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Ab initio nuclear physics – Quantum many-body problem

Given a Hamiltonian operator

Ĥ =
∑

i<j

(~pi − ~pj)
2

2mA
+
∑

i<j

Vij +
∑

i<j<k

Vijk + . . .

solve the eigenvalue problem for wave function of A nucleons

ĤΨ(r1, . . . , rA) = λΨ(r1, . . . , rA)

eigenvalues λ discrete (quantized) energy levels

eigenvectors: |Ψ(r1, . . . , rA)|2 probability density
for finding nucleons 1, . . ., A at r1, . . ., rA
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Ab initio nuclear physics – Computational challenges

Self-bound quantum many-body problem,
with 3A degrees of freedom in coordinate (or momentum) space

Not only 2-body interactions, but also intrinsic 3-body interactions
and possibly 4- and higher N -body interactions

Strong interactions,
with both short-range and long-range pieces

Uncertainty quantification for calculations needed
for comparisons with experiments
for comparisons between different methods

Sources of numerical uncertainty
statistical and round-off errors
systematical errors inherent to the calculational method

CI methods: finite basis space
Monte Carlo methods: sensitivity to the trial wave function
Lattice calculations: finite volume and lattice spacing

uncertainty of the nuclear potential
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Nuclear interaction

Nuclear potential not well-known . . .
though in principle calculable from Quantum Chromo Dynamics

Ĥ = T̂rel +
∑

i<j

Vij +
∑

i<j<k

Vijk + . . .

In practice, alphabet of realistic potentials

Argonne potentials: AV8′, AV18
plus Urbana 3NF (UIX)
plus Illinois 3NF (IL7)

Bonn potentials

Chiral NN interactions
plus chiral 3NF, ideally to the same order

. . .

JISP16

. . .
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Phenomeological NN interaction: JISP16

J-matrix Inverse Scattering Potential tuned up to 16O

Constructed to reproduce np scattering data

Finite rank seperable potential in H.O. representation

Nonlocal NN -only potential

Use Phase-Equivalent Transformations (PET) to tune off-shell
interaction to

binding energy of 3H and 4He

low-lying states of 6Li (JISP6, precursor to JISP16)

binding energy of 16O

Physics Letters B 644 (2007) 33–37

www.elsevier.com/locate/physletb
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J-matrix Inverse Scattering Potentials

Constructed as matrix in H.O. basis
2n+ l ≤ 8 for even partial waves, limited to J ≤ 4

2n+ l ≤ 9 for odd partial waves, limited to J ≤ 4

~ω = 40 MeV

χ2/datum of 1.05 for the 1999 np data base (3058 data)

No charge symmetry breaking

Use PET to improve
deuteron quadrupole moment
3H and 4He binding energies

binding energies low-lying states of 6Li: JISP6
Shirokov, Vary, Mazur, Zaystev, Weber, PLB 621, 96 (2005)

binding energy of 16O: JISP16
Shirokov, Vary, Mazur, Weber, PLB 644, 33 (2007)

additional tuning, more accurate calculations: JISP162010

reproduces 16O within numerical error estimates of 3%
Shirokov, Kulikov, Maris, Mazur, Mazur, Vary, arXiv:0912.2967
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JISP16 results for few-body systems

deuteron properties

E (MeV) rp (fm) Q (e fm2) As (fm−

1

2 ) Ad/As

expt. -2.224575 1.971(6) 0.2859(3) 0.8846(9) 0.0256(4)

JISP16 -2.224575 1.964 0.2886 0.8629 0.0252

AV18 -2.224575 1.967 0.270 0.8850 0.0250

selected A = 3 and 4 results

Eb(3H ) µ(3H) µ(3He) Eb(4He)

expt. 8.482 2.979 -2.128 28.296

JISP16 8.369(2) 2.667 -1.819 28.299

AV18 7.61(1) 24.07(4)

AV18+IL2 8.43(1) 2.568(1) -1.762(1) 28.37(3)
Pieper, Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)
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Many-Body systems

Configuration Interaction methods

Expand wave function in basis states |Ψ〉 =
∑

ai|Φi〉

Express Hamiltonian in basis 〈Φj |Ĥ|Φi〉 = Hij

Diagonalize Hamiltonian matrix Hij

Complete basis −→ exact result

caveat: complete basis is infinite dimensional

In practice
truncate basis
study behavior of observables as function of truncation

Computational challenge

construct large (1010 × 1010) sparse symmetric real matrix Hij

use Lanczos algorithm
to obtain lowest eigenvalues & eigenvectors
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Basis space expansion

Expand wave function in basis states |Ψ〉 =
∑

ai|Φi〉
Many-Body basis states |Φi〉 Slater Determinants of
Single-Particle states |φ〉

Φi(r1, . . . , rA) =
1

√

(A!)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φi1(r1) φi2(r1) . . . φiA(r1)

φi1(r2) φi2(r2) . . . φiA(r2)
...

...
...

φi1(rA) φi2(rA) . . . φiA(rA)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Single-Particle basis states

eigenstates of L̂2, Ŝ2, Ĵ2, and Ĵz

labelled by quantum numbers |n, l, s, j,m〉
radial wavefunctions

Harmonic Oscillator
Wood–Saxon basis Negoita, PhD thesis 2010

Coulomb–Sturmian Caprio, Maris, Vary, PRC86, 034312 (2012)

Berggren Rotureau, last week

. . .
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Truncation scheme

M -scheme: Many-Body basis states eigenstates of Ĵz

Ĵz|Φi〉 = M |Φi〉 =

A
∑

k=1

mik|Φi〉

single run gives spectrum
alternatives:
LS scheme, Coupled-J scheme, Symplectic basis, . . .

Nmax truncation: Many-Body basis states satisfy

A
∑

k=1

(

2nik + lik
)

≤ N0 +Nmax

exact factorization of Center-of-Mass motion
alternatives:
No-Core Monte-Carlo Shell Model, Importance Truncation,
FCI (truncation on single-particle basis only), . . .
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Intermezzo: FCI vs. Nmax truncation
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converges much more rapidly than FCI truncation
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Infinite basis space limit: No-Core Full Configuration (NCFC)
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Intermezzo: Center-of-Mass excitations

Use single-particle coordinates, not relative (Jacobi) coordinates
straightforward to extend to many particles
have to seperate Center-of-Mass motion from internal motion

Center-of-Mass wave function factorizes for
H.O. basis functions in combination with Nmax truncation

|Ψtotal〉 = |φ1〉 ⊗ . . .⊗ |φA〉
= |ΦCenter-of-Mass〉 ⊗ |Ψint〉

where
Ĥrel|Ψj, int〉 = Ej|Ψj, int〉

Add Lagrange multiplier to Hamiltonian (Lawson term)

Ĥrel −→ Ĥrel + ΛCM

(

Ĥ
H.O.
CM − 3

2

(

∑

i

mi

)

ω

)

with Ĥrel = Trel + Vrel the relative Hamiltonian
seperates CM excitations from CM ground state |ΦCM 〉
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Configuration Interaction Methods

Expand wave function in basis states |Ψ〉 =
∑

ai|ψi〉

Express Hamiltonian in basis 〈ψj |Ĥ|ψi〉 = Hij

Diagonalize Hamiltonian matrix Hij

Variational: for any finite truncation of the basis space,
eigenvalue is an upper bound for the ground state energy

Smooth approach to asymptotic value with increasing basis space:
No-Core Full Configuration calculation

Convergence: independence of
Nmax and H.O. basis ~ω

different methods
(NCFC, CC, GFMC, . . . )
using the same interaction
should give same results within
(statistical plus systematic)
numerical uncertainties
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No-Core CI calculations – main challenge
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Accelerating convergence – renormalization techniques

Challenge: achieve numerical convergence for no-core Full Configuation
calculations using finite model space calculations

Renormalize interaction −→ effective interaction Veff

can improve quality of results in small model spaces

Caveats
induces many-body forces

induced 3-body forces are often neglected
induced 4-, 5-, ..., A-body forces are always neglected

variational principle applicable to renormalized Hamiltonian
not to original (bare) Hamiltonian
often complicates extrapolation to asymptotic values
need to renormalize operators as well

Commonly used renormalization procedures
Lee–Suzuki effective interaction
Similarity Renormalization Group
(in particular in combination with chiral interactions)
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Results with Lee–Suzuki renormalization for JISP16
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Convergence Lee–Suzuki renormalization not monotonic
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JISP16 overbinds 16O by 10% to 15%
Maris, Vary, Shirokov, PRC79, 014308 (2009)
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Extrapolating to complete basis

Challenge: achieve numerical convergence for no-core Full Configuation
calculations using finite model space calculations

Perform a series of calculations with increasing Nmax truncation

Extrapolate to infinite model space −→ exact results
Empirical: binding energy exponential in Nmax

EN
binding = E∞

binding + a1 exp(−a2Nmax)

use 3 or 4 consecutive Nmax values to determine E∞

binding

use ~ω and Nmax dependence
to estimate numerical error bars

Maris, Shirokov, Vary, PRC79, 014308 (2009)

Recent studies of IR and UV behavior
exponentials in

√

~ω/N and
√
~ωN Coon et al, arXiv:1205.3230;

Furnstahl, Hagen, Papenbrock PRC86, 031301(R) (2012)
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Extrapolating to complete basis – in practice

Perform a series of calculations with increasing Nmax truncation

Use empirical exponential in Nmax:
EN

binding = E∞

binding + a1 exp(−a2Nmax)
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H.O. basis up to Nmax = 16: Eb = −31.49(3) MeV
Cockrell, Maris, Vary, PRC86 034325 (2012)

Hyperspherical harmonics up to Kmax = 14: Eb = −31.46(5) MeV
Vaintraub, Barnea, Gazit, PRC79 065501 (2009)
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Accelerating convergence – Coulomb-Sturmian basis

Caprio, Maris, Vary, PRC86, 034312 (2012)

Asymtotic behavior

H.O. basis exp(−a r2)
Coulomb–Sturmian basis
exp(−c r)

Disadvantage
no exact factorization of
Center-of-Mass motion
in practice,
approximate factorization
Hagen, Papenbrock, Dean,

PRL103, 062503 (2009)

can use Lagrange
multiplier to remove
spurious state
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Coulomb-Sturmian – binding energies
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Coulomb-Sturmian – radius

Caprio, Maris, Vary, PRC86, 034312 (2012)
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best estimate based on Nmax = 16 H.O. calculations: 2.3 fm
Cockrell, Maris, Vary, PRC86 034325 (2012)

experimental point-proton radius: 2.45 fm
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Ground state energy Be-isotopes with JISP16
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7Be – Ground state properties
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7Be – Proton density

Translationally-invariant density – center-of-mass motion taken out
w. Cockrell, PhD thesis 2012
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represented with smaller H.O. parameter
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7Be – Proton radius
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7Be – Quadrupole moment
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7Be – Excited states
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7Be – Emergence of rotational band? in progress, w. M. Caprio

E2 observables suggest rotational structure for 3
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7Be – Structure of (5
2

−

, 1
2
)1 (broad) and (5

2

−

, 1
2
)2 (narrow) states

Translationally-invariant nucleon densities Cockrell, PhD thesis 2012
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9Be – Ground state properties
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Ground state about 1.0± 0.2 MeV underbound with JISP16

Lowest unnatural parity state underbound by about 2.7± 0.8 MeV
need next basis space for unnatural parity
need improved interaction?
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Positive vs. negative parity states of Be-isotopes

7 8 9 10 11 12 13
total number of nucleons A

0

5

10

15

20

E
b(n

at
ur

al
) 

- 
E

b(u
nn

at
ur

al
) 

 (
M

eV
)

NCFC w. JISP16
experiment

Unnatural parity states systematically underbound by about
1 MeV to 2 MeV compared to lowest natural parity states

interaction JISP16 not good enough?
difference in convergence of pos. and neg. parity states?
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9Be – Positive and negative spectrum
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9Be – Emergence of rotational bands in progress, w. M. Caprio
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9Be – Structure: Density (3
2

−

, 1

2
) ground state
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Rotational bands odd Be isotopes in preparation, w. M. Caprio
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Rotational bands odd Be isotopes in preparation, w. M. Caprio

Also for the unnatural parity states
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Rotational bands even Be isotopes in preparation, w. M. Caprio
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B(E2) transistions Be isotopes in preparation, w. M. Caprio

Rotor prediction
∆J = 1: dashed
∆J = 2: solid

1/2 3/2 5/2 7/2 9/2 11/2 13/2
J

0

0.01

0.02

0.03

0.04

B
(E

2)
/(

eQ
0)2

9
Be (nat.)

11
Be

*
 (nat.)

1/2 3/2 5/2 7/2 9/2 11/2 13/2

0

0.01

0.02

0.03

B
(E

2)
/(

eQ
0)2

7
Be (nat.)

9
Be

*
 (nat.)

9
Be (un.)

11
Be (un.)

13
Be (un.)

(b)  K = 3/2

(a)  K = 1/2

0 2 4 6
J

0

0.01

0.02

0.03

B
(E

2)
/(

eQ
0)2

8
Be

10
Be

*

12
Be

*

14
Be

K = 0

Ratio’s B(E2)/Q2 in agreement with rotational structure as well
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Conclusions

No-core Configuration Interaction nuclear structure calculations
Binding energy, spectrum

〈r2〉, µ, Q, transitions, wfns, one-body densities

Main challenge: construction and diagonalization
of extremely large (D > 1 billion) sparse matrices

Need realistic basis function to improve convergence 〈r2〉, Q

JISP16
Nonlocal phenomenological 2-body interaction
Good description of a range of light nuclei
Rapid convergence for binding energies
Emergence of rotational bands and clustering in Be-isotopes

Would not have been possible without collaboration
with applied mathematicians and computer scientists
Aktulga, Yang, Ng (LBNL); Çatalyürek, Saule (OSU); Sosonkina (ODU/AL)
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