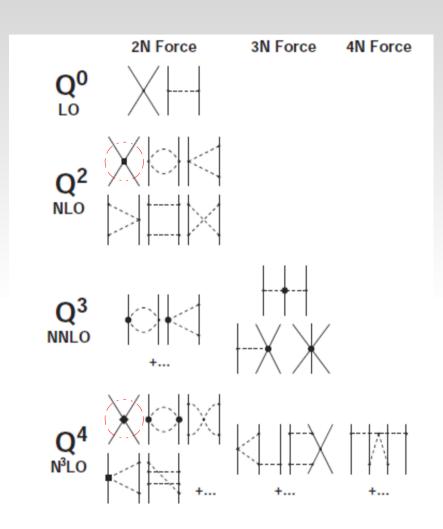
Renormalization and power counting of chiral nuclear forces

龙炳蔚 (Bingwei Long)

in collaboration with Chieh-Jen "Jerry" Yang (U. Arizona)

What are we really doing?



Correcting Weinberg's scheme about NN contact interactions using renormalization group invariance, (cutoff independence) as the guideline

However, naïve dimensional analysis sets the lower bound

Outline

- Brief intro. to chiral effective field theory
- Dr. W's prescription for chiral nuclear forces
- What went wrong
- What need to change
- Summary

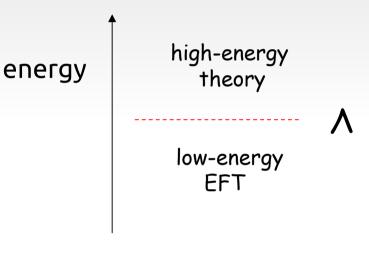
EFT recipe

- Degrees of freedom relevant at low energies
- Symmetries
- Power counting

Renormalization

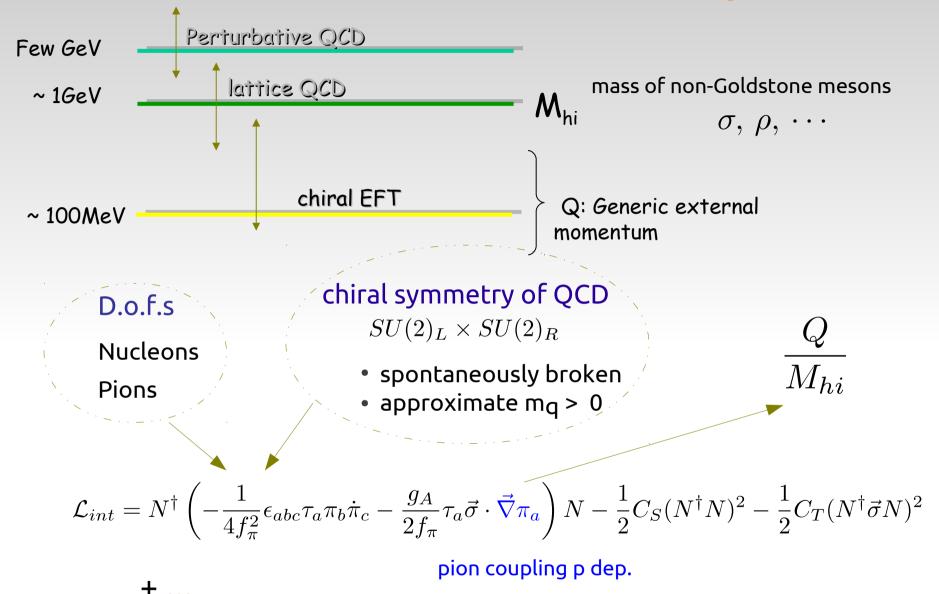
observables independent of

renormalization group (RG) invariance



Model independence

What does chiral effective field theory look like



Pros and cons

Pros

- Most general Lagrangian w/ chiral symmetry
 - A unified framework to study strong interactions and electroweak probes
- Can estimate theoretical error, but power counting must be consistent

$$\mathcal{M} = \sum_{n} \left(\frac{Q}{M_{hi}} \right)^{n} \mathcal{F}_{n} \left(\frac{Q}{M_{lo}} \right)^{1}$$

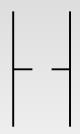
Non-analytical functions from loops

Cons

Break down below Q ~ 500 MeV

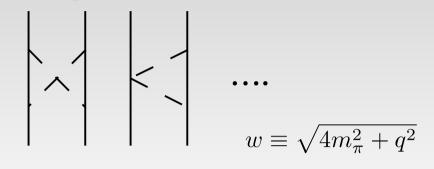
Basics of chpt

OPE



$$g_A^2 \; ec{q} \cdot ec{\sigma}_1 ec{q} \cdot ec{\sigma}_2$$

Leading irreducible TPE



$$V_{1\pi} = \frac{g_A^2}{4f_\pi^2} \frac{\vec{q} \cdot \vec{\sigma}_1 \vec{q} \cdot \vec{\sigma}_2}{m_\pi^2 + q^2} \qquad V_{2\pi} = -\frac{3g_A^4}{4f_\pi^2 (4\pi f_\pi)^2} \frac{w}{q} \ln \frac{w + q}{2m_\pi} \vec{q} \cdot \vec{\sigma}_1 \vec{q} \cdot \vec{\sigma}_2 + \cdots + Aq^2 + \mathcal{B}k^2$$
primordial c.t.

Long-range

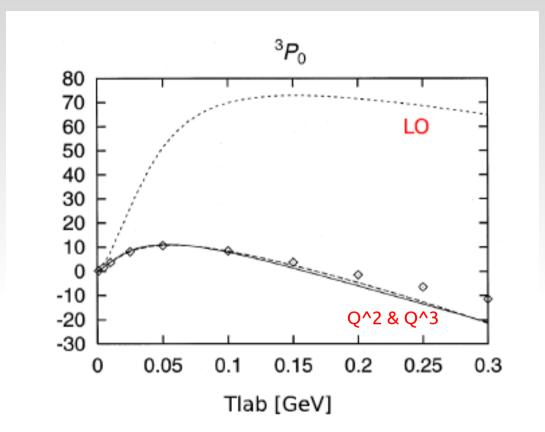
non-polynomials follow naïve dimensional analysis:

$$\frac{V_{2\pi}}{V_{1\pi}} \sim \frac{Q^2}{(4\pi f_\pi)^2} \mathcal{F}\left(\frac{Q}{m_\pi}\right)$$

Weinberg's prescription

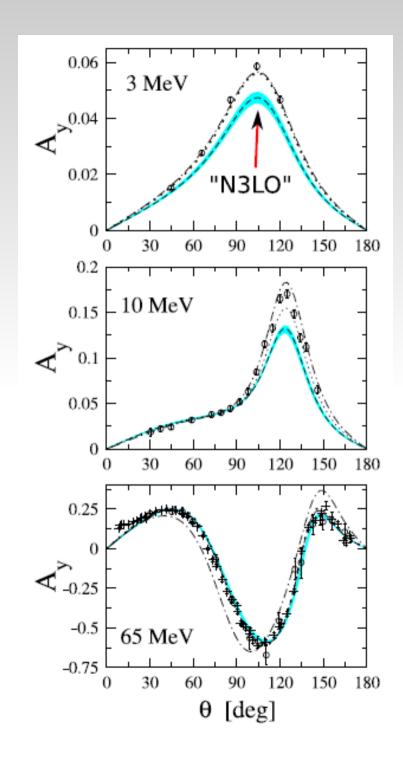
- → assumming resummed OPE does not change anything
- \rightarrow c.t. follow naïve dimensional analysis, too

But, is there a real problem?



Epelgaum et at, NPA 671, 295

Large subleading corrections in 3P0



Entem et al (2001)

- Dashed: N3LO Idaho

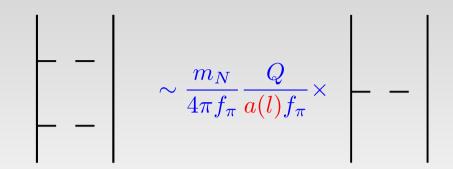
- Band: several models

- Dotted: modified Idaho

- Dot-dashed: NLO by Epelbaum

Why does N3LO work worse at lower energies?

Mass scale of OPE's strength



For lower p.w.

where a(l)~1:
$$Q \sim a(l) f_{\pi} \sim 100 \, {\rm MeV} \, \rightarrow {\rm nonperturbative} \, {\rm OPE}$$

This is a good thing

 \rightarrow no need to put in by hand low-energy mass scale in order to generate bound states

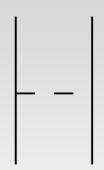
This is a bad thing

- → always have to choose between two mass scales in power counting
- → NDA no longer reliable
- → WPC is the most economical choice

$$M_{hi} = 4\pi f_{\pi} \sim 1 \text{GeV}$$
 $M_{lo} = a(l) f_{\pi} \sim 0.1 \text{GeV}$

Two scales differ only by a numerical factor!

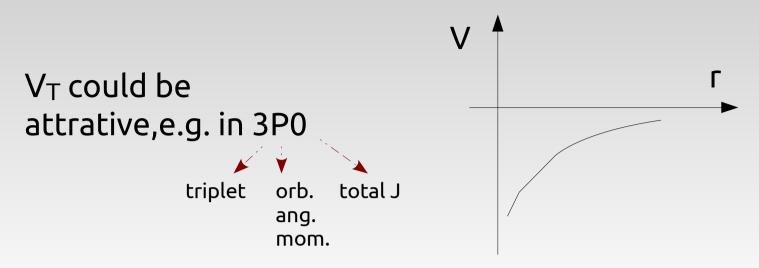
Let there be OPE



$$V_{1\pi}(\vec{r}) = rac{m_{\pi}^3}{12\pi} \left(rac{g_A^2}{4f_{\pi}^2}
ight) m{ au_1 \cdot au_2} \left[T(r)S_{12} + Y(r)ar{\sigma}_1 \cdot ar{\sigma}_2
ight] \ T(r) = rac{e^{-m_{\pi}r}}{m_{\pi}r} \left[1 + rac{3}{m_{\pi}r} + rac{3}{(m_{\pi}r)^2}
ight]
ightarrow 1/r^3 ext{ at } r
ightarrow 0 \ Y(r) = rac{e^{-m_{\pi}r}}{m_{\pi}r}
ightarrow 1/r ext{ at } r
ightarrow 0$$

- tensor force (TF) acts on only triplet channels.
- due to S_{12} , TF could be attractive or repulsive in different channels.

-1/r³ is more interesting



- -1/ r^3 dominates over kinetic energy (~ +1/ r^2) and centrifugal barrier
 - → unbounded from below, or equivalently, amplitude depends drastically on the cutoff
- NN contact interaction (counterterm) needed → 4-fermion operators
- 3P0 4-fermion operator has at least 2 derivatives, and yet has to appear in LO for renormalization purpose → not suppressed as in 1-N sector

Nogga et al (2005)
$$\text{(only for illustration)}$$
 $\mathcal{L}_{3P0}=D_0(N^\dagger\partial^2N)(N^\dagger N)+\cdots,\ D_0\propto \frac{1}{M_{lo}^2}$ $D_0\propto \frac{1}{M_{hi}^2}$

Subleading orders: triplet channels

$$LO$$
 $\left\langle \mathbf{T}^{(0)} \right\rangle$ = $\left| \cdots \right|$ + $\left| \cdots \right|$ + $\left| \cdots \right|$ + \cdots

$$\mathcal{O}(Q^2)$$

vanishes! (will come back

$$\left| \begin{array}{c} \mathbf{T}^{(0)} \\ \mathbf{T}^{(0)} \end{array} \right| + \left| \begin{array}{c} \mathbf{T}^{(0)} \\ \mathbf{T}^{(0)} \end{array} \right| + \left| \begin{array}{c} \mathbf{T}^{(0)} \\ \mathbf{T}^{(0)} \end{array} \right| \sim \frac{Q^2}{M_{\mathrm{hi}}^2} \times \left| \begin{array}{c} \mathbf{T}^{(0)} \\ \mathbf{T}^{(0)} \end{array} \right|$$

$$\mathcal{L}_{3P0} = D_0(N^{\dagger}\partial^2 N)(N^{\dagger}N)$$
$$+D_2(N^{\dagger}\partial^4 N)(N^{\dagger}N) + \cdots$$
$$D_0 \propto \frac{1}{M^2}, D_2 \propto \frac{1}{M^2M^2}$$

- Insertion of TPE can be divergent \rightarrow look for suitable counterterms to cancel
- Modified NDA \rightarrow D_0, D_2(p^2) ... are enhanced by the same amount

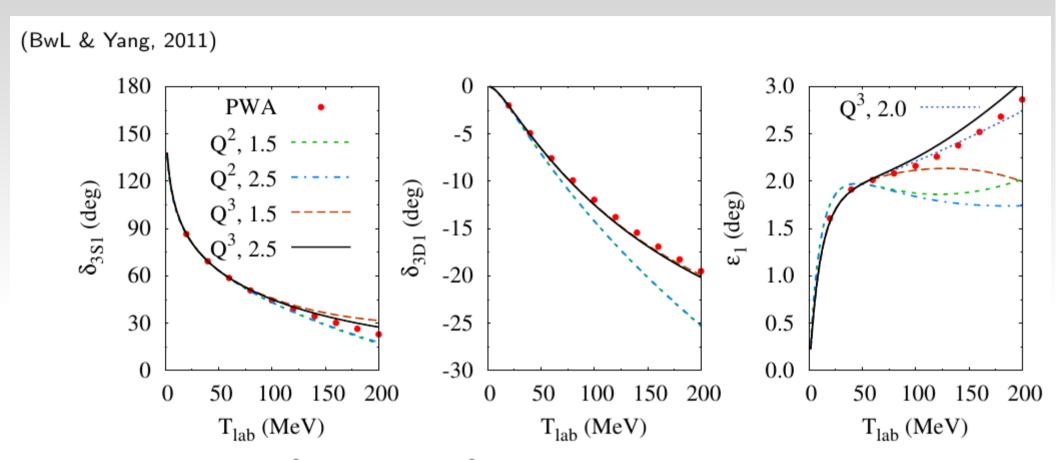
Divergence of distorted-wave expansion

for LO potential $\sim -1/r^3$,

$$\begin{split} \psi_{k}^{(0)}(r) &\sim \left(\frac{\lambda}{r}\right)^{\frac{1}{4}} \left[u_{0}(r/\lambda) + k^{2}r^{2}\sqrt{\frac{r}{\lambda}}u_{1}(r/\lambda) + \mathcal{O}(k^{4}) \right] \\ \lambda &= \frac{3g_{A}^{2}m_{N}}{8\pi f_{\pi}^{2}} \qquad u_{1,2}(x) \sim \mathcal{O}(1) \\ V_{2\pi} &\sim \frac{1}{r^{5}} r \to 0 \\ T^{(2)} &= \langle \psi^{(0)} | V_{2\pi} | \psi^{(0)} \rangle \\ &\sim \int_{\sim 1/\Lambda} dr r^{2} |\psi^{(0)}(r)|^{2} \frac{1}{r^{5}} \sim \alpha_{0}(\Lambda) \Lambda^{5/2} + \beta_{0}(\Lambda) k^{2} + \mathcal{O}(k^{4}\Lambda^{-5/2}) \end{split}$$

Two pieces of divergences suggest two counterterms in uncoupled channels: C & D terms in ${}^{3}P_{0}$...

3S1 - 3D1 phase shifts



 Q^2 : leading TPE, Q^3 : subleading TPE. "1.5": $\Lambda=1.5~{\rm GeV}$

Good agreement with partial-wave analysis up to T_lab ~ 100 MeV (k_cm ~ 200 MeV)

The saga of 1S0

$$V_{1S0}^{(0)} = -\frac{g_A^2 m_\pi^2}{4f_\pi^2} \frac{e^{-m_\pi r}}{r} + C_0 \,\delta(\vec{r})$$

- OPE becomes regular near the origin $\sim 1/r \rightarrow no$ singular attraction
- Since T_yukawa is finite, renormalization can be more easily seen

$$V^{(0)} = V_{Yukawa} + C_0, \ T_{1S0}^{(0)} = T_{Yukawa} + \frac{\chi^2(k;k)}{\frac{1}{C_0} - I_k}, \ I_k \sim \#\Lambda + \#m_\pi^2 \ln \Lambda$$

(Kaplan et al, 1996)

O(Q) does not vanish in 150

LO residual cutoff variation ~
$$\frac{k^2}{M_{lo}\Lambda}$$

For comparison, in 3S1~
$$\frac{k^2 M_{lo}^{1/2}}{\Lambda^{5/2}}$$

 \rightarrow LO theo. error is at least O(Q)

RG invariance enforced more strictly

- → can't be provided by TPE
- $\rightarrow C_2 p^2$ must be O(Q), rather than O(Q^2) as suggested by NDA

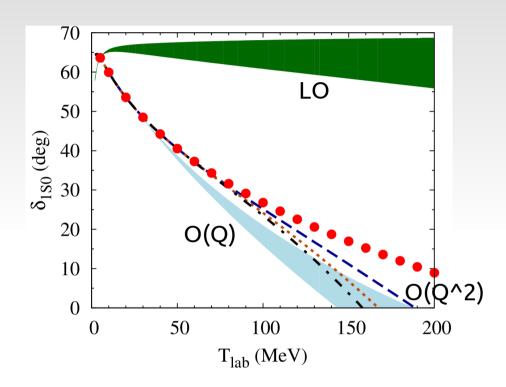
$$\rightarrow \frac{\widetilde{r}}{2} \sim \frac{1}{M_{hi}} \qquad T^{(0)} + T^{(1)} = T_{Y} + \frac{4\pi}{m_{N}} \frac{\chi_{k}^{2}}{-\frac{1}{\widetilde{a}(\mu)} + \frac{\widetilde{r}}{2}k^{2} - \frac{4\pi}{m_{N}}I_{k}^{R}(\mu)}$$

But PWA says \widetilde{r} is rather large

$$\frac{\widetilde{r}}{2}=1.55\,\mathrm{fm}=\frac{1}{127\,\mathrm{MeV}}$$
 Steele & Furnstahl (1999)

Need to improve LO of 1S0

BwL & CJ Yang (2012)



Red dots are PWA

- Converge a bit too slow
- Needs to promote $C_2\delta''(\vec{r})$ to LO \rightarrow fine tuning of effective range
- Not so easy as far as renormalization is concerned

Improve LO of 150

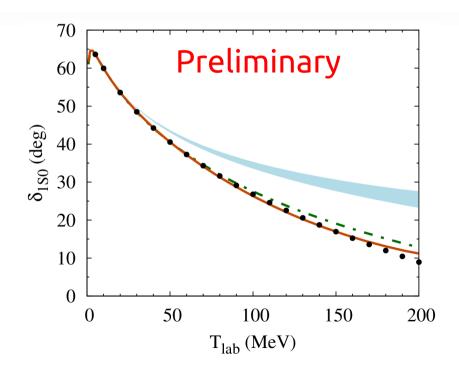
- To introduce energy dependence in LO counterterm, use auxiliary field (only coupled to 1S0) → s-channel exchange
- Φ does not correspond to physical state

$$V^{(0)} = V_{Yukawa} + rac{\sigma y^2}{E + \Delta} \,, \qquad T^{(0)}_{1S0} = T_{Yukawa} + rac{\chi^2(k;k)}{rac{E + \Delta}{\sigma y^2} - I_k}$$

Subleading orders of 150

Dibaryon Lagrangian doesn't need to be the most general one

	with dibaryon	w/o dibaryon
$\mathcal{O}(1)$	$rac{\sigma y^2}{E+\Delta}+Yukawa$	$C_0 + C_2 p^2 + $ Yukawa
$\mathcal{O}(Q)$	C_0	$C_4 p^4$
$\mathcal{O}(Q^2)$	$C_2 p^2 +$ leading TPE	$\it C_6p^6+$ leading TPE



- Convergence improved, with one more para.
- Fine-tuning incorporated systematically

Blue: LO

Green: O(Q)
Brown: O(Q^2)

Black: PWA

Summary

- Consistent power counting → meaningful theoretical error
- NDA may fail to capture short-range physics because of two mass scales
- RG invariance can constrain power-counting schemes
- Good fit to NN phase shifts up to T_lab ~ 100 MeV