Direct association of halo dimers and trimers in ultracold atoms.

Lev Khaykovich *Physics Department, Bar-Ilan University,* 52900 Ramat Gan, Israel

Electroweak properties of light nuclei, INT Seattle 7/11/2012

People

Bar-Ilan University, Israel

Eindhoven University of Technology, The Netherlands

Servaas Kokkelmans

L. Kh, Eli Shwartz, Noam Gross, Zav Shotan, Olga Machtey Not on the picture: Aviad Schori, Cornee Ravensbergen (short term visitor)

Ultracold (Li) atoms

Magneto-optical trap

Close to the resonance (orbital electronic states) visible (laser) light – 671 nm (\sim 2 eV)

Magnetic fields

Ultrahigh vacuum environment

 $\begin{array}{l} \textbf{Dissipative trap} \\ N \sim 5 \times 10^8 \text{ atoms} \\ n \sim 10^{10} \text{ atoms/cm}^3 \\ T \sim 300 \ \mu K \end{array}$

Ultracold atoms – table-top experiment

Ultracold (Li) atoms

Cooling:

Trapping: conservative atom trap

N. Gross and L. Khaykovich, PRA 77, 023604 (2008)

Scattering length

At low temperatures the scattering is completely s-wave dominated.

s-wave scattering length *a* is determined by the last bound state

 $a = a_{bg}$

Li atoms:
$$a_{bg}=10a_{Bohr}$$

Typical size of the interatomic potential – the van der Waals length $l_{vdW} \sim 100 a_{Bohr}$

Feshbach resonance

Magnetic field tuning of the scattering length.

Atomic separation R

Closed channel: singlet potential bound state Open channel: triplet potential

free atoms

Different magnetic moments -The thriplet potential depends on the magnetic field

- The singlet potential does not

EXPERIMENTAL PLAYGROUND

Experimental playground - 7Li atoms

Hyperfine structure of the ground state.

Experimental playground - ⁷Li

3 identical bosons on a single nuclear-spin state.

Experimental playground - ⁷Li

Absolute ground state

The one but lowest Zeeman state

Feshbach resonance Feshbach resonance

TWO-BODY UNIVERSALITY

Feshbach molecule (universal dimer)

Feshbach molecule (universal dimer):

$$E_b = -\frac{\hbar^2}{ma^2}$$

Bare state (non-universal) dimer:

$$E_b = \delta \mu \big(B - B_0 \big)$$

Also: **deuteron**, He₂

Universal dimer – quantum halo state

ASSOCIATION OF HALO DIMERS

Differenet systems

- Rf association of universal dimers (partial list only):
 - □ 2005 ⁸⁵Rb JILA, Boulder, CO
 - □ 2006 ⁶Li in Innsbruck, Austria; MIT, Cambridge MA
 - □ 2008 ⁴¹K ⁸⁷Rb in Florence, Italy
 - □ 2009⁴⁰K ⁸⁷Rb in Hannover, Germany
 - 2010 ⁷Li in BIU, Israel
 - ••••

Rf association of universal dimers

Rf association of universal dimers

Precise characterization of Feshbach resonances by rf-spectroscopy of universal dimers.

N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans and L. Khaykovich, C.R. Physique 12, 4 (2011) ; arXiv:1009.0926

Rf association of universal dimers

Precise characterization of Feshbach resonances by rf-spectroscopy of universal dimers.

N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans and L. Khaykovich, C.R. Physique 12, 4 (2011) ; arXiv:1009.0926

Mapping between the scattering length and the applied magnetic field

Precise characterization of Feshbach resonances by rf-spectroscopy of universal dimers.

State	Туре	B_0 (G)		
		Combined fit	Experimental	
$ m_F = 0\rangle$	narrow	845.54	844.9(8)	
$ m_F = 0\rangle$	wide	893.95(5)	893.7(4)	
$ m_F = 1\rangle$	wide	737.88(2)	738.2(4)	

Improved characterization of Li inter-atomic potential.

 $a_s = 34.33(2)a_0$ $a_T = -26.87(8)a_0$

N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans and L. Khaykovich, C.R. Physique 12, 4 (2011) ; arXiv:1009.0926

THREE-BODY UNIVERSALITY: EFIMOV QUNATUM STATES

Efimov scenario – universality window

Position of a highly excited Efimov state is fixed by a 3-body parameter.

Efimov scenario and real molecules

Three-body recombination

Three body inelastic collisions result in a weakly (or deeply) bound molecule.

Release of binding energy causes loss which probes 3-body physics.

Experimental observable - enhanced three-body recombination.

Experimental observables

Experimental observable – recombination *minimum*.

EXPERIMENTAL RESULTS

Different systems

- Efimov physics (and beyond) with ultracold atoms:
 - □ 2006 … ¹³³Cs Innsbruck
 - 2008 2010 ⁶Li 3-component Fermi gas in Heidelberg, Penn State and Tokyo Univ.
 - □ 2009 ³⁹K in Florence, Italy
 - □ 2009 ⁴¹K ⁸⁷Rb in Florence, Italy
 - □ 2009 ⁷Li in Huston University, TX
 - □ 2009 ... ⁷Li in BIU, Israel
 - □ 2012 ⁸⁵Rb JILA, Boulder, CO

Experimental results

Typical set of measurements - atom number decay and temperature:

Loss rate from a trap:

 $\dot{N} = -K_3 \langle n^2 \rangle N$ $K_3 - 3$ -body loss coefficient [cm⁶/sec]

a > 0: T= 2 – 3 μ K

a < 0: T= 1 – 2 μ K

N. Gross, Z. Shotan, S. Kokkelmans and L. Khaykovich, PRL 103, 163202 (2009); PRL 105, 103203 (2010).

Summary of the results

Fitting parameters to the universal theory:

State	η_+	η_{-}	a_{+}/a_{0}	a_{-}/a_{0}	$a_{+}/ a_{-} $
$ m_F = 0\rangle$	0.213(79)	0.180(48)	238(25)	-280(12)	0.85(11)
$ m_F = 1\rangle$	0.170(41)	0.253(62)	265(16)	-274(12)	0.97(8)
				$ a_{-} /r_{0} = 8.6(4)$	UT prediction:
					$a_{\perp}/ a_{\perp} = 0.96(3)$

Derived parameters:

	Position of recombination minima:	Position of atom-dimer threshold:		
		$a_{_+}$	a_{-}	
$ m_F=0\rangle$	$a_0^* = 1134(120)a_0$	$a_* = 262(27)a_0$	$a_* = 288(26)a_0$	
$\left m_{F}=1 \right\rangle$	$a_0^* = 1262(76)a_0$	$a_* = 292(18)a_0$	$a_* = 282(16)a_0$	

- 3-body parameter is the same across the region of $|a| \rightarrow \pm \infty$
- 3-body parameter is the same for both nuclear-spin subleves.

N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans and L. Khaykovich, C.R. Physique 12, 4 (2011).

ASSOCIATION OF HALO TRIMERS.

Rf association of Efimov trimers

Three-atom continuum to trimer transition? Can it work?

See also rf association of Efimov trimers in three-component Fermi gas:

T. Lompe, T.B. Ottenstein, F.Serwane, A.N. Wenz, G. Zurn, S. Jochim, Science 330, 940 (2010).

Energy levels

Rf scans

Remaining atoms after rf-pulse at different magnetic fields.

O. Machtey, Z. Shotan, N. Gross and L. Khaykovich, PRL 108, 210406 (2012)

Trimer-dimer energy difference

O. Machtey, Z. Shotan, N. Gross and L. Khaykovich, PRL 108, 210406 (2012)

Beyond universality theory

Beyond universality in three-body recombination: An effective field theory treatment

C. JI^{1(a)}, D. R. PHILLIPS^{1,2} and L. PLATTER^{3,4}

¹ Department of Physics and Astronomy, Ohio University - Athens, OH 45701, USA
² Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn - D-53115, Bonn, Germany, EU
³ Department of Physics, Ohio State University - Columbus, OH 43120, USA
⁴ Institute for Nuclear Theory, University of Washington - Seattle, WA 98102, USA

Abstract – We discuss the impact of a finite effective range on three-body systems interacting through a large two-body scattering length. By employing a perturbative analysis in an effective field theory well suited to this scale hierarchy we find that an additional three-body parameter is required for consistent renormalization once range corrections are considered. This allows us to extend previously discussed universal relations between different observables in the recombination of cold atoms to account for the presence of a finite effective range. We show that such range corrections allow us to simultaneously describe the positive and negative scattering-length loss features observed in recombination with ⁷Li atoms by the Bar-Ilan group. They do not, however, significantly reduce the disagreement between the universal relations and the data of the Rice group on ⁷Li recombination at positive and negative scattering lengths.

Prediction including finite effective range: $a_* = (210 \pm 44)a_B$

C. Ji, D. Phillips, L.Platter, Europhys. Lett. 92, 13003 (2010).

3-body recombination data

Avalanche resonance.

O. Machtey, Z. Shotan, N. Gross and L. Khaykovich, PRL 108, 210406 (2012)

Conclusions and outlook

- Ultracold atoms are extremely suitable to study few body universal physics and halo quantum states.
- Remarkable progress (experimental and theoretical) has been achieved in recent years.
- There are still many open questions to be studied.