Nuclear Compton Scattering and Proton Polarizabilities

P.P. Martel¹ R. Miskimen² A2 Collaboration³

¹Massachusetts Institute of Technology

²University of Massachusetts - Amherst (supported by DE-FG02-88ER40415)

³Mainz Microtron (MAMI)

INT-12-3 Workshop - Electroweak Properties of Light Nuclei Seattle, WA - Nov. 5, 2012

◆□> <@> < E> < E> < E</p>

Compton

Experiment

Analysis 000000000

Outline

Compton Scattering

- Equations for Interactions
- Spin Polarizabilities
- Sensitivities to SPs

2 Experiment

Equipment

- Event Selection
- Backgrounds
- Results

Experiment 000000000 Analysis 000000000 Conclusions

Electromagnetic Interactions

Compton scattering

Experiment 000000000 Analysis 000000000 Conclusions

Electromagnetic Interactions

Compton scattering

Compton

Experiment 0000000000 Analysis 000000000 Conclusions

Electromagnetic Interactions

Compton scattering

Pion photoproduction

Experiment 000000000 Analysis 000000000 Conclusions

Electromagnetic Interactions

Compton scattering

Pion photoproduction

Experiment 0000000000 Analysis 000000000 Conclusions

Electromagnetic Interactions

Compton scattering

Pion photoproduction

Compton		Experi	ment	Analysis	Conclusions
●000000000000000000000000000000000000		0000	000000	00000000	
~	~		-		

Compton Scattering Equations

Zeroth Order - Mass and Electric Charge

$$H_{\text{eff}}^{(0)} = rac{ec{\pi}^2}{2m} + e\phi$$
 (where $ec{\pi} = ec{p} - eec{A}$)

First Order - Anomalous Magnetic Moment

$$H_{\rm eff}^{(1)} = -\frac{e(1+\kappa)}{2m} \vec{\sigma} \cdot \vec{H} - \frac{e(1+2\kappa)}{8m^2} \vec{\sigma} \cdot \left[\vec{E} \times \vec{\pi} - \vec{\pi} \times \vec{E}\right]$$

Second Order - Electric and Magnetic Polarizabilities

$$\mathcal{H}_{ ext{eff}}^{(2)}=-4\piiggl[rac{1}{2}oldsymbollpha_{oldsymbol E1}ec{\mathcal{E}}^2+rac{1}{2}oldsymboleta_{oldsymbol M1}ec{\mathcal{H}}^2iggr]$$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Compton	Experiment	Analysis	Conclusions
000000000000000000000000000000000000000			
Electric Polarizab	ility - α_{F1}		

Describes the response of a proton to an applied electric field.

Compton	Experiment	Analysis	Conclusions
000000000000000000000000000000000000	000000000	00000000	
Electric Delevizati	:))		

Electric Polarizability - α_{E1}

Describes the response of a proton to an applied electric field.

Induces a current in the pion cloud which vertically 'stretches' the proton.

Describes the response of a proton to an applied magnetic field.

Describes the response of a proton to an applied magnetic field.

Induces a diamagnetic moment in the pion cloud that opposes the paramagnetic moment of the quarks.

Experiment

Analysis 000000000 Conclusions

Scalar Polarizabilities

Both α_{E1} and β_{M1} have been determined for the proton using unpolarized Compton scattering.

V. Olmos de Leon et al., Eur. Phys. J. A10, 207 (2001)

Experiment

Analysis 000000000 Conclusions

Scalar Polarizabilities

V. Olmos de Leon et al., Eur. Phys. J. A10, 207 (2001)

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 重 - のへの

Experiment

Analysis 000000000 Conclusions

Scalar Polarizabilities

Data		$\bar{\alpha} + \bar{\beta} \text{ fixed}$	$\bar{\alpha} + \bar{\beta} free$
TAPS (this work)	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 12.1\pm 0.4\mp 1.0\\ 1.6\pm 0.4\pm 0.8 \end{array}$	$\begin{array}{c} 11.9 \pm 0.5 \mp 1.3 \\ 1.2 \pm 0.7 \pm 0.3 \end{array}$
MacGibbon [27]	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 11.9 \pm 0.5 \mp 0.8 \\ 1.9 \pm 0.5 \pm 0.8 \end{array}$	$\begin{array}{c} 12.6 \pm 1.2 \mp 1.3 \\ 3.0 \pm 1.8 \pm 0.1 \end{array}$
Federspiel [26]	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 10.8 \pm 2.2 \mp 1.3 \\ 3.0 \pm 2.2 \pm 1.3 \end{array}$	$\begin{array}{c} 10.1 \pm 2.6 \mp 2.0 \\ 2.0 \pm 3.3 \pm 0.3 \end{array}$
Zieger [28]	$\bar{\alpha} - \bar{\beta}$	$6.4\pm2.3\pm1.9$	
Global Fit	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 12.1\pm 0.3\mp 0.4\\ 1.6\pm 0.4\pm 0.4 \end{array}$	$\begin{array}{c} 11.9 \pm 0.5 \mp 0.5 \\ 1.5 \pm 0.6 \pm 0.2 \end{array}$

・ロト ・個ト ・モト ・モト

Constrained with the Baldin (or BL, with Lapidus) Sum Rule:

$$\alpha + \beta = \frac{1}{2\pi^2} \int_{\omega_0}^{\infty} \frac{\sigma_{\rm tot}(\omega)}{\omega^2} d\omega$$

V. Olmos de Leon et al., Eur. Phys. J. A10, 207 (2001)

Experiment 0000000000 Analysis 000000000 Conclusions

Scalar Polarizabilities

Data		$\bar{\alpha} + \bar{\beta} \text{ fixed}$	$\bar{\alpha} + \bar{\beta} free$
TAPS (this work)	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 12.1\pm 0.4\mp 1.0 \\ 1.6\pm 0.4\pm 0.8 \end{array}$	$\begin{array}{c} 11.9\pm 0.5\mp 1.3 \\ 1.2\pm 0.7\pm 0.3 \end{array}$
MacGibbon [27]	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 11.9\pm 0.5\mp 0.8\\ 1.9\pm 0.5\pm 0.8 \end{array}$	$\begin{array}{c} 12.6 \pm 1.2 \mp 1.3 \\ 3.0 \pm 1.8 \pm 0.1 \end{array}$
Federspiel [26]	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 10.8 \pm 2.2 \mp 1.3 \\ 3.0 \pm 2.2 \pm 1.3 \end{array}$	$\begin{array}{c} 10.1 \pm 2.6 \mp 2.0 \\ 2.0 \pm 3.3 \pm 0.3 \end{array}$
Zieger [28]	$\bar{\alpha} - \bar{\beta}$	$6.4\pm2.3\pm1.9$	
Global Fit	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 12.1\pm 0.3\mp 0.4\\ 1.6\pm 0.4\pm 0.4 \end{array}$	$\begin{array}{c} 11.9 \pm 0.5 \mp 0.5 \\ 1.5 \pm 0.6 \pm 0.2 \end{array}$

• • • • • • • •

물 🕨 🔺 불

$$\alpha_{E1} = [12.1 \pm 0.3 \text{ (stat)} \mp 0.4 \text{ (syst)} \pm 0.3 \text{ (mod)}] \times 10^{-4} \text{ fm}^3$$

$$\beta_{M1} = [1.6 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (syst)} \pm 0.4 \text{ (mod)}] \times 10^{-4} \text{ fm}^3$$

V. Olmos de Leon et al., *Eur. Phys. J.* A10, 207 (2001)

Scalar Polarizabilities

Data		$\bar{\alpha} + \bar{\beta}$ fixed	$\bar{\alpha} + \bar{\beta} \ free$
TAPS (this work)	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 12.1\pm0.4\mp1.0\\ 1.6\pm0.4\pm0.8 \end{array}$	$\begin{array}{c} 11.9\pm 0.5\mp 1.3\\ 1.2\pm 0.7\pm 0.3 \end{array}$
MacGibbon [27]	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 11.9\pm0.5\mp0.8\\ 1.9\pm0.5\pm0.8 \end{array}$	$\begin{array}{c} 12.6 \pm 1.2 \mp 1.3 \\ 3.0 \pm 1.8 \pm 0.1 \end{array}$
Federspiel [26]	$\frac{\bar{\alpha}}{\bar{\beta}}$	$\begin{array}{c} 10.8 \pm 2.2 \mp 1.3 \\ 3.0 \pm 2.2 \pm 1.3 \end{array}$	$\begin{array}{c} 10.1 \pm 2.6 \mp 2.0 \\ 2.0 \pm 3.3 \pm 0.3 \end{array}$
Zieger [28]	$\bar{\alpha} - \bar{\beta}$	$6.4\pm2.3\pm1.9$	
Ch l - l	_	191 0.9 - 0.4	11.0 1.05 - 0.5
Global Fit	$\hat{\beta}$	$12.1 \pm 0.3 \mp 0.4$ $1.6 \pm 0.4 \pm 0.4$	$11.9 \pm 0.5 \mp 0.5$ $1.5 \pm 0.6 \pm 0.2$

$$\begin{aligned} \alpha_{E1} &= [10.8 \pm 0.7] \times 10^{-4} \, \mathrm{fm^3} \\ \beta_{M1} &= [4.0 \pm 0.7] \times 10^{-4} \, \mathrm{fm^3} \end{aligned}$$

V. Lensky, V. Pascalutsa, Eur. Phys. J. C65, 195 (2010)

æ

Compton	Experiment	Analysis
000000000000000000000000000000000000000		

Conclusions

Compton Scattering Equations

Third Order - Spin Polarizabilities

$$H_{\text{eff}}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right]$$

• These parameters describe the response of the proton **spin** to an applied electric or magnetic field. Analogous to a classical Faraday effect.

To date, these have not been individually determined.
However, two linear combinations of them have been.

Compton	Experiment 000000000	Analysis 00000000	Conclusi

Compton Scattering Equations

Third Order - Spin Polarizabilities

$$H_{\text{eff}}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right]$$

Forward and Backward Spin Polarizabilities

$$\gamma_0 = -\gamma_{E1E1} - \gamma_{E1M2} - \gamma_{M1E2} - \gamma_{M1M1}$$

$$\gamma_{\pi} = -\gamma_{E1E1} - \gamma_{E1M2} + \gamma_{M1E2} + \gamma_{M1M1}$$

Experiment

Analysis 000000000

Forward Spin Polarizability

GDH Experiments

- MAMI and ELSA
- Circular Photons
- Longitudinal Protons
- Measure Gerasimov, Drell, Hearn (GDH) Sum Rule

J. Ahrens et al., *Phys. Rev. Lett.* 87, 022003 (2001) H. Dutz et al., *Phys. Rev. Lett.* 91, 192001 (2003)

Experiment

Analysis 000000000

Forward Spin Polarizability

GDH Experiments

- MAMI and ELSA
- Circular Photons
- Longitudinal Protons
- Measure Gerasimov, Drell, Hearn (GDH) Sum Rule

J. Ahrens et al., *Phys. Rev. Lett.* 87, 022003 (2001) H. Dutz et al., *Phys. Rev. Lett.* 91, 192001 (2003)

Compton	Experiment 000000000	Analysis 00000000	Conclusions
Backward Spin Po	olarizability		

Determined using a dispersive fitting to backward angle Compton scattering data, such as that taken at MAMI:

イロト イポト イモト イモト 二日

Compton	Experiment	Analysis	Conclusions
0000000000000	000000000	00000000	
Predicted Values			

Extracting the proton spin polarizabilities would provide a useful test of nucleon structure.

	O(p ³)	O(p ⁴)	O(p ⁴)	LC3	LC4	SSE	BGLMN	HDPV	KS
γ_{E1}	-5.7	-1.4	-1.8	-3.2	-2.8	-5.7	-3.4	-4.3	-5.0
γ _{M2}	1.1	0.2	0.7	0.7	0.8	.98	0.3	-0.01	-1.8
γ_{E2}	1.1	1.8	1.8	0.7	0.3	.98	1.9	2.1	1.1
γ_{M1}	-1.1	3.3	2.9	-1.4	-3.1	3.1	2.7	2.9	3.4
γ_0	4.6	-3.9	-3.6	3.1	4.8	.64	-1.5	-0.7	2.3
γ_{π}	4.6	6.3	5.8	1.8	-0.8	8.8	7.7	9.3	11.3

Table: Values for the spin polarizabilities. $O(p^n)$ are Chiral Perturbation Theory (ChPT) calculations. LC3 and LC4 are $O(p^3)$ and $O(p^4)$ Lorentz invariant ChPT calculations, respectively. SSE is a Small Scale Expansion calculation. The remaining three are all dispersion relation calculations.

(日) (四) (日) (日) (日)

• Circularly polarized photons, transversely polarized protons.

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

• Circularly polarized photons, transversely polarized protons.

• Circularly polarized photons, longitudinally polarized protons.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Circularly polarized photons, transversely polarized protons.

• Circularly polarized photons, longitudinally polarized protons.

• Linearly polarized photons, unpolarized protons.

$$\Sigma_{3} = \frac{N_{\parallel} - N_{\perp}}{N_{\parallel} + N_{\perp}}$$

- To get a rough idea of the sensitivities, use a basis of $\gamma_{E1E1},$ $\gamma_{M1M1},~\gamma_0,$ and $\gamma_{\pi}.$
- Use a dispersion theory calculation to produce theoretical asymmetries.
- Hold either γ_{E1E1} or γ_{M1M1} fixed, and perturb the other by some value.
- Allow α_{E1} , β_{M1} , γ_0 , and γ_{π} to vary by their experimental errors.
- See how the asymmetries are affected by these perturbations, and see whether a measurement could differentiate them.

- When all three experiments are completed, a full χ^2 fitting can be performed using the original basis of γ_{E1E1} , γ_{M1M1} , γ_{E1M2} , and γ_{M1E2} , to extract all four of them.
- The experimental values for α_{E1} , β_{M1} , γ_0 , and γ_{π} can be used to constrain the full fitting to achieve different levels of accuracy.
- Currently have about 550 hours for Σ_{2x} (two blocks: September 2010 and February 2011).
- But only about 90 hours for Σ_3 (test data from December 2008). More planned for the end of this year.

Experiment •000000000 Analysis 000000000

Mainz Microtron (MAMI) e⁻ Beam

- $\bullet~$ Injector $\rightarrow~3.5~MeV$
- RTM1 \rightarrow 14.9 MeV
- RTM2 \rightarrow 180 MeV
- RTM3 \rightarrow 882 MeV
- HDSM ightarrow 1.6 GeV

For these experiments only the RTMs are required (450 MeV).

Compton	Experiment	Analysis	Conclusions
00000000000000	0●0000000	00000000	
Racetrack M	icrotron (RTM)		

- Linear accelerator (linac) sends e⁻ beam into dipole magnet.
- Magnetic field bends the beam into one of many exit lines.
- Second dipole magnet bends the beam back into the linac.
- Finally, 'kicker' magnet ejects the beam from the microtron.

$$\Delta E = \frac{ec^2B}{2\pi\nu_{rf}}$$

• $\nu_{rf} = 2.45 \text{ GHz}$ Klystron frequency

- Similar concept to the RTM, except with two linac sections and four dipole magnets.
- Allows for larger energies while keeping the magnet (and magnetic field) sizes smaller.

- A high energy electron can produce Bremsstrahlung ('braking radiation') photons when slowed down by a material.
- If the electron beam is longitudinally polarized it produces a circularly polarized photon beam through a helicity transfer.

Compton	Experiment	Analysis	Conclusions
00000000000000	000000000	00000000	
Polarized Photon	Beam		

- A high energy electron can produce Bremsstrahlung ('braking radiation') photons when slowed down by a material.
- If the electron beam is longitudinally polarized it produces a circularly polarized photon beam through a helicity transfer.

P_e measured with a Mott polarimeter before the RTMs.

Delarized Dhoton	Pear		
	00000000		
Compton	Experiment	Analysis	Conclusions

- A high energy electron can produce Bremsstrahlung ('braking radiation') photons when slowed down by a material.
- If the electron beam is longitudinally polarized it produces a circularly polarized photon beam through a helicity transfer.

• *P_e* measured with a Mott polarimeter before the RTMs.

пото

• Circular beam helicity can be flipped by alternating the e⁻ beam polarization (about 1 Hz).

Analysis 000000000 Conclusions

Photon Tagging

- e⁻ beam with energy E₀, strikes radiator producing Bremsstrahlung photon beam with energy distribution from 0 to E₀.
- Residual e⁻ paths are bent in a spectrometer magnet.
- With proper magnetic field, array of 353 detectors determines the e⁻ energy, and 'tags' the photon energy by energy conservation.

(日) (四) (日) (日) (日)

Analysis 00000000

Polarized Target

Transversely/longitudinally polarized frozen spin butanol target utilizing Dynamic Nuclear Polarization (DNP).

Schematic of target insert where hashed region is 2 cm of Butanol (C_4H_9OH) .

 $^{3}\text{He}/^{4}\text{He}$ dilution refrigerator.

Compton	Experiment 000000●000	Analysis 00000000	Conclusions
Frozen Spin Targ	et		

Polarizing protons through Dynamic Nuclear Polarization (DNP):

- Cool target to 0.2 Kelvin.
- Use 2.5 Tesla magnet to align electron spins.
- Pump \approx 70 GHz microwaves (just above, or below, the Electron Spin Resonance frequency), causing spin-flips between the electrons and protons.
- Cool target to 0.025 Kelvin, 'freezing' proton spins in place.
- Remove polarizing magnet.
- Energize 0.6 Tesla 'holding' coil in the cryostat to maintain the polarization.
- Relaxation times > 1000 hours.
- Polarizations up to 90%.

Polarizing protons through Dynamic Nuclear Polarization (DNP):

Analysis 000000000 Conclusions

Detectors

Crystal Ball (CB)

- 672 Nal Crystals
- 24 Particle Identification Detector (PID) Paddles
- 2 Multiwire Proportional Chambers (MWPCs)

Two Arms Photon Spectrometer (TAPS)

• 366 BaF₂ and 72 PbWO₄ Crystals

(日) (四) (日) (日) (日)

• 384 Veto Paddles

Analysis 000000000

Crystal Ball/TAPS

Crystal Ball

- Proposed at SLAC in 1974
- SLAC: 1974-1982 (J/ψ)
- DESY: 1982-1987 (b-quarks)
- Brookhaven: 1995-2002 (baryon resonances)
- MAMI: 2002-present
- $21^\circ < \theta < 159^\circ$
- Nearly all ϕ
- $\bullet~$ E resolution $\approx 3\%$
- heta resolution pprox 2.5°

TAPS

- 1980s TAPS collaboration
- Designed for a range of experiments in various configurations such as a single wall (here), or multiple blocks (α, β, measurements)
- Fills in downstream hole
- E resolution pprox 3%
- heta resolution pprox 0.7°

Analysis 000000000 Conclusions

Crystal Ball/TAPS

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q @

Analysis ●00000000

Event Selection

Cross section of CB and TAPS, with target cell in place.

Compton	

Analysis •••••• Conclusions

Event Selection

Photon beam enters from the left, and strikes the target.

ъ

ヘロト 人間 とうほとう

Compton	

Analysis ●00000000 Conclusions

Event Selection

Require detection of ONLY one photon, and ONLY one charged particle, in time with a tagger hit.

Cut on randoms

・ロト ・聞ト ・ヨト ・ヨト

Analysis ○○●○○○○○○

Compton Backgrounds

Butanol Target (C₄H₉OH)

- Compton off of H
- Coherent scatter off of C (or O)
- Incoherent scatter off of C (or O)
- Pion photoproduction off of H
- Coherent pion off of C (or O)
- Incoherent pion off of C (or O)

Analysis ○○●○○○○○○

Compton Backgrounds

Butanol Target (C₄H₉OH)

- Compton off of H
- Coherent scatter off of C (or O)
- Incoherent scatter off of C (or O)
- Pion photoproduction off of H
- Coherent pion off of C (or O)
- Incoherent pion off of C (or O)

Analysis

Compton Backgrounds

Butanol Target (C_4H_9OH)

- Compton off of H
- Coherent scatter off of C (or O)
- Incoherent scatter off of C (or O)
- Pion photoproduction off of H
- Coherent pion off of C (or O)
- Incoherent pion off of C (or O)

Subtract data taken on a carbon target, with density chosen to match the number of non-hydrogen nucleons in the butanol

target.

Analysis ○○●○○○○○○

Compton Backgrounds

Butanol Target (C₄H₉OH)

- Compton off of H
- Coherent scatter off of C (or O)
- Incoherent scatter off of C (or O)
- Pion photoproduction off of H
- Coherent pion off of C (or O)
- Incoherent pion off of C (or O)

Analysis ○○○●○○○○○

Conclusions

Pion Photoproduction

The cross section for π^0 photoproduction is about 100 times that of Compton scattering.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Analysis

Conclusions

Pion Photoproduction

If one of the decay photons is lost, this can look like Compton.

イロト イ理ト イヨト イヨト

Э

Analysis

Pion Photoproduction

If one of the decay photons is lost, this can look like Compton.

$$k_f = q_i + k_i - q_f$$

$$k_f^2 = m_k^2 = (q_i + k_i - q_f)^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Analysis

Pion Photoproduction

If one of the decay photons is lost, this can look like Compton.

$$k_f = q_i + k_i - q_f$$

$$k_f^2 = m_k^2 = (q_i + k_i - q_f)^2$$

(日) (四) (日) (日)

Missing Mass

$$m_{miss}=m_k=\sqrt{(E_{\gamma_i}+m_p-E_{\gamma_f})^2-(ec{p}_{\gamma_i}-ec{p}_{\gamma_f})^2}~{=\over_{ ext{Compton}}}m_p$$

Analysis

Pion Photoproduction

If one of the decay photons is lost, this can look like Compton.

$$k_f = q_i + k_i - q_f$$

$$k_f^2 = m_k^2 = (q_i + k_i - q_f)^2$$

But isn't the proton detected anyway? Why not use that information? Since the proton is massive, and it must penetrate lots of material to reach a detector, it suffers from severe energy losses. However, it can be used for an opening angle cut.

Analysis

Conclusions

Proton Opening Angle Cut

Make an 'opening angle' cut, requiring that the proton is detected within a cone of its expected angle.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の

Compton	

Analysis ○○○○○●○○○

Pion Background

Given the coverage of the detector, how does a π^0 decay photon go missing?

・ロト ・個ト ・モト ・モト

Analysis ○○○○○●○○○

・ロト ・ 理 ト ・ 正 ト ・ 正

Conclusions

Pion Background

Since the detector isn't great at the very forward/backward angles, some 'fiducial' cuts are made.

Analysis ○○○○○●○○○

・ロト ・個ト ・モト ・モト

Conclusions

Pion Background

Since the detector isn't great at the very forward/backward angles, some 'fiducial' cuts are made.

Analysis ○○○○●○○○ Conclusions

Pion Background

Obvious places where a π^0 decay photon can escape. Can this background be modeled using real data?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の

Analysis ○○○○○●○○○ Conclusions

Pion Background

Establish a 'ring', with a solid angle related to a 'hole' in the detector.

Analysis ○○○○○●○○○ Conclusions

Pion Background

In instances where a π^0 decay photon is detected in the ring, ignore it and analyze the event like Compton.

 $\begin{array}{c} \text{Compton} \\ \text{consisting Mass - } E_{\gamma} = 273-303 \text{ MeV}, \ \theta_{\gamma \prime} = 100 \underline{-120^{\circ}} \end{array}$

Initial missing mass distribution from the butanol target.

・ロト ・ 理 ト ・ 正 ト ・ 正

 $\begin{array}{c} \begin{array}{c} \text{Compton} \\ \text{consistion} \end{array} & \begin{array}{c} \text{Experiment} \\ \text{consistion} \end{array} & \begin{array}{c} \text{Analysis} \\ \text{consistion} \end{array} & \begin{array}{c} \text{Conclusi} \\ \text{consistion} \end{array} & \begin{array}{c} \text{Conclusi} \\ \text{consisting} \end{array} & \begin{array}{c} \text{Conclusi} \end{array} & \begin{array}{c} \text{Conclusi} \\ \text{consisting} \end{array} & \begin{array}{c} \text{Conclusi} \\ \text{consisting} \end{array} & \begin{array}{c} \text{Conclusi} \end{array} &$

Background from accidental (random) events in tagger.

・ロト ・ 理 ト ・ 正 ト ・ 正

 $\begin{array}{c} \text{Compton} \\ \text{consisting Mass - } E_{\gamma} = 273-303 \text{ MeV}, \ \theta_{\gamma\prime} = 100-120^{\circ} \end{array}$

Distribution after removing accidentals.

ъ

イロト イポト イヨト イ

 $\begin{array}{c} \begin{array}{c} \text{Compton} \\ \text{consistion} \end{array} & \begin{array}{c} \begin{array}{c} \text{Experiment} \\ \text{consistion} \end{array} & \begin{array}{c} \text{Analysis} \\ \text{consistion} \end{array} & \begin{array}{c} \text{Conclus} \end{array} \\ \end{array} \\ \begin{array}{c} \text{Missing Mass - } E_{\gamma} = 273 \text{-} 303 \text{ MeV}, \ \theta_{\gamma \prime} = 100 \text{-} 120^{\circ} \end{array} \end{array}$

Background from the carbon target.

イロト イポト イヨト

 $\begin{array}{c} \text{Compton} \\ \text{concluss} \\ \text{Concluss} \\ \text{Missing Mass - } E_{\gamma} = 273-303 \text{ MeV}, \ \theta_{\gamma \prime} = 100\underline{-120^{\circ}} \\ \end{array}$

Distribution after removing carbon background.

< □ > < 同 > <</p>

Background from π^0 photon in upstream (CB) hole.

э

イロト イポト イヨト イ

Background from π^0 photon between CB/TAPS.

▲口> ▲翻> ▲理> ▲理> 二語 二名

Final distribution after subtracting backgrounds.

э

イロト イ理ト イヨト イ

Total events determined by integrating up to proton mass

э

イロト イ理ト イヨト イ

Vary γ_{E1E1} , holding γ_{M1M1} fixed at 2.9.

・ロト ・ 理 ト ・ 国 ト ・ 国

Vary γ_{M1M1} , holding γ_{E1E1} fixed at -4.3.

・ロト ・ 理 ト ・ 正 ト ・ 正

Above validity of dispersion relation.

Compton	Experiment	Analysis	Conclusions
00000000000000	000000000	00000000	
Conclusions			

- These are the first double polarized asymmetries, at these energies, observed in real Compton scattering off of the proton.
- Even with conservative integration limit, these asymmetries agree with a value for $\gamma_{E1E1} = -4.3 \times 10^{-4} \, \text{fm}^4$.
- A global χ^2 fit using all available data is in progress, as well as further simulation to improve integration.
- Future:
 - Dedicated running on the unpolarized hydrogen target
 - Installation of, and running on, the longitudinal butanol target

(日) (四) (日) (日)

 With all three experiments, the extraction of the proton spin-polarizabilities will provide an important test of nucleon structure. Experiment 0000000000 Analysis 000000000

Thanks go to:

- J. Annand Glasgow
- P. Hall Barrientos -Glasgow
- B. Barnes UMass
- A. Bernstein MIT
- B. Briscoe GWU
- C. Collicott -SMU/Dalhousie
- E. Downie GWU
- D. Glazier Edinburgh

- D. Hornidge MTA
- G. Huber Regina
- D. Middleton -Mainz/MTA
- A. Mushkarenkov -UMass
- M. Ostrick Mainz
- B. Pasquini Pavia
- S. Schumann Mainz
- A. Thomas Mainz

