Precision Muon Capture on the Proton and Very Light Nuclei

Peter Kammel

Department of Physics and Center for Experimental Nuclear Physics and Astrophysics, University of Washington http://www.npl.washington.edu/muon/

MuCap

INT-12-3: Light nuclei from first principles September 17 - November 16, 2012

MuSun

Outline

- $\mu \rightarrow e v v$ Strength of Weak Interaction MuLan G_F
- $\mu + p \rightarrow n + v$ Basic QCD Symmetries MuCap G_P
- $\mu + d \rightarrow n + n + v$ $\mu + {}^{3}\text{He} \rightarrow t + v$ MuSun
- Weak few nucleon reactions and astrophysics

Muon Lifetime

α

0.37 ppb

Fundamental electro-weak couplings

Implicit to all EW precision physics

 $9 \text{ ppm} \rightarrow 0.5 \text{ ppm}$

MuLan Collaboration

G_F

$$rac{G_{
m F}}{\sqrt{2}} = rac{g^2}{8M_{
m W}^2} \left(1 + \Delta r(m_{
m t}, m_{
m H}, \ldots)
ight)$$

 M_{7}

23 ppm

Uniquely defined by muon decay

$$\frac{1}{\tau_{\mu^+}} = \frac{{G_{\rm F}}^2 m_{\mu}^5}{192\pi^3} \left(1+{\it q}\right) \label{eq:tau_prod} \mbox{QED}$$

Extraction of G_F from τ_{μ} : Recent two-loop calc. reduced error from 15 to ~0.2 ppm

MuLan Final Results

 τ (R06) = 2 196 979.9 œ2.5 ± 0.9 ps τ (R07) = 2 196 981.2 ± 3.7 ± 0.9 ps

τ(Combined) = 2 196 980.3 ± 2.2 ps (1.0 ppm)

The most precise particle or nuclear or atomic lifetime ever measured $$\operatorname{\sf New} G_{\sf F}$$

 $G_{F}(MuLan) = 1.166 378 7(6) \times 10^{-5} \text{ GeV}^{-2} (0.5 \text{ ppm})$

MuLan PRL 106, 041803 (2011) and http://arxiv.org/abs/1211.0960

Outline

• $\mu \rightarrow e \nu \nu$ MuLan Strength of Weak Interaction $G_{\rm F}$

- $\mu + p \rightarrow n + v$ MuCap
- $\mu + d \rightarrow n + n + v$ $\mu + {}^{3}\text{He} \rightarrow t + v$ MuSun

Basic QCD Symmetries

g_P

Muon Capture on the Proton

> Historical: V-A and μ -e Universality

> Today: EW current key probe for

- Understanding hadrons from fundamental QCD
- Symmetries of Standard Model
- Basic astrophysics reactions

Chiral Effective Theories Lattice Calculations

Capture Rate Λ_s and Form Factors

Muon Capture

$$\mu^{-} + \rho \rightarrow \nu_{\mu} + \rho$$
 rate Λ_{S} at q²= -0.88 m_µ²

$$\mathcal{M} = \frac{-iG_F V_{ud}}{\sqrt{2}} \overline{u}(p_\nu) \gamma_\alpha (1 - \gamma_5) u(p_\mu) \overline{u}(p_f) \tau_- \left[V^\alpha - A^\alpha\right] u(p_i)$$

> Form factors

Lorentz, T invariance

$$V_{\alpha} = g_{V}(q^{2}) \gamma_{\alpha} + \frac{i g_{M}(q^{2})}{2 M_{N}} \sigma_{\alpha\beta} q^{\beta}$$
$$A_{\alpha} = g_{A}(q^{2}) \gamma_{\alpha} \gamma_{5} + \frac{\mathbf{g}_{P}(q^{2})}{m_{\mu}} q_{\alpha} \gamma_{5}$$

+ second class currents suppressed by isospin symm.

All form factors precisely known from SM symmetries and data.

apart from $g_P = 8.3 \pm 50\%$

- g_V, g_M from CVC, e scattering
- g_A from neutron beta decay

$$\frac{\delta\Lambda_S}{\Lambda_S} = 2\frac{\delta V_{ud}}{V_{ud}} + 0.466\frac{\delta g_v}{g_v} + 0.151\frac{\delta g_m}{g_m} + 1.567\frac{\delta g_a}{g_a} - \frac{0.179\frac{\delta g_p}{g_p}}{0.179\frac{g_p}{g_p}}$$

$$\sim 0.4\%$$

Axial Vector g_A

Pseudoscalar Form Factor g_P

History

- PCAC
- Spontaneous broken symmetries in subatomic physics, Nambu. Nobel 2008

State-of-the-art

Precision prediction of ChPT

$$g_p(q^2) = \frac{2m_\mu g_{\pi NN}(q^2)F_\pi}{m_\pi^2 - q^2} - \frac{1}{3}g_a(0)m_\mu m_N r_A^2$$

$$g_P = (8.74 \pm 0.23) - (0.48 \pm 0.02) = 8.26 \pm 0.23$$

leading order one loop two-loop <1%

- g_P experimentally least known nucleon FF
- solid QCD prediction (2-3% level)
- basic test of QCD symmetries
- required to "use" muon capture

AXIAL VECTOR CURRENT CONSERVATION IN WEAK INTERACTIONS*

Yoichiro Nambu Enrico Fermi Institute for Nuclear Studies and Department of Physics University of Chicago, Chicago, Illinois (Received February 23, 1960)

Foundations for mass generation chiral perturbation theory of QCD

Kammel & Kubodera, Annu. Rev. Nucl. Part. Sci. 2010.60:327

Gorringe, Fearing, Rev. Mod. Physics 76 (2004) 31 Bernard et al., Nucl. Part. Phys. 28 (2002), R1

45 years of Effort to Determine g_P

"Radiative muon capture in hydrogen was carried out only recently with the result that the derived g_P was almost 50% too high. If this result is correct, it would be a sign of new physics...'

- Lincoln Wolfenstein (Ann.Rev.Nucl.Part.Sci. 2003)

"Rich" Muon Atomic Physics Makes Interpretation Difficult

Strong sensitivity to hydrogen density ϕ (rel. to LH₂) In LH₂ fast ppµ formation, but λ_{op} largely unknown

Precise Theory vs. Controversial Experiments

- Precision technique
- Clear Interpretation
- Clean stops in H₂
- Impurities < 10 ppb
- Protium D/H < 10 ppb
- Muon-On-Request

All requirements simultaneously

- Precision technique
- Clear Interpretation
- Clean stops in H₂
- Impurities < 10 ppb
- Protium D/H < 10 ppb
- Muon-On-Request

All requirements simultaneously

- $\mu p \rightarrow nv$ rare, only 0.16% of $\mu \rightarrow evv$
- neutron detection not precise enough

Lifetime method

measure τ_{μ} to 10ppm

Precision technique

At 1% LH_2 density mostly $p\mu$ atoms during muon lifetime

- Clear Interpretation
- Clean stops in H₂
- Impurities < 10 ppb
- Protium D/H < 10 ppb

All requirements simultaneously

- Precision technique
- Clear Interpretation
- Clean stops in H₂
- Impurities < 10 ppb
- Protium D/H < 10 ppb

All requirements simultaneously

MuCap Technique

Muons Stop in Active TPC Target

to prevent muon stops in walls (Capture rate scales with $\sim Z^4$)

10 bar ultra-pure hydrogen, 1.12% LH₂ 2.0 kV/cm drift field ~5.4 kV on 3.5 mm anode half gap bakeable glass/ceramic materials

Observed muon stopping distribution

3D tracking w/o material in fiducial volume

- Precision technique
- Clear Interpretation
- Clean stops in H₂
- Impurities < 10 ppb
- Protium D/H < 10 ppb
- Muon-On-Request

All requirements simultaneously

- CHUPS purifies the gas continuously
- TPC monitors impurities
- Impurity doping calibrates effect

2004: $c_N < 7 \text{ ppb}, c_{H2O} \sim 20 \text{ ppb}$ 2006 / 2007: $c_N < 7 \text{ ppb}, c_{H2O} \sim 9-4 \text{ ppb}$

Experiment at PSI

Muon On Request

Muon defined by TPC

Signals digitized into pixels with three thresholds (green, blue, red)

TPC side view

Front face view

Electron defined by Independent e-Tracker

Small, but significant interference with µ track

Side View of TPC μ beam (b)t =t₁ (a)t=t,, MWPC MWPC $\mu \rightarrow e \nu_{\nu}$ Ο (d) t = t_{driff} (c) t=t_e Pixel pushed over EH thresh MWPC 16 15 14 3 Upper 13 μ →e v v 4 Midplane 12 5 MWPC Lower 11 +y 10 +x +z 8 9

 simple, robust track reconstruction and its verification essential

Time Distributions are Consistent

$$N(t) = N_0 \cdot w \cdot \lambda \cdot e^{(-\lambda t)} + B$$

No azimuth dependence 457.14 457.12 457.12 457.14 457.12 457.12 457.16

fitted λ is constant

Data run number (~3 minutes per run) ²³

Run groups

MuCap Results

rates with secret offset, stat. errors only

Disappearance Rate λ

$$\Lambda_S(\text{R06}) = 717.3 \pm 7.73_{\text{stat}} \pm 5.55_{\text{syst}} \text{ s}^{-1}$$

 $\Lambda_S(\text{R07}) = 713.1 \pm 8.33_{\text{stat}} \pm 4.34_{\text{syst}} \text{ s}^{-1}$

 $\Lambda_S(R04) = 713.5 \pm 12.5_{stat} \pm 8.6_{syst} s^{-1} PRL 2007$

Error Budget

TABLE II: Applied corrections and systematic errors.

Effect	Corrections and	uncertainties $[s^{-1}]$
	R06	R07
Z > 1 impurities	-7.8 ± 1.87	-4.54 ± 0.93
$\mu - p$ scatter removal	-12.4 ± 3.22	-7.2 ± 1.25
μp diffusion	-3.1 ± 0.10	-3.0 ± 0.10
μd diffusion	±0.74	± 0.12
Fiducial volume cut	± 3.00	± 3.00
Entrance counter ineff.	± 0.50	± 0.50
Electron track def.	± 1.80	± 1.80
Total λ_{μ^-} corr.	-23.30 ± 5.20	-14.74 ± 3.88
μp bound state: $\Delta \lambda_{\mu p}$	-12.3 ± 0.00	-12.3 ± 0.00
$pp\mu$ states: $\Delta \Lambda_{pp\mu}$	-17.73 ± 1.87	-17.72 ± 1.87

MuCap Final Results

MuCap Collaboration,*Oct* 2012 e-Print: <u>arXiv:1210.6545 [nucl-ex]</u>

Capture Rate

 Λ_{s} (MuCap) = 714.9 œ5.4_{stat} œ5.1_{syst} s⁻¹

 $\Lambda_{\rm S}$ (theory) = 712.7 cc3.0_{gA} cc3.0_{RC} s⁻¹

PDG12 updated Czarnecki, Marciano, Sirlin calculation

recent calculations		
711.4	Pheno	CMS
706.6	HBChPT	BHM
714.5	HBChPT	AMK

Pseudoscalar Coupling

 $g_{P}(MuCap) = 8.06 ceo.48_{\Lambda s(ex)} ceo.28_{\Lambda s(th)}$

for $g_A(0) \rightarrow -1.275$ $g_P(MuCap) \rightarrow 8.34$

Precise and Unambiguous MuCap Result Verifies Basic Prediction of Low Energy QCD

Outline

- $\mu \rightarrow e \nu \nu$ MuLan
- Strength of Weak Interaction $G_{\rm F}$
- $\mu + p \rightarrow n + v$ Basic QCD Symmetries MuCap G_P
- $\mu + d \rightarrow n + n + \nu$ $\mu + {}^{3}\text{He} \rightarrow t + \nu$ MuSun

Weak few nucleon reactions and astrophysics

$$L_{1A} \hat{d^R}$$

Motivation

 μ^{-} + d $\rightarrow \frac{1}{2}$ + n + n | measure rate Λ_d in $\mu d(\uparrow\downarrow)$ atom to <1.5%

simplest nuclear weak interaction process with precise th. & exp. nucleon FF (g_P) from MuCap rigorous QCD based calculations with effective field theory

- close relation to neutrino/astrophysics solar fusion reaction pp → de⁺v {d scattering in SNO exp.
- model independent connection to µd by single Low Energy Constant (LEC)

Quest for "unknown" Axial LEC

"Calibrate the Sun"

EC pion less EFT
$$\frac{q}{m_{\pi}}$$
 L_{1A}
ChPT $\frac{q}{\Lambda_{\chi}}$ \hat{d}^R

Extract from axial current reaction in

- 2-body system
 - theoretical clean, natural progression
 - experimental information scarce: ~100% uncertainty in LEC
 - MuSun only realistic option, reduce uncertainty 100% to ~20%

3-body system

- 2 LECs and additional complexity enter
- tritium beta decay
- current state of the art

Precise Experiment Needed

Muon Physics and Interpretation

- Precision technique
- Clear Interpretation
- Clean stops in D₂
- Impurities < 1ppb
- H/D < 100 ppb

Muon-Catalyzed Fusion Breunlich, Kammel, Cohen, Leon Ann. Rev. Nucl. Part. Science, 39: 311-356 (1989)

Precise Experiment Possible?

• Precision technique

Active muon target

- Clear Interpretation
- Clean stops in D₂
- Impurities < 1ppb
- H/D < 100 ppb

liquid Neon cooling at 34K HV Cathode 80 kV drift field 11 kV/cm vertical drift 72 mm grid 3.5 kV cont. circulation & cleaning of the D_2 gas at 5 bar density $\varphi = 6\%$ of 48 anode pads liquid hydrogen 90x120 mm² Be window 0.4 mm

MuSun Detector System

Fusions in TPC

run2011, prelim

robust muon tracking algorithm at 10⁻⁵ level required !

Status and Plans

Analysis

- analysis run 2011 data
 4.8 x 10⁹ good µ- stop
 4 x 10⁸ µ+ stop events
- first physics publication
- study detector upgrades

Upgrades

- new beamline at PSI
- cryo preamp
- TPC optimization
- improved purity and monitoring

Final runs 2013-14

Commissioning October 2012

 $g_{P}(q^{2}=-0.954m_{\mu}^{2})=8.200.7$

 \rightarrow

Summary: Evolution of Precision

future

 G_F

Collaborations

MuLan

Boston University, USA University of Illinois at Urbana-Champaign, Urbana, USA James Madison University, Harrisonburg, USA University of Kentucky, Lexington, USA KVI, University of Groningen, Groningen, The Netherlands Paul Scherrer Institute (PSI), Villigen, Switzerland Regis University, Denver, USA University of Washington, Seattle, USA

MuCap/MuSun

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institute (PSI), Villigen, Switzerland University of California, Berkeley (UCB and LBNL), USA University of Illinois at Urbana-Champaign, Urbana, USA University of Washington, Seattle, USA Université Catholique de Louvain, Belgium University of Kentucky, Lexington, USA Boston University, USA Regis University, Denver, USA University of South Carolina, USA

Supported by NSF, DOE, Teragrid, PSI and Russian Academy Science