Quantum Monte Carlo study of the Hyperon-Nucleon interaction

Diego Lonardoni

Physics Department & I.N.F.N., University of Trento, via Sommarive 14, 38123 Povo (TN), Italy

Collaborators:

- 🛠 F. Pederiva (Trento, Italy)
- 🕸 P.Armani (Trento, Italy)
- 😪 S. Gandolfi (LANL, US-NM)
- ☆ K. E. Schmidt (ASU, US-AZ)
- \Im G. Co' (Lecce, Italy)

INT, Seattle - October 25, 2012

Outline

✓ Motivations:

- theoretical & experimental interest
- the idea of the project

✓ The method: Auxiliary Field Diffusion Monte Carlo

- ✓ The interaction: Usmani $\Lambda N ~\&~ \Lambda NN$
- ✓ Results: B_{Λ} , ρ_N , ρ_{Λ}
- ✓ Conclusions & Perspectives

courtesy of Stefano Gandolfi

 $n p e \mu \Lambda \Sigma \Xi \pi_c K_c q_p$?

courtesy of Stefano Gandolfi

H. Đapo, B.-J. Schaefer, and J. Wambach, Phys. Rev. C 81 (2010) 035803

TOV equations —— mass-radius relation & maximum mass

TOV equations —— mass-radius relation & maximum mass

Motivations: experimental interest

Motivations: experimental interest

Motivations: the idea

information about the hyperon-nucleon interaction

stochastic ab-initio method with microscopic interaction Auxiliary Field Diffusion Monte Carlo (AFDMC)

$$\begin{aligned} \tau &= \frac{it}{\hbar} \quad \rightarrow \quad -\frac{\partial}{\partial \tau} \psi(\boldsymbol{R}, \boldsymbol{S}, \tau) = \mathcal{H} \psi(\boldsymbol{R}, \boldsymbol{S}, \tau) \\ \psi(\boldsymbol{R}, \boldsymbol{S}, \tau) &= e^{-(\mathcal{H} - E_0)\tau} \psi(\boldsymbol{R}, \boldsymbol{S}, 0) \\ &= e^{-(E_0 - E_0)\tau} c_0 \varphi_0(\boldsymbol{R}, \boldsymbol{S}) \\ &+ \sum_{n > 0} e^{-(E_n - E_0)\tau} c_n \varphi_n(\boldsymbol{R}, \boldsymbol{S}) \\ &\downarrow \tau \to \infty \\ c_0 \varphi_0(\boldsymbol{R}, \boldsymbol{S}) \end{aligned}$$

 $\psi(\mathbf{R}, \mathbf{S}, \tau + d\tau) = \int \langle \mathbf{S}\mathbf{R} | e^{-(\mathcal{H} - E_0)d\tau} | \mathbf{R}'\mathbf{S}' \rangle \langle \mathbf{S}'\mathbf{R}' | \psi(\tau) \rangle d\mathbf{R}' d\mathbf{S}'$ walkers $\mathcal{D} = \hbar^2/2m$ $\left(\frac{1}{4\pi\mathcal{D}d\tau}\right)^{\frac{3N}{2}} e^{-\frac{(\mathbf{R}-\mathbf{R}')^2}{4\mathcal{D}d\tau}}$ $\mathrm{e}^{-\left(\frac{V(\mathbf{R}')+\hat{V}(\mathbf{R})}{2}-E_0\right)d\tau}$ $\int_{d\tau} d\tau$ kinetic potential term d au $d\tau$ roblem

 $\mathcal{P} \sim \mathrm{e}^{-\frac{1}{2}\lambda d\tau \mathcal{O}^2}$ $\psi \sim \sum 2^A \frac{A!}{(A-Z)!Z!}$ terms high computational cost \rightarrow GFMC: $A \leq 12$ Hubbard-Stratonovich transformation Idea: $e^{-\frac{1}{2}\lambda d\tau \mathcal{O}^2} = \frac{1}{\sqrt{2\pi}} \int dx \ e^{-\frac{x^2}{2} + \sqrt{-\lambda d\tau}x\mathcal{O}}$ auxiliary field rotation over spin-isospin configurations computational cost: $\sim A! \rightarrow \sim A^3$

AFDMC for nuclei & hypernuclei

- wave function
- SD made of nucleon single particle orbitals (Skyrme & B1) × Λ single particle orbital
 Jastrow correlation functions

Note I: Λ single particle orbital Note2: center of mass corrections

- observables nucl. & hyp. binding energy
 - Λ separation energy
 - Λ & N single particle density
- interactions ? local interactions in coordinate space

nuclear potentials
 Argonne V4', V6', V8'(6)
 Minnesota

$$V_{NN}(AV6): \mathcal{O}_{ij}^{p=1,6} = \underbrace{\{1, \sigma_i \cdot \sigma_j, S_{ij}\} \otimes \{1, \tau_i \cdot \tau_j\}}_{V_{NN}^{sd} + V_{NN}^{si}}$$

$$V_{NN}^{sd} = \frac{1}{2} \sum_{ij} \sum_{\gamma} \tau_i^{\gamma} \left(\mathcal{A}_{ij}^{[\tau]}\right) \tau_j^{\gamma} \qquad A \times A$$

$$+ \frac{1}{2} \sum_{ij} \sum_{\alpha\beta} \sigma_i^{\alpha} \left(\mathcal{A}_{i\alpha,j\beta}^{[\sigma]}\right) \sigma_j^{\beta} \qquad 3A \times 3A$$

$$+ \frac{1}{2} \sum_{ij} \sum_{\alpha\beta\gamma} \tau_i^{\gamma} \sigma_i^{\alpha} \left(\mathcal{A}_{i\alpha,j\beta}^{[\sigma\tau]}\right) \tau_j^{\gamma} \sigma_j^{\beta} \qquad 3A \times 3A$$

nuclear potentials

- Argonne V4', V6', V8'(6)Minnesota
- hypernuclear potential
 Usmani interaction

diagrammatic contributions due to pion exchange
 2-body ΛN and 3-body ΛNN terms

A. Bodmer, Q. N. Usmani, J. Carlson, Phys. Rev. C 29 (1984) 684-687

A. Bodmer, Q. N. Usmani, Nucl. Phys. A 477 (1988) 621-651

A. A. Usmani, S. C. Pieper, Q. N. Usmani, Phys. Rev. C 51 (1995) 2347

A. A. Usmani, Phys. Rev. C 52 (1995) 1773-1777

A. A. Usmani, S. Murtaza, Phys. Rev. C 68 (2003) 024001

A.A. Usmani, Phys. Rev. C 73 (2006) 011302

A. A. Usmani, F. C. Khanna, J. Phys. G: Nucl. Part. Phys. 35 (2008) 025105

$$\Lambda N \qquad v_{\Lambda i}(r) = v_0(r) + v_0(r)\varepsilon(\mathcal{P}_x - 1) + \frac{1}{4}v_\sigma T_\pi^2(m_\pi r)\boldsymbol{\sigma}_\Lambda \cdot \boldsymbol{\sigma}_i$$

$$\begin{cases} v_0(r) = v_c(r) - v_{2\pi}(r) \\ v_c(r) = W_c \left[1 + e^{\frac{r - \bar{r}}{a}} \right]^{-1} \\ v_{2\pi}(r) = \bar{v} T_{\pi}^2(m_{\pi}r) \end{cases} \begin{cases} v_{\sigma} = v_s - v_t \\ \bar{v} = \frac{1}{4}(v_s + 3v_t) \end{cases}$$

parameters fitted on Λp scattering data

$$\Lambda N \qquad v_{\Lambda i}(r) = v_0(r) + v_0(r)\varepsilon(\mathcal{P}_x - 1) + \frac{1}{4}v_\sigma T_\pi^2(m_\pi r)\boldsymbol{\sigma}_\Lambda \cdot \boldsymbol{\sigma}_i$$

$$\Lambda NN \quad v_{\Lambda ij} = v_{\Lambda ij}^{2\pi} + v_{\Lambda ij}^D = v_{\Lambda ij}^{PW} + v_{\Lambda ij}^{SW} + v_{\Lambda ij}^D$$

$$v_{\Lambda ij}^{PW} = -\frac{1}{6}C^{P}\{X_{i\Lambda}, X_{\Lambda j}\} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}$$

$$v_{\Lambda ij}^{SW} = C^{S}Z_{\pi} (m_{\pi}r_{\Lambda i}) Z_{\pi} (m_{\pi}r_{\Lambda j}) (\boldsymbol{\sigma}_{i} \cdot \hat{\boldsymbol{r}}_{i\Lambda} \boldsymbol{\sigma}_{j} \cdot \hat{\boldsymbol{r}}_{j\Lambda}) \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}$$

$$v_{\Lambda ij}^{D} = W^{D}T_{\pi}^{2} (m_{\pi}r_{\Lambda i}) T_{\pi}^{2} (m_{\pi}r_{\Lambda j}) \left[1 + \frac{1}{6}\boldsymbol{\sigma}_{\Lambda} \cdot (\boldsymbol{\sigma}_{i} + \boldsymbol{\sigma}_{j})\right]$$

parameters not yet fixed !!

$$V_{\Lambda N} + V_{\Lambda NN}$$

$$V_{\Lambda N} = \sum_{i} v_0(r_{\Lambda i})(1 - \epsilon + \epsilon P_x) + \sum_{i} \sum_{\alpha} \sigma_{\Lambda}^{\alpha} \left(\mathcal{B}_i \right) \sigma_i^{\alpha} \quad 1 \times A$$

$$V_{\Lambda NN}^{D} = \frac{1}{2} \sum_{i \neq j} W^{D} T_{\Lambda i}^{2} T_{\Lambda j}^{2} + \frac{1}{2} \sum_{i \neq j} \sum_{\alpha} \sigma_{\Lambda}^{\alpha} \left(\mathcal{C}_{ij} \right) \sigma_i^{\alpha} \qquad A \times A$$

$$V_{\Lambda NN}^{2\pi} = \frac{1}{2} \sum_{i \neq j} \sum_{\alpha \beta \gamma} \tau_i^{\gamma} \sigma_i^{\alpha} \left(\mathcal{D}_{i\alpha, j\beta} \right) \tau_j^{\gamma} \sigma_j^{\beta} \qquad 3A \times 3A$$

good for Hubbard-Stratonovich

The interaction work in progress

possible charge symmetry breaking term:

$$v_{\Lambda i}^{\rm CSB} = \tau_i^3 \, v_0^{\rm CSB} \, T_\pi^2(m_\pi r_{\Lambda i})$$

 $v_0^{\text{CSB}} = -0.050(5) \text{ MeV}$

Q. N. Usmani, A. R. Bodmer, Phys. Rev. C 60 (1998) 055215

 Λp : more attractive Λn : less attractive

important for light isobar hypernuclei

significant effect for heavy hypernuclei, with large n excess

no quadratic operator

simple implementation in the AFDMC code

 Λ -separation energy

 Λ -separation energy

 Λ -separation energy

charge symmetry breaking effect $\longrightarrow A = 4 \dots 17$

preliminary !!	$^4_\Lambda { m H}$	$^4_{\Lambda}{ m He}$	$^{5}_{\Lambda}{ m He}$	$^6_\Lambda { m H}$	$^6_{\Lambda}{ m He}$	$^{17}_{\Lambda}\mathrm{O}$
B^{noCSB}_{Λ}	2.06(8)	2.0(1)	5.24(4)	4.0(2)	6.5(2)	18.3(5)
B_{Λ}^{CSB}	1.95(8)	2.1(1)	5.21(7)	3.7(2)	6.4(2)	
B^{exp}_{Λ}	2.04(4)	2.39(3)	3.12(2)	4(1)	4.2(1)	13.6(*)
ΔB_{Λ}	0.15(13)			2.7(3)		
ΔB^{exp}_{Λ}	0.35(5)			?		

charge symmetry breaking effect $\longrightarrow A = 4 \dots 17$

preliminary !!	$^4_\Lambda { m H}$	$^4_{\Lambda}{ m He}$	$^{5}_{\Lambda}{ m He}$	$^6_{\Lambda}{ m H}$	$^6_{\Lambda}{ m He}$	$^{17}_{\Lambda}\mathrm{O}$
B^{noCSB}_{Λ}	2.06(8)	2.0(1)	5.24(4)	4.0(2)	6.5(2)	18.3(5)
B_{Λ}^{CSB*}	1.88(9)	2.30(15)	5.21(7)	3.7(2)	6.4(2)	
B^{exp}_{Λ}	2.04(4)	2.39(3)	3.12(2)	4(1)	4.2(1)	13.6(*)
ΔB_{Λ}^*	0.43(17)			2.7(3)		
ΔB^{exp}_{Λ}	0.35(5)			?		

consistent for the $\Lambda p \& \Lambda n$ channels

deeper investigation needed !!

Conclusions & Perspectives

- AFDMC algorithm can be extended to hypernuclear systems: study of the hyperon-nucleon interaction
- 3-body ΛNN interaction fundamental for the computation of the hyperon separation energy
- CSB interaction needed
- 3-body ΛNN interaction repulsive in hypernuclei: extrapolation for nuclear matter \longrightarrow NS EOS with Λ
- possible inclusion of a $\Lambda\Lambda$ interaction: AFDMC hypernuclear code ready
- possible application to neutron drops: study of exotic systems

fine tuning of the parameters

work in progress

next step (LANL)

future work

(future work)

Thank you for your attention

$$T_{\pi}(x) = \left(1 + \frac{3}{x} + \frac{3}{x^2}\right) Y_{\pi}(x)\xi(r)$$

$$Y_{\pi}(x) = \frac{e^{-x}}{x}\xi(r) \qquad \xi(r) = 1 - e^{-cr^2}$$

$$Z_{\pi}(x) = \frac{x}{3} \left[Y_{\pi}(x) - T_{\pi}(x) \right]$$

 $X_{\Lambda i} = (\boldsymbol{\sigma}_{\Lambda} \cdot \boldsymbol{\sigma}_{i}) Y_{\pi} (m_{\pi} r_{\Lambda i}) + S_{\Lambda i} T_{\pi} (m_{\pi} r_{\Lambda i})$

 $S_{\Lambda i} = 3 \left(\boldsymbol{\sigma}_{\Lambda} \cdot \hat{\boldsymbol{r}}_{\Lambda i} \right) \left(\boldsymbol{\sigma}_{i} \cdot \hat{\boldsymbol{r}}_{\Lambda i} \right) - \boldsymbol{\sigma}_{\Lambda} \cdot \boldsymbol{\sigma}_{i}$

Constant	Value	Unit
$m_{\pi^{\pm}}$	139.57018(35)	MeV
m_{π^0}	134.9766~(6)	MeV
W_c	2137	MeV
r_0	0.5	fm
a	0.2	fm
arepsilon	$0.1 \div 0.38$	_
$ar{v}$	6.15(5)	MeV
v_s	6.33, 6.28, 6.23	MeV
v_t	6.09, 6.04, 5.99	MeV
v_{σ}	0.24	MeV
c	2.0	fm^{-2}
W^D	$0.01 \div 0.05$	MeV
C^P	$0.4 \div 2.0$	MeV
C^S	~ 1.5	MeV

Motivations: experimental interest

 $J_c - 1/2$