} - U_{c'i}O'_{c'}(k_{c'}a) \right] = \frac{1}{\sqrt{\mu_{c}v_{c}}} \left[I_{c}(k_{c}a)\delta_{ci} - U_{ci}O_{c}(k_{c}a) \right]$$

 In the process introduce R-matrix, projection of the Green's function operator on the channel-surface functions

$$R_{cc'} = \sum_{nn'} \frac{\hbar}{\sqrt{2\mu_c a}} f_n(a) [C - EI]_{cn,c'n'}^{-1} \frac{\hbar}{\sqrt{2\mu_{c'} a}} f_{n'}(a)$$

To find the Scattering matrix

3. Solve equation with respect to the scattering matrix U

$$\sum_{c'} R_{cc'} \frac{k_{c'}a}{\sqrt{\mu_{c'}v_{c'}}} \Big[I'_{c'}(k_{c'}a)\delta_{ci} - U_{c'i}O'_{c'}(k_{c'}a) \Big] = \frac{1}{\sqrt{\mu_{c}v_{c}}} \Big[I_{c}(k_{c}a)\delta_{ci} - U_{ci}O_{c}(k_{c}a) \Big]$$

4. You can demonstrate that the solution is given by:

$$U = Z^{-1}Z^*, Z_{cc'} = (k_{c'}a)^{-1} [O_c(k_ca)\delta_{cc'} - k_{c'}a R_{cc'} O'_{c'}(k_{c'}a)]$$

Scattering phase shifts are extracted from the scattering matrix elements

$$U = \exp(2i\delta)$$

NCSM with continuum: ⁷He ↔ ⁶He+n

NCSM with continuum: ⁷He ↔ ⁶He+n

NCSM with continuum: ⁷He ↔ ⁶He+n

⁷He: NCSMC vs. NCSM/RGM vs. NCSM

J^{π}	experiment			NCSMC		NCSM/RGM		NCSM
	E_R	Γ	Ref.	E_R	Γ	E_R	Γ	E_R
$3/2^{-}$	0.430(3)	0.182(5)	[2]	0.71	0.30	1.39	0.46	1.30
$5/2^{-}$	3.35(10)	1.99(17)	[40]	3.13	1.07	4.00	1.75	4.56
$1/2^{-}$	3.03(10)	2	[11]	2.39	2.89	2.66	3.02	3.26
	3.53	10	[15]					
	1.0(1)	0.75(8)	[5]					

[11] A. H. Wuosmaa et al., Phys. Rev. C **72**, 061301 (2005).

- NCSMC and NSCM/RGM energies where phase shift derivative maximal
- NCSMC and NSCM/RGM widths from the derivatives of phase shifts

$$\Gamma = \left. \frac{2}{\partial \delta(E_{kin})/\partial E_{kin}} \right|_{E_{kin} = E_B}$$

Experimental controversy: Existence of low-lying 1/2 state ... not seen in these calculations Best agreement with the neutron pick-up and proton-removal reactions experiments [11]

Predictions of other resonances

- Two 3/2⁻ resonances predicted at about 3.7 MeV and 6.5 MeV with widths of 2.8 MeV and 4.3 MeV, respectively
 - Experiment: State of undetermined spin and parity at 6.2(3) MeV with the width of 4(1) MeV
- Considerable mixing of P-waves in 3/2-2

NCSMC eigenphase shifts

NCSMC diagonal phase shifts

Conclusions and Outlook

- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NSM and the NCSM/RGM
- We demonstrated its capabilities in calculations of ⁷He resonances
 - We find reasonable agreement with experiment for established 3/2- and 5/2- resonances
 - Our results do not support the existence of a low lying narrow 1/2- resonance
 - We predict two broad 3/2- resonances

arXiv: 1210.1897

- Outlook:
 - Inclusion of 3N interactions
 - Extension of the formalism to composite projectiles (deuteron, ³H, ³He, ⁴He)
 - Extension of the formalism to coupling of three-body clusters

NCSMC and NCSM/RGM collaborators

S. Baroni (ULB)

Sofia Quaglioni (LLNL)

Robert Roth, Joachim Langhammer (TU Darmstadt)

C. Romero-Redondo, F. Raimondi (TRIUMF)

G. Hupin, M. Kruse (LLNL)

W. Horiuchi (Hokkaido)