Compton Scattering from Light Nuclei at MAX-lab

Luke Myers COMPTON@MAX-lab Collaboration

INT Workshop Electroweak Properties of Light Nuclei November 5, 2012

Priorities of the Experimental Program

Initially:

Extract isoscalar polarizabilities from $d(\gamma, \gamma)d$

Priorities of the Experimental Program

Initially:

Extract isoscalar polarizabilities from $d(\gamma, \gamma)d$

Since:

Characterization of systematics at MAX-lab [6 Li, 12 C, 16 O] As a side effect, resolution of long-standing experimental discrepancies [12 C, 16 O]

Polarizability: relates induced dipole moment to external field

Polarizability: relates induced dipole moment to external field

α, β are

- fundamental structure constants
- leading order response of *internal* structure of nucleon
- well-known for proton, but neutron needs more data

- Most common method of studying α , β
- Experimentally, usually measured below π threshold (LEX)

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Powell} - \frac{e^2}{4\pi M_N} \left(\frac{\omega'}{\omega}\right)^2 \omega \omega' \left\{\frac{\alpha+\beta}{2} (1+\cos\theta)^2 + \frac{\alpha-\beta}{2} (1-\cos\theta)^2\right\} + O(\omega^4)$$

- Most common method of studying α , β

• Experimentally, usually measured below π threshold (LEX)

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Powell} - \frac{e^2}{4\pi M_N} \left(\frac{\omega'}{\omega}\right)^2 \omega \omega' \left\{\frac{\alpha+\beta}{2} (1+\cos\theta)^2 + \frac{\alpha-\beta}{2} (1-\cos\theta)^2\right\} + O(\omega^4)$$

- Most common method of studying α , β

• Experimentally, usually measured below π threshold (LEX)

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Powell} - \frac{e^2}{4\pi M_N} \left(\frac{\omega'}{\omega}\right)^2 \omega \omega' \left\{\frac{\alpha+\beta}{2} (1+\cos\theta)^2 + \frac{\alpha-\beta}{2} (1-\cos\theta)^2\right\} + O(\omega^4)$$

Compton Scattering on the Deuteron

Advantage	Disadvantage
Deuteron has net charge	Must know proton polarizabilities
Sensitive to isoscaler polarizabilities at $O(\omega^2)$	Must understand meson- exchange current scattering
	Must separate $d(\gamma, \gamma)d$ from $d(\gamma, \gamma)np$

Subset of possible scattering diagrams involving meson exchange currents

$d(\gamma,\gamma)d$ data sets

	E [MeV]	∆E [MeV]	Statistical	Systematic
Illinois	49, 69	6.5, 7.7	4.2–12.6%	3.6–4.0%
Lund	55, 66	10, 10	7.5–24.4%	6.5–14.3%
SAL	95	20	5.2–9.8%	4.8-6.4%

$\alpha_n =$	11.1 ± 1.8
$\beta_n =$	4.1 ± 1.8

Griesshammer.	et al.,	http://arxiv.org/p	df/1203.6834

$d(\gamma,\gamma)d$ data sets

				_
	E [MeV]	∆E [MeV]	Statistical	Systematic
				-
Illinois	49, 69	6.5, 7.7	4.2–12.6%	3.6–4.0%
Lund	55, 66	10, 10	7.5–24.4%	6.5–14.3%
SAL	95	20	5.2–9.8%	4.8-6.4%

$$\alpha_n = 11.1 \pm 1.8$$

 $\beta_n = 4.1 \pm 1.8$

Griesshammer, et al., http://arxiv.org/pdf/1203.6834

- Improvements Needed
 - Better statistics at lower energies
 - Narrower energy bins at high energies
 - Greater coverage of kinematic space
 - Push to even higher photon energies

MAX-lab program goals

- Double the number of d(γ,γ)d data points
- Keep statistical and systematics < 5 – 10%
- Investigate beam energies up to 115 MeV

MAX-lab program goals

- Double the number of d(γ,γ)d data points
- Keep statistical and systematics < 5 – 10%
- Investigate beam energies up to 115 MeV

Implications of these data

- Test theory of two-photon response of the nucleon
- >Understanding meson-exchange currents
- >Reduce uncertainty in the evaluation of $M_n M_p$

The MAX-lab Facility

The MAX-lab Facility

- 3 20" x 20" segmented Nal detectors
- ΔE/E ~ 2% @ 100 MeV
- Separate elastics from break-up

The COMPTON@MAX-lab Program

Run Period	Target	Angles	E _γ [MeV]	R _{ave} [MHz]
Nov 2007	D ₂ , ¹² C	60, 120, 150	66 – 98	~1.0
Nov 2008	D ₂ , ¹² C	60, 120, 150	81 – 116	~1.0
Sept 2008	¹⁶ O	45, 90, 135, 150	65 — 96	~0.9
Nov 2009	D ₂ , ¹² C	60, 90, 150	81 – 116	~0.6
Sept 2010	D ₂ , ¹² C	60, 120, 150	81 – 116	~0.7
June 2011	D ₂ , ¹² C	60, 120, 150	145 – 166	~0.2
Apr 2012	⁶ Li, ¹² C	60, 120, 150	61 – 100	~0.4

(Upgrade 2002–2004, beam commissioning 2005, experimental commissioning 2006)

The COMPTON@MAX-lab Program

Run Period	Target	Angles	E _γ [MeV]	R _{ave} [MHz]
Nov 2007	D ₂ , ¹² C	60, 120, 150	66 – 98	~1.0
Nov 2008	D ₂ , ¹² C	60, 120, 150	81 – 116	~1.0
Sept 2008	¹⁶ O	45, 90, 135, 150	65 – 96	~0.9
Nov 2009	D ₂ , ¹² C	60, 90, 150	81 – 116	~0.6
Sept 2010	D ₂ , ¹² C	60, 120, 150	81 – 116	~0.7
June 2011	D ₂ , ¹² C	60, 120, 150	145 – 166	~0.2
Apr 2012	⁶ Li, ¹² C	60, 120, 150	61 – 100	~0.4

(Upgrade 2002–2004, beam commissioning 2005, experimental commissioning 2006)

- Earlier data sets have larger rate corrections
 - Higher beam rate

The COMPTON@MAX-lab Program

Run Period	Target	Angles	E _γ [MeV]	R _{ave} [MHz]
Nov 2007	D ₂ , ¹² C	60, 120, 150	66 – 98	~1.0
Nov 2008	D ₂ , ¹² C	60, 120, 150	81 – 116	~1.0
Sept 2008	¹⁶ O	45, 90, 135, 150	65 – 96	~0.9
Nov 2009	D ₂ , ¹² C	60, 90, 150	81 – 116	~0.6
Sept 2010	D ₂ , ¹² C	60, 120, 150	81 – 116	~0.7
June 2011	D ₂ , ¹² C	60, 120, 150	145 – 166	~0.2
Apr 2012	⁶ Li, ¹² C	60, 120, 150	61 – 100	~0.4

• $1^{st} d(\gamma, \gamma) d$ measurement near π threshold

First Analysis Pass

First Analysis Pass

Preliminary New Analysis

Large rate-dependent corrections

- High average rates, low duty factor
- Complicated time profile in the beam
- Can not determine all the correction analytically

Preliminary New Analysis

- Develop a simulation to model the electronics behavior
- Include beam profile and rates
- Determine rate-dependence via simulation

Updated Preliminary Results

Updated Preliminary Results

Updated Preliminary Results

The Small Picture Outlook

Carbon data:

More simulations to investigate systematics Finalize carbon results and errors

Deuterium data:

Complete re-analysis of 2007/08 data

Publish:

Deuterium cross sections

Simulation and Carbon results to establish systematics

Pion Threshold – A New Regime

2008

MAX-lab NP PAC approves new measurement of π^- photoproduction with deuteron target

 $\gamma + n \rightarrow p + \pi^{-}$ $\swarrow \pi^{-} + d \rightarrow 2n + \gamma$ (25%) ~ 130 MeV

2009

Idea of extracting $d(\gamma, \gamma)d$ cross section as well

2010

PAC approves near-threshold $d(\gamma, \gamma)d$ measurement

Pion Threshold – A New Regime

Plenty of proton data near threshold

No deuteron/neutron data

Opportunity to produce new data, balance proton data

Preliminary Analysis

+ $d(\gamma,\gamma)d$ above 140 MeV

Needs more data!

Summary and Big Picture Outlook

Normalized absolute ¹²C cross sections

Compton Collaboration

- Finalize re-analysis
- Publish 2007/08 data
- Analyze 2009 & 2010 and publish

Other Users

- ⁴He photoabsorption, $\pi^{+,-}$ photoproduction
- Simulation to normalize results

<u>Experimental</u>

• More data for "high-energy" $d(\gamma, \gamma)d$

Thank You

To the organizers from the COMPTON@MAX-lab collaborators

Photon Tagging – Low Rate

Low electron rate ($\sim 10 - 10^4$ Hz)

- Only one e⁻ per resolving time (~50 ns)
- Easy to identify electron w/ coincident photon

Photon Tagging – High Rate (I)

High electron rate ($\sim 10^6$ Hz)

Accidental e⁻ stops timing readout before coincident e⁻

Photon Tagging – High Rate (II)

High electron rate ($\sim 10^6$ Hz)

- e^- in ch 1+2 arrives within resolving time
- Looks like real e^- in ch $\iota+1$

The Future at MAX–IV

Facility/Project: LBSF@M4 Institution: MAX-IV Lab Country: Sweden Energy (MeV): 100 – 170 Accelerator: Storage Ring, 1.5 GeV Laser: 229 nm (5.42 ev); 244 nm (5.80 eV) Total flux: 4x10⁶ g/s (10% of ebeam lifetime) Status: White paper/CDR in preparation

Use synchrotron light port for laser

