INT Structure of light nuclei, Oct. 2012, Seattle, WA

Ab inito calculations of Be isotopeswith **JISP16**

Pieter Maris pmaris@iastate.eduIowa State University

IOWA STATE UNIVERSITY

SciDAC project – NUCLEI lead PIs: Joe Carlson (LANL) and Rusty Lusk (ANL)

PetaApps award

PIs: Jerry Draayer (LSU), James P Vary (ISU), Ümit ^V Çatalyürek (OSU), Masha Sosonkina (ODU/AL)

INCITE award – Computational Nuclear Structurelead PI: James P Vary (ISU)

NERSC CPU time

Ab initio nuclear physics – Quantum many-body problem

Given ^a Hamiltonian operator

$$
\mathbf{\hat{H}} \;\; = \;\; \sum_{i
$$

solve the eigenvalue problem for wave function of A nucleons

$$
\hat{\mathbf{H}}\,\Psi(r_1,\ldots,r_A) = \lambda \Psi(r_1,\ldots,r_A)
$$

Carbon 12 Proton Densities

eigenvalues λ discrete (quantized) energy levels

eigenvectors: $|\Psi(r_1,\ldots,r_A)|^2$ probability density for finding nucleons $1, \, ... , \, A$ at $r_1, \, ... , \, r_A$

Ab initio nuclear physics – Computational challenges

- Self-bound quantum many-body problem, with $3A$ degrees of freedom in coordinate (or momentum) space
- Not only 2-body interactions, but also intrinsic 3-body interactionsand possibly 4- and higher $N\text{-}$ body interactions
- **Strong interactions,** with both short-range and long-range pieces
- Uncertainty quantification for calculations needed
	- for comparisons with experiments
	- for comparisons between different methods
- **Sources of numerical uncertainty**
	- statistical and round-off errors
	- systematical errors inherent to the calculational method
		- CI methods: finite basis space
		- Monte Carlo methods: sensitivity to the trial wave function
		- Lattice calculations: finite volume and lattice spacing
	- uncertainty of the nuclear potential

Nuclear interaction

Nuclear potential not well-known . . .

though in principle calculable from Quantum Chromo Dynamics

$$
\mathbf{\hat{H}} = \mathbf{\hat{T}}_{\text{rel}} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots
$$

In practice, alphabet of realistic potentials

- Argonne potentials: AV8', AV18
	- **P** plus Urbana 3NF (UIX)
	- plus Illinois 3NF (IL7) \bullet
- Bonn potentials
- Chiral NN interactions
	- **Parignal 3NF, ideally to the same order**
- . . .

. . .

nnn.

Phenomeological NN *interaction: JISP16*

J-matrix Inverse Scattering Potential tuned up to 16 O

- Constructed to reproduce np scattering data
- Finite rank seperable potential in H.O. representation
- Nonlocal NN -only potential
- Use Phase-Equivalent Transformations (PET) to tune off-shell interaction to
	- binding energy of ${}^{3}\mathsf{H}$ and ${}^{4}\mathsf{He}$
	- low-lying states of 6 Li (JISP6, precursor to JISP16)
	- binding energy of ${}^{16}O$

PHYSICS LETTERS B

www.elsevier.com/locate/physletb

Physics Letters B 644 (2007) 33–37

Realistic nuclear Hamiltonian: Ab exitu approach

A.M. Shirokov a,b,*, J.P. Vary b,c,d, A.I. Mazur ^e, T.A. Weber ^b

^a Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia ^b Department of Physics and Astronomy, Iowa State University, Ames, IA 50011-3160, USA

^c Lawrence Livermore National Laboratory, L-414, 7000 East Avenue, Livermore, CA 94551, USA

^d Stanford Linear Accelerator Center, MS81, 2575 Sand Hill Road, Menlo Park, CA 94025, USA e *Pacific National University, Tikhookeanskaya 136, Khabarovsk 680035, Russia*

2006; accepted ³⁰ October ²⁰⁰⁶

Received 6 March 2006; received in revised form 11 September

J-matrix Inverse Scattering Potentials

- Constructed as matrix in H.O. basis
	- $2n+l\leq 8$ for even partial waves, limited to $J\leq 4$
	- $2n+l\leq 9$ for odd partial waves, limited to $J\leq 4$
	- $\hbar\omega = 40$ MeV
- χ^2 /datum of 1.05 for the 1999 np data base (3058 data)
- No charge symmetry breaking
- **O** Use PET to improve
	- deuteron quadrupole moment
	- $^3\mathsf{H}$ and $^4\mathsf{He}$ binding energies
	- binding energies low-lying states of ⁶Li: JISP6

Shirokov, Vary, Mazur, Zaystev, Weber, PLB **⁶²¹**, ⁹⁶ (2005)

binding energy of ${}^{16}O$: JISP16

Shirokov, Vary, Mazur, Weber, PLB **⁶⁴⁴**, ³³ (2007)

additional tuning, more accurate calculations: $JISP16_{2010}$ reproduces $^{16}\mathrm{O}$ within numerical error estimates of 3% Shirokov, Kulikov, Maris, Mazur, Mazur, Vary, arXiv:0912.2967

JISP16 results for few-body systems

Pieper, Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)

Many-Body systems

Configuration Interaction methods

- Expand wave function in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- Express Hamiltonian in basis $\langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle = H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- Complete basis → exact result
.
	- caveat: complete basis is infinite dimensional
- In practice
	- \bullet truncate basis
	- study behavior of observables as function of truncation
- Computational challenge
	- construct large $(10^{10}\times 10^{10})$ sparse symmetric real matrix H_{ij}
	- use Lanczos algorithmto obtain lowest eigenvalues & eigenvectors

Basis space expansion

- Expand wave function in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- Many-Body basis states $|\Phi_i\rangle$ Slater Determinants of Single-Particle states $|\phi\rangle$ $\left| \pm \sqrt{m_1} \right|$ $\left| \pm \sqrt{m_2} \right|$... $\phi_{iA}(r_1)$

$$
\Phi_i(r_1, ..., r_A) = \frac{1}{\sqrt{(A!)}} \begin{vmatrix} \varphi_{i1}(r_1) & \varphi_{i2}(r_1) & \dots & \varphi_{iA}(r_1) \\ \varphi_{i1}(r_2) & \varphi_{i2}(r_2) & \dots & \varphi_{iA}(r_2) \\ \vdots & \vdots & & \vdots \\ \varphi_{i1}(r_A) & \varphi_{i2}(r_A) & \dots & \varphi_{iA}(r_A) \end{vmatrix}
$$

- Single-Particle basis states
	- eigenstates of $\hat{\bf L}^2$ labelled by quantum numbers $|n,l,s,j,m\rangle$ $^2, \, \hat{\mathbf{S}}^2$ 2 , $\hat{\mathbf{J}}^2$, and $\hat{\mathbf{J}}_{\mathbf{z}}$
	- **•** radial wavefunctions
		- Harmonic Oscillator
		- Wood–Saxon basis
		- Coulomb–Sturmian
		- Berggren

. . .

 Negoita, PhD thesis ²⁰¹⁰ Caprio, Maris, Vary, PRC86, ⁰³⁴³¹² (2012)

Rotureau, last week

Truncation scheme

 M -scheme: Many-Body basis states eigenstates of $\mathbf{\hat{J}}$ z

$$
\hat{\mathbf{J}}_{\mathbf{z}}|\Phi_i\rangle = M|\Phi_i\rangle = \sum_{k=1}^{A} m_{ik}|\Phi_i\rangle
$$

- single run gives spectrum
- **alternatives:** LS scheme, Coupled- J scheme, Symplectic basis, \dots
- $N_{\sf max}$ truncation: Many-Body basis states satisfy

$$
\sum_{k=1}^{A} (2 n_{ik} + l_{ik}) \leq N_0 + N_{\text{max}}
$$

- exact factorization of Center-of-Mass motion
- **alternatives:**

No-Core Monte-Carlo Shell Model, Importance Truncation, FCI (truncation on single-particle basis only), . . .

Intermezzo: FCI vs. Nmax truncation

- exact factorization of Center-of-Mass motion
- converges much more rapidly than FCI truncation \bullet with basis space dimension
- Infinite basis space limit: No-Core Full Configuration (NCFC)

Intermezzo: Center-of-Mass excitations

- Use single-particle coordinates, not relative (Jacobi) coordinates
	- straightforward to extend to many particles
	- have to seperate Center-of-Mass motion from internal motion
- Center-of-Mass wave function factorizes for H.O. basis functions in combination with $N_{\sf max}$ truncation

$$
\begin{array}{rcl}\n|\Psi_{\text{total}}\rangle & = & |\phi_1\rangle \otimes \ldots \otimes |\phi_A\rangle \\
& = & |\Phi_{\text{Center-of-Mass}}\rangle \otimes |\Psi_{\text{int}}\rangle\n\end{array}
$$

where

$$
\hat{\mathbf{H}}_{\text{rel}}|\Psi_{\text{j, int}}\rangle = E_{\text{j}}|\Psi_{\text{j, int}}\rangle
$$

Add Lagrange multiplier to Hamiltonian (Lawson term)

$$
\hat{\mathbf{H}}_{\text{rel}} \longrightarrow \hat{\mathbf{H}}_{\text{rel}} + \Lambda_{CM} \left(\hat{\mathbf{H}}_{CM}^{H.O.} - \frac{3}{2} \left(\sum_i m_i \right) \omega \right)
$$

with \hat{H} $r_{\sf rel} = T_{\sf rel} + V_{\sf rel}$ the relative Hamiltonian

seperates CM excitations from CM ground state $|\Phi_{CM}\rangle$

Configuration Interaction Methods

- Expand wave function in basis states $|\Psi\rangle=$ $\sum a_i|\psi_i\rangle$
- Express Hamiltonian in basis $\langle \psi_j | \hat{\mathbf{H}} | \psi_i \rangle$ $=H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- Variational: for any finite truncation of the basis space, eigenvalue is an upper bound for the ground state energy
- Smooth approach to asymptotic value with increasing basis space: No-Core Full Configuration calculation
- Convergence: independence of N _{max} and H.O. basis $\hbar\omega$
	- different methods (NCFC, CC, GFMC, . . .) using the same interaction should give same results within(statistical plus systematic)numerical uncertainties

No-Core CI calculations – main challenge

- Increase of basis space dimension with increasing A and $N_{\sf max}$
- More relevant measure for computational needs
	- number of nonzero matrix elements

Challenge: achieve numerical convergence for no-core Full Configuationcalculations using finite model space calculations

- $\mathsf{Renormalize}\ \mathsf{interaction} \longrightarrow \mathsf{effective}\ \mathsf{interaction}\ V_{\mathsf{eff}}$
	- can improve quality of results in small model spaces
- **Caveats**
	- **•** induces many-body forces
		- induced 3-body forces are often neglected
		- induced 4-, 5-, ..., $A\operatorname{\textrm{-}body}$ forces are always neglected
	- variational principle applicable to renormalized Hamiltoniannot to original (bare) Hamiltonian
	- often complicates extrapolation to asymptotic values
	- need to renormalize operators as well
- Commonly used renormalization procedures
	- Lee–Suzuki effective interaction
	- Similarity Renormalization Group(in particular in combination with chiral interactions)

Results with Lee–Suzuki renormalization for JISP16

16O JISP16 bare and Lee-Suzuki Veff truncated to 2-body clusters

- Ground state energy of 16 O expected to be between variational upper bound without renormalization and lower bound (?) fromLee–Suzuki renormalized interaction
- Used in tuning of JISP16Shirokov, Vary, Mazur, Weber, PLB 644, ³³ (2007)

Convergence Lee–Suzuki renormalization not monotonic

16O JISP16 bare and Lee-Suzuki Veff truncated to 2-body clusters

- Lee–Suzuki result for ground state energy <mark>not</mark> a lower bound
- JISP16 overbinds 16 O by 10% to 15%

Maris, Vary, Shirokov, PRC79, 014308 (2009)

Challenge: achieve numerical convergence for no-core Full Configuationcalculations using finite model space calculations

- Perform a series of calculations with increasing $N_{\sf max}$ truncation
- Extrapolate to infinite model space → exact results
Constriect binding energy expendatiol in M
	- Empirical: binding energy exponential in $N_{\sf max}$

$$
E_{\text{binding}}^{N} = E_{\text{binding}}^{\infty} + a_1 \exp(-a_2 N_{\text{max}})
$$

- use 3 or 4 consecutive N_max values to determine E_Dir^∞ binding
- use $\hbar\omega$ and $N_{\sf max}$ dependence to estimate numerical error bars

Maris, Shirokov, Vary, PRC79, 014308 (2009)

- Recent studies of IR and UV behavior
	- exponentials in $\sqrt{\hbar\omega/N}$ and $\sqrt{\hbar\omega N}$ Coon *et al*, arXiv:1205.3230; Furnstahl, Hagen, Papenbrock PRC86, 031301(R) (2012)

Extrapolating to complete basis – in practice

- Perform a series of calculations with increasing $N_{\sf max}$ truncation
- Use empirical exponential in $N_{\sf max}$:

Hyperspherical harmonics up to $K_\mathsf{max} = 14\colon\mathsf{E}_b$ Vaintraub, Barnea, Gazit, PRC79 065501 (2009) $_b=-31.46(5)\ \mathsf{MeV}$

Accelerating convergence – Coulomb-Sturmian basis

Caprio, Maris, Vary, PRC86, 034312 (2012)

Asymtotic behavior

- H.O. basis $\exp(-a\,r^2$ 2 $^{2})$
- Coulomb–Sturmian basis $\exp(-c\, r)$
- Disadvantage
	- no exact factorization of Center-of-Mass motion
	- **c** in practice, approximate factorizationHagen, Papenbrock, Dean, PRL103, 062503 (2009)
	- can use Lagrange multiplier to removespurious state

Coulomb-Sturmian – binding energies

- at $N_{\sf max} = 4$ further from \bullet convergence than H.O. basis
- extrapolate to the same resultsas H.O. basis
- dashed line: \bullet extrapolated result from $N_{\sf max}=16$ calculations in H.O. basis

 Cockrell, Maris, Vary, PRC86 034325 (2012)

Coulomb-Sturmian – radius

Caprio, Maris, Vary, PRC86, 034312 (2012)

- exponential extrapolation does not work for radii in H.O. basis
- exponential extrapolation seems to work for radii in C.S. basis
- best estimate based on $N_{\sf max} = 16$ H.O. calculations: 2.3 fm

Cockrell, Maris, Vary, PRC86 034325 (2012)

experimental point-proton radius: 2.45 fm

Ground state energy Be-isotopes with JISP16

7Be – Ground state properties

- Binding energy converges monotonically, with optimal H.O. freuqency around $\hbar\omega = 20$ MeV to 25 MeV
- Ground state about 0.7 MeV underbound with JISP16
- Proton point radius does not converge monotonically
	- Coulomb–Sturmian basis likely to improve convergence

7Be – Proton density

Translationally-invariant density – center-of-mass motion taken out w. Cockrell, PhD thesis 2012

- Slow build up of asymptotic tail of wavefunction
- Proton density appears to converge more rapidly at $\hbar\omega = 12.5$ MeV than at ²⁰ MeV because long-range part of wavefunction is better represented with smaller H.O. parameter

7Be – Proton radius

Calculation one-body observables $\langle i|{\cal O}|j\rangle\ \sim\ \int {\cal O}(r)\ r^2\ \rho_{ij}(r)\ dr$

• RMS radius:
$$
\mathcal{O}(r) = r^2
$$

- Slow convergence of RMS radius due toslow build up of asymptotic tail
- Ground state RMS radius in agreement with data

7Be – Quadrupole moment

- Ground state quadrupole moment in agreement with data
- Optimal basis space around $\hbar\omega = 10$ MeV to 12 MeV
- Similar slow convergence for E2 transitions

7Be – Excited states

- Excitation energy of narrow states
	- converge rapidly
	- agree with experiments
- Broad resonances depend $\hbar\omega$
- Magnetic momentswell converged
	- **2-body currents needed** for agreement with data(meson-exchange currents)

7Be – Emergence of rotational band? in progress, w. M. Caprio

E2 observables suggest rotational structure for $\frac{3}{2}$ $2^{\,\boldsymbol{\prime}}$ 1 $2^{\,\boldsymbol{\prime}}$ 7 $2^{\,\boldsymbol{\prime}}$ 5 2 $\frac{5}{2}$ states

$$
Q(J) = \frac{\frac{3}{4} - J(J+1)}{(J+1)(2J+3)} Q_0
$$

$$
B(E2; i \to f) = \frac{5}{16\pi} Q_0^2 \left(J_i, \frac{1}{2}; 2, 0 | J_f, \frac{1}{2} \right)^2
$$

INT Structure of light nuclei, Oct. 2012, Seattle, WA – p. 29/40

7Be – *Structure of* $(\frac{5}{2}^{-},\frac{1}{2})_{1}$ *(broad) and* $(\frac{5}{2}^{-},\frac{1}{2})_{2}$ *(narrow) states*

9Be – Ground state properties

- Convergence pattern natural and unnatural parity looks similar
- Ground state about 1.0 ± 0.2 MeV underbound with JISP16
- Lowest unnatural parity state underbound by about 2.7 ± 0.8 MeV
	- need next basis space for unnatural parity
	- need improved interaction?

Positive vs. negative parity states of Be-isotopes

- Unnatural parity states systematically underbound by about1 MeV to 2 MeV compared to lowest natural parity states
	- interaction JISP16 not good enough?
	- difference in convergence of pos. and neg. parity states?

9Be – Positive and negative spectrum

- Excitation energy $\frac{5}{2}$ 2− at 3 MeV well converged (narrow)
- Excitation energy $\frac{7}{2}$ 2− reasonably converged
- Excitation energies broad neg. parity not well converged
- Excitation energies pos. parity well converged

9Be – Emergence of rotational bands in progress, w. M. Caprio

- Rotational energy for states with axial symmetry $E(J) \propto J(J + 1)$
- Quadrupole moments for rotational band

$$
Q(J) = \frac{3 K^2 - J(J+1)}{(J+1)(2J+3)} Q_0
$$

Quadrupole moments not converged, but ratio of quadrupolemoments agree with rotational band structure

9Be – Structure: Density(3 2 ,1 $\frac{1}{2})$ ground state

x (fm) ¹ ²

3

0

-3

-2 -1

Rotational bands odd Be isotopes in preparation, w. M. Caprio

Quadrupole moments not converged, but ratio of quadrupolemoments agree with rotational band structure

Rotational bands odd Be isotopes in preparation, w. M. Caprio

Also for the unnatural parity states

Quadrupole moments not converged, but ratio of quadrupolemoments agree with rotational band structure

Rotational bands even Be isotopes in preparation, w. M. Caprio

B(E2) transistions Be isotopes in preparation, w. M. Caprio

Ratio's B(E2)/ Q^2 in agreement with rotational structure as well

Conclusions

- No-core Configuration Interaction nuclear structure calculations
	- Binding energy, spectrum
	- $\langle r^2\rangle$, μ , $\mathcal Q$, transitions, wfns, one-body densities
- Main challenge: construction and diagonalizationof extremely large (D > 1 billion) sparse matrices
- Need realistic basis function to improve convergence $\langle r^2\rangle$, ${\cal Q}$

JISP16

- Nonlocal phenomenological 2-body interaction
- Good description of ^a range of light nuclei
- Rapid convergence for binding energies
- Emergence of rotational bands and clustering in Be-isotopes
- Would not have been possible without collaboration with applied mathematicians and computer scientistsAktulga, Yang, Ng (LBNL); Çatalyürek, Saule (OSU); Sosonkina (ODU/AL)