

Precision Nuclear Ground State Property Measurements of Light Isotopes

Peter Müller

Light Isotopes

- ^{6,8}He Charge Radii
- ⁶He Weak Interaction Studies + Lifetime Measurement
- Lithium + Beryllium Charge Radii
- Charge Radii of Boron and Carbon ?

GFMC - Neutron and Proton Densities in ^{4,6,8}He

Steve Pieper, Bob Wiringa

Field (Volume) Shift

Atomic Isotope Shift

For $2^{3}S_{1} - 3^{3}P_{2}$ transition @ 389 nm: $\delta v = \delta v_{MS} + C_{FS} \delta < r^{2} >$ ⁶He - ⁴He : $\delta v_{6,4} = 43196.202(16)$ MHz + 1.008 ($< r^{2} >_{He4} - < r^{2} >_{He6}$) MHz/fm² ⁸He - ⁴He : $\delta v_{8,4} = 64702.519(70)$ MHz + 1.008 ($< r^{2} >_{He4} - < r^{2} >_{He8}$) MHz/fm² G.W.F. Drake, Univ. of Windsor, *Nucl. Phys. A737c, 25 (2004)*

100 kHz error in IS $\leftarrow \rightarrow \sim$ 1% error in radius

Atomic Energy Levels of Helium

He energy level diagram

Laser Cooling and Trapping

Technical challenges:

- Short lifetime, small samples (<10⁶ atoms/s available)
- Low metastable population efficiency (~ one in 100.000)
- Precision requirement (100 kHz = Doppler shift @ 4 cm/s)

Magneto-Optical Trap (MOT)

- Cooling: Temperature ~ 1 mK,
 - \rightarrow avoid Doppler shift / width
- Long observation time: 100 ms
- Spatial confinement: trap size < 1 mm
 - \rightarrow single atom sensitivity
- Selectivity: \rightarrow no isotopic / isobaric interference

⁶He + ⁸He Sample Spectra

Isotope Shift and Field Shift : J - Dependence

Experimental Uncertainties and Corrections

		⁶ He	⁸ He
-	Photon Counting	8 kHz	32 kHz
Statistical {	Laser Alignment	2 kHz	12 kHz
	Reference Laser	2 kHz	24 kHz
C	Probing Power Shift	0 kHz	15 kHz
Systematic {	Zeeman Shift	30 kHz	45 kHz
	Nuclear Mass	15 kHz	74 kHz
	TOTAL	35 kHz	97 kHz

Corrections

N

ecoil Effect	+110(0) kHz	+165(0) kHz
uclear Polarization	-14(3) kHz	-2(1) kHz

⁶He & ⁸He RMS Charge Radii

	⁶ He	⁸ He
Field Shift, MHz	-1.464(34)	-1.026(63)
RMS R _{CH} , fm	2.060(8)	1.959(16)
Total Uncertainty	0.4 %	0.9 %
- Statistical	0.1 %	0.6 %
- Trap Systematics	0.3 %	0.6 %
- Mass Systematics	0.1 %	0.0 %
- He-4: 1.681(4) fm	0.1 %	0.1 %

P. Mueller et al., PRL 99, 252501 (2007)

- + M. Brodeur et al., PRL 108, 052504 (2012): He-6,8 mass
- + I. Sick PRC 77, 041302(R) (2008): He-4 Charge Radius
- + A. Ong, J.C. Berengut, V.V. Flambaum, PRC 82, 014320 (2010)

$$\langle r^2 \rangle_{\rm pp} = \langle r^2 \rangle_{\rm ch} - \langle R_{\rm p}^2 \rangle - \frac{3}{4M_{\rm p}^2} - \frac{N}{Z} \langle R_{\rm n}^2 \rangle$$

 $- \langle r^2 \rangle_{\rm SO} - MEC$

 $< R_P^2 > = 0.766(12) \text{ fm}^2$ $< R_N^2 > = -0.120(5) \text{ fm}^2$ $< r^2 >_{SO} = -0.08 / -0.17 \text{ fm}^2$

⁶He & ⁸He RMS Charge Radii

	⁶ He	⁸ He
Field Shift, MHz	-1.464(34)	-1.026(63)
RMS R _{CH} , fm	2.060(8)	1.959(16)
Total Uncertainty	0.4 %	0.9 %
- Statistical	0.1 %	0.6 %
- Trap Systematics	0.3 %	0.6 %
- Mass Systematics	0.1 %	0.0 %
- He-4: 1.681(4) fm	0.1 %	0.1 %

CODATA 2010: $R_{\rm p} = 0.8775(51)$ fm

G. Papadimitriou, et al. PRC 84, 051304 (2011)

NCSM with CD Bonn 2000

 $< r^2 >_{\rm SO} = -0.072 / -0.158 \, {\rm fm}^2$

Helium Charge Radii "Over Time"

2004: ⁶He @ ATLAS, L.-B. Wang, et al. PRL 93, 142501 (2004)

⁶ He: 2.054(14) fm	⁴ He: 1.673(1) fm from muonic He	
	⁶ He mass from AME93	

2007: ⁶He & ⁸He @ GANIL, P. Mueller, *et al.*, PRL **99**, 252501 (2007)

⁶ He: 2.068(11) fm	⁴ He: 1.676(8) fm from e-scattering
⁸ He: 1.93(3) fm	masses from AME2003

2011: ⁶He & ⁸He masses @ TRIUMF, M. Brodeur, *et al.* PRL **108**, 052504 (2012)

⁶He: 2.060(8) fm ⁴He: 1.681(4) fm, I. Sick PRC 77, 041302(R) (2008) ⁸He: 1.959(16) fm masses from TITAN Penning trap

⁶ He- ⁴ He IS 2004 vs	s. 2007 in MHz	MS	FS
2004: J= 1-> 2	43194.772(47)(30) MHz	43196.157(1)	-1.385(47)
2007: J= 1-> 2	43194.751(10)(30) MHz	11	-1.419(10)
1-> 1	43194.483(12)(30) MHz	43195.897(1)	-1.414(12)
1-> 0	43194.740(37)(30) MHz	43196.171(1)	-1.417(37)

RMS Charge Radii : ⁴He - ⁶He - ⁸He

Charge Radius Contributions

Fig. 4 from G. Papadimitriou, *et al.* PRC **84**, 051304(R) (2011) (core swelling from GFMC)

Weak Interaction Studies: $\beta - \nu$ Angular Correlations

Beta-Decay Study with Laser Trapped ⁶He

Atom trap properties

- Highly selective capture
- No RF fields or space charge
- Low temperature sample (mK)
- Tight spatial confinement (< 100µm)

- ~1x10⁹ ⁶He/s production yield
- trapping rate ~2x10³ ⁶He/s
- ~0.1% statistics in ~4 weeks beam time

⁶He Production

- at CENPA, UWash Seattle, tandem accelerator
 via ⁷Li(d,³He)⁶He with liquid Li target
- ⁶He Rate @ 10 nA [1/s] 10 6 10 HAT 10⁵ 8 10 12 14 16 ⁶He Rate @ 17 MeV [1/s] 10⁹ ⁶He 0+ $E_0 = 3508 \text{ keV}$ $T_{1/2} = 807 \text{ ms}$ ⁶Li 1+ 100% 107

A. Knecht et al., NIM A 660, 43 (2011)

^{10³} Deuteron Current [nA]

10²

Source	Shift [ms]	Uncertainty [ms]
Deadtime correction	-	0.037
⁶ He Diffusion	0	$< \frac{+0.12/0.22}{-0}$
Gain shift	-0.19	0.19
⁸ Li contamination	0	$< {}^{+0}_{-0.007}$
Background	0.046	0.004
Data correction	0	< 0.01
Deadtime drift	0	0.009
Afterpulsing	0	< 0.003
Clock accuracy	0.006	0.011
Total	-0.14	$^{+0.23}_{-0.19}$ / $^{+0.29}_{-0.19}$

Compare with *ab-initio* calculations of $|M_{GT}|$ to obtain g_A in nuclear medium

A. Knecht *et al.*, PRL **108**, 122502 (2012) A. Knecht *et al.*, PRC **86**, 035506 (2012)

New IS Measurement via FM Saturation Spectroscopy?

Resonance Ionization of Lithium

Nuclear Charge Radii - Comparison with Theory

Collinear Spectroscopy

Experimental Setup

Anticollinear

Beryllium: Nuclear Charge Radii

27

Electron Scattering: $r_c({}^{9}Be) = 2.519(12) \text{ fm}$, J.A. Jansen et al., Nucl.Phys.A **188**, 337 (1972). Muonic Atoms: $r_c({}^{9}Be) = 2.39(17) \text{ fm}$, L.A. Schaller, Nucl.Phys.A **343**, 333 (1980).

A. Krieger et al., PRL 108, 142501 (2012)

Beyond Be: Boron, Carbon, ...

- Proton and neutron halo isotopes
- Charge radius directly sensitive to ⁸B proton halo, but ...
- Boron difficult to get out of target
- Laser spectroscopy of boron very challenging

⁸B Nuclear Structure

- Very low proton-separation energy: ~140 keV
- Evidence of large spatial extend of valence proton ("proton halo")
 - large quadrupole moment (+65 mb) measured via β-NMR
 T. Minamisono et al., PRL 69, 2058 (1992), T. Sumikama et al. PRC 74 024327 (2006)
 - large reaction cross section near Coulomb barrier

E.F. Aguilera et al., PRC 79,021601(R) (2009)

Intrinsic p and n densities of ⁸B calculated from Fermionic Molecular Dynamics model T. Neff, priv. comm. (2012)

Charge radius measurement

- directly sensitive to proton distribution
- Probe ⁸B cluster structure *p*-⁷Be *p*-³He-⁴He
- Test *ab-initio* calculations of proton-rich light nuclei

Laser Spectroscopy

Collinear/Anti-collinear approach (see Be⁺)

31

Thank you!

⁶He Collaboration

P. Mueller, L.-B. Wang, K. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R. Janssens, C.L. Jiang, Z.-T. Lu, T. O'Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang - *Physics Division, Argonne National Laboratory, USA* G. W. F. Drake - *University of Windsor, Windsor, Canada*

⁸He Collaboration

P. Mueller, K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, T. P. O'Connor, I. Sulai - Physics Division, Argonne National Laboratory, USA; M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari et al.- GANIL, Caen, France G. W. F. Drake -University of Windsor, Windsor, Canada L.-B. Wang – Los Alamos National Laboratory, USA

⁶He-Decay Collaboration

Y.S. Bogdasarova, ² X. Flechard,⁴ A. Garcia,² R. Hong,² A. Knecht,² E. Lienard,⁴
 P. Mueller,¹ O. Naviliat-Cuncic³, R.G.H. Robertson,² H.E. Swanson,² C. Wrede,³ D. Zumwalt,²
 ¹Physics Division, Argonne National Laboratory
 ²Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle
 ³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing
 ⁴LPC Caen, France

⁸B Collaboration
P. Bertone, ¹ Ch. Geppert,²³ A. Krieger,² P. Mueller, ¹ W. Nörtershäuser³
¹Physics Division, Argonne National Laboratory
²Institut für Kernchemie, Universität Mainz
³GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

