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THE BASIC PROBLEM

The basic science question is to model detailed quantum structure of
many-body systems, such the structure of an atomic nucleus.

The algorithms described today are best applied to many body systems with
(a) two “species” (protons and neutrons, or +1/2 and -1/2 electrons)
(b) single-particle basis states with good rotational symmetry (j, m)

To answer this, we solve Schrédinger’s equation:
HY)=E|¥)

* H is generally a very large matrix — dimensions up to
101°% have been tackled.

* H is generally very sparse.
* We usually only want a few low-lying states
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THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

Lanczos algorithm

fundamental operation is matrix-vector multiply

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

We want to solve Schrédinger’s equation:

2
2 - = - - —
2‘%V +U(%)+;V(f;—rj) V(7,7 F...)= E¥
or

HW)= E|W)
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm
fundamental operation is matrix-vector multiply

This differential equation is too difficult to solve directly

Y-V +U(r)+ Y W(F 7 F..) = EW

so we use the matrix formalism
H|W) = E|¥)
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

W)= Yca)  Hy=(cH|p)

(04

EHa/SCﬁ = FEc if <05‘[3)> = 605/3
b

so we use the matrix formalism
H|W) = E|¥)
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Nuclear Hamiltonian: H = E V + E Vir,r ])

l<]

Solve by diagonalizing H in a basis of many-body states.

N HuVe=EN,  H,, =(AlH|B)
B

What do we use for the many-body
basis states { | A>? ?
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Nuclear Hamiltonian: H E V + EV( i ]

l<]

Solve by diagonalizing H in a basis of many-body states.
The many-body states are Slater determinants, or
anti-symmeterized products of single-particle wins.

The single-particle states are defined by
a single-particle potential U(r) (such as
harmonic oscillator or Hartree-Fock)

o

At this point one generally goes to occupation representation:

H = E@CZZ a, 2 ar a:a,a,
I / Ij Maria Mayer

single-particle energies two-body matrix elements




When running a fermion shell model code (e.g. MFD,
BIGSTICK), one enters the following information:

(1) The single-particle valence space

(such as sd or pf); assumes inert core

(2) The many-body model space
(number of protons and
neutrons, truncations, etc.)

(3) The interaction:
single-particle energiw

and

_______ excluded
- ———- } valence space
—0-——0 -0

0000 OO0-O-
0000 - inert core
9000 —

Interaction File
i Single Particle Energies Single Particle States

¥ = =
1.6465800 -3.9477999  -3.1635399
] iz —|

two-body matrix elements

VJT(abDCd)

a bc d

1111 01 -2.1845000
1111 10 -1.4151000
1111 2 1 -0.0665000
1T —0 —> -2.8842001
N I | 10 0.5647000
2111 2 i -0.614%000
2:1 1 1 30 2.0337000
2% 1 25 1 10 -6.5057998
24 1: 2% 1 11 1.0334001

1 2 0 -3.82530 il
5 & /_w)a/

> 1sg

—r0. 2. 1.5 2
0. 2. 25 4

| othits

[1. 0.056
(15112)




The two-body matrix elements in principle but not in practice
depend on the single-particle wfns:

(ab;JT|H|cd; JT) = fd% fd%@a *()g, *(r')
V()@ ()@, (r) = @.(r g, (r)) | Botony e ina

number is read in!

Interaction File

Tzéfl)'f{E Single Particle Energies Single Particle States
(3) The interaction: ,;/@L_mmggg s163595 > [
single-particle energiw THE ! o e s B0 2152 1 omie
and IR
two-body matrix elements MER o | Lmd
Vir(ab,cd) 2111 30 | 20700 (002

5. 1 2 1 10 65057998 —(0ds0)

2 1 -



Summary:
The Schrodinger eqn has become a matrix

eigenvalue equation
S H Vg =E,V,
B

One chooses a basis of approx104 - 1070 states

Key pomt: Once a basis 1s chosen, the two-body interaction 1s reduced to
mtegrals between single-particle states and 1s stored as a list of real numbers
(the two-body matrix elements)

A shell model program then computes the many-body matrix elements
from the two-body matrix elements and solves for eigenvalues/vectors.



THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

Hp = <O“ﬁ‘ﬁ>

* H is generally a very large matrix — dimensions up to
101° have been tackled.

* H is generally very sparse.

* We usually only want a few low-lying states

, Lanczos algorithm!
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

Standard algorithm to obtain all eigenvalues of a real, symmetric
matrix A: Householder

Find orthogonal matrix U such that UT A U = B, a tridiagonal matrix

The Lanczos algorithm 1s similar, in that it also uses an orthogonal
matrix to take A to a tridiagonal matrix B.....

Lanczos algorithm!
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix
| > Lanczos algorithm

fundamental operation is matrix-vector multiply

A‘71 = O‘1‘71 + /3)1‘72
Av, =y, +a,v, + p,V;
Av, Py, + Vs + v,

Av, psvs+o,v, + [,V

Lanczos algorithm!
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

I A = ! — — —
Av, = Py, +av,+ [,

| — — —
AV, = psvs+o,v, + [,V

[ —

matrix-vector multiply
Lanczos algorithm!
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

I need to quickly cover:

* How the basis states are represented

* How the Hamiltonian operator 1s represented
* Why most matrix elements are zero

 Typical dimensions and sparsity
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

This differential equation is too difficult to solve directly

2
(E-%vz +U(r)+ Y V(F - 7j)]\1!(71,72,73...) - EY

i i<j

Can only really solve 1D differential equation

( L d2+U<r>)¢i<r>=ei¢i<r>

_2m dr
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

Can only really solve 1D differential equation
( n o d’

— — + U(F))¢i(r) =£,0,(r) :> {¢l(7)}

Single-particle wave functions labeled by, e.g., n,j, [, m
Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc

Nuclear: 0sy/5, 0p5/9, 0py/9, 0d5/9, 1819, Odg, etc
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

Can only really solve 1D differential equation
( n o d’

— S + U(F))¢i(r) =£,0,(r) :> {¢l(7)}

Product wavefunction (“Slater Determinant”)

V(7o) = 8, (D), (BB, (7)., ()
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the basis states are represented
Product wavefunction (“Slater Determinant”)
qj(;’ia?zjé )= qb@(;’i)% (72)%(73) X ¢@(7N)

Each many-body state can be uniquely determined
by a list of “occupied” single-particle states
= “occupation representation”

Afr A4 A} A4
‘(x> =a,a,d, ...d 0)

ny
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamailtonian 1s represented

“occupation representation” ‘(x> ; a; a;
2 3 N

“creation operator”
VN + Va\ l VaN + + VaN VN
H = ETual a. + EVJ,da aa,a,
ijkl

motion of a single particle interaction of two particles
(“one-body operator”) (“two-body operator”)

Vi = [[ 6P, GOV (7 (P, (P’ rd’r
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamailtonian 1s represented

“occupation representation” ‘(x> =aaa ..a O>
ny n, n, ny

no |1 2 3 4 5 6 7

a=1 |1 0o |0 1 1 0 1

a=2 |1 0 1 o |o 1 1

a=3 |0 1 1 1 0 1 0
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

some technical details: ‘(x> — 21;:1 21;’2 21;3 &ZN
the “M-scheme”

the total M = sum of the m,’s

0)

1 1 0(S) 0

2 2 0(s) 0 Because J, commutes with H,

3 2 1(P) 1 we can use a basis with M fixed
4 ’) 1 (P) 0 = “M-scheme”

5 2 1 (P) 1
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

some technical details: ‘(x> — 21;:1 21;’2 21;3 &ZN
the “M-scheme”

positive parity, M = O:

0)

L L 061 0 1 and 2 (1s,._0)(2s._0)
2 2 0B) 0 3 and 5 (2P;-1) (2P - 1)
3 2 1 (P) 1

4 ) 1(P) 0 negative parity, M = 0
5 ) 1 (P) 1 1 and 4 (184,-0)(2Pm-0)

2 and 4 (28,,0)(2Pge0)
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

some technical details: ‘(x> — 21;:1 21;’2 21;3 &ZN
the “M-scheme”

0)

If I have two species (spin up/down)

m then combined M must be fixed:

1 1 0 (S) 0 e.g. 4 electrons, M = O, + parity
2 2 0(S) 0 spin up: states 1 + 2 (1S5,,_4)(25,,-0)
3 5 1(P) 1 spin down: 3 +5 (2P__¢)(2P,,- )
or
4 2 1 (P) 0 spin up: states 1 + 3 (1S,-,)(2P,,-;)
5 2 1(P) -1 spin down: states 2, 5 (2S__,)(2P,-.1)
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

“occupation representation” ‘(x> =aaa ..a O>
n, n, 'n ny
no |1 2 3 4 5 6 7
a=1 |1 0 0 1 1 0 1
a=2 |1 0 1 0 0 1 1
a=3 |0 1 1 1 0 1 0
H=YTaa,++YV,aaaa
ij ijkl
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamailtonian 1s represented

“occupation representation” ‘(x> =aaa ..a

n ny,%n, ny
no |1 2 4 |5 6 |7
c a=1 (1 |0 |0 | 1. |0 1
a=2 (1 o [1*¥ |o o ™M |1
a=3 |0 1 1 1 |0

a;a;a,asa=1)=|a=2)
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

* How the Hamailtonian 1s represented

“occupation representation” ‘(x> —a ata ...a O>
ny Ny nj nn

n, 1 2 3 4 5 6 7

a=1 |1 0 0 1 1 0 1

a=2 |1 0 1 0 0 1

a=3 |0 1 1 1 0 1 0

/\+/\+A A

a2a4a1a7‘a = 2> = ‘a = 3>
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

“occupation representation” ‘(x> =aaa ..a O>
ny Ny, nj ny

no 1t |2 |3 |4 |5 |e |7

a=1 |1, |0 |0 |1 J1  |o |1

a=2 (1 NJo |1 Jo /flo |1 /|1

=3 [0 T1 1 |17 Jo |17 o

NEAF AL A A _ _ _ need 3 particles to
d,d,deddsd; ‘ o 1> ‘ a 3> interact simultaneously!
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

 Typical dimensions and sparsity

Nuclide | valence valence valence bas1s sparsity
space )

MNe — “d” 2

BMg  “sd” 1 5 44133 05
WCr  pf” 1 5 6M 0.0l
WFe  “pf” 6 10 500M  2xl10*

INSTITUTE FOR NUCLEAR THEORY — SEPT 2012
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

 Typical dimensions and sparsity

Nuclide | valence valence valence bas1s sparsity
space )

20Ne “sd” 2
Mg “sd” 4
YCr “pt” 4
56Fe “pf” 6
12C N,..=8 6
12C N _ =8 6

INSTITUTE FOR NUCLEAR THEORY — SEPT 2012

44,133
oM
500M
600M
600M

0.5
0.01
2x10*
4x10*
2x102

2-body force

3-body force
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

56Fe 501 M 4.2Th
Li N,,=12 252 M 3.6 Th
L N__=14 1200 M 23 Tb
2c N__=6 32M 0.2 Tb
2c N__=8 590M 5Tb
2c N__=10 7800M 111 Th
160 N, =6 26 M 0.14 Tb
60 N__=8 990 M 9.7 Th

INSTITUTE FOR NUCLEAR THEORY — SEPT 2012

32



A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

Basis | matrix store | matrix store
dim| (2-body) (3-body)
“He N, =16 6 M

0.2 Gb 12 Tb

“He N_,=20 39 M 3Tb 270 Tb
L N__=10 43 M 0.4 Th 176 Tb
12c N__=6 32M 0.2Th 6.2 Th
2 N__=8  590M 5 Th 200 Tb

max
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RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

n |1 |2 |3 |4 |5 |6 |7 |8
C o=111 1 1\\.*0 0 O/_O/l
a=2 |1 1 10 1 1710 |0 |0
c a=30 |1 1\\0 0 1 0__|1
=40 |1 |0 ™M |1€ 0 |0
=60 |0 |0 ™M |1€ 1 |0
&Z&;&3&8 =1> | >

o
a,a.a,ag|o.
o

Il
(N

> | = > All of these have the same
5> | o = 6> matrix element: V .

a,d;a,aq
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34



RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

# of nonzero matrix elements vs. # unique matrix elements

Nuclide | valence Valenee Valence
space nonzero | unique

2851 “sd” 26 x 10° 3600
2Fe “pt” 6 6 90 x 107 21,500

Nuclide | ab initio ba51s # nonzero avg
space m.e.s unlque redundancy

=16 oM 2 x 1010
12C N =8 600M 6 x 10! 5x 107 10,000

max
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

We work in an M-scheme basis:

Because J? and J, both commute with H, one does not
need all basis states, but can use many-body basis
restricted to the same M.

This is easy because M is an additive quantum number
so it is possible for a single Slater determinant to be
a state of good M.

(It’s possible to work in a J-basis, e.g. OXBASH or NuShell, but each
basis state is generally a complicated sum of Slater determinants).
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Because the M values are discrete integers or half-integers
(-3,-2,-1,0,1,2,...0or-3/2,-1/2,+1/2, +3/2....)
we can organize the basis states in discrete sectors

Example: 2 protons, 4 neutrons, total M = 0

M,(v) = +4
M,(v) = +3
M, (v) = +2

INSTITUTE FOR NUCLEAR THEORY — SEPT 2012
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M = 0

M,(v) = +4: 24 SDs

M,(v) = +3: 39 SDs

M,(v) = +2: 60 SDs

INSTITUTE FOR NUCLEAR THEORY — SEPT 2012

48 combined

156 combined

540 combined
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

[Vi@=4808 0 | M) =+4:245Ds | 40 combine

V1> ”1>‘V1>
) v )
) X B= a)
:v4> ”2>‘V2>
‘V24> ‘J'L'1>‘V24>
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

Example N = Z nuclei
‘ O{> = ‘ Olp > X ‘ O{n > Nuclide Basis dim # pSDs (=#nSDs)
Neutron SDs 20Ne 640 66
24Mg 28,503 495
28Gi 93,710 924
48Cr 1,963,461 4895

Proton SDs

o o
\ g
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2Fe 109,954,620

38,760

%Ni 1,087,455,228 125,970
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

Factorization allows us to keep track of all basis states
without writing out every one explicitly
-- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply
VN A\ A\ A\
A = Hopy+ Hanyt H

Move 2 protons;
neutrons are

Move 2 neutrons; Move 1 proton +

spectators protons are 1 neutron;
spectators rest are
spectators
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Va\

Move 2 protons;

neutrons are Example: 2 protons, 4 neutrons, total M = 0
spectators

[VE@= 28050 [ W)= +4:245Ds | 46 combines

There are potentially 48 x 48 matrix elements
But for H, ) at most 4 x 24 are nonzero
and we only have to look up 4 matrix elements

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

[VIEmE4808 | M) =+4:245Ds | 40 combined

v,)
V,)
‘”1> =(H11 le) v3>
‘J‘E2> " H, H, V>

4
‘V24>

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

M,(v) = +4: 24 SDs

48 combined

v,)
v,)
‘751> y =(H11 le) V3>
‘.7772> " \H, H, V4>
‘V24>

A

pp 7)|\vi) = Hy\|,)|vy) + Hy |70, )| v, )

T
B

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Comparison of nonzero matrix storage with factorization

56Fe 501 M 290 Gb 0.72 Gb
Li N,,=12 252 M 3600 Gb 96 Gb
Li N_,=14 1200 M 23 Tb 624 Gb
2 N_ =6 32M 196 Gb 3.3 Gb
2 N__=8 590M 5000 Gb 65 Gb
12c N,__=10 7800M 111 Tb 1.4 Tb
160 N, =6 26 M 142 Gb 3.0 Gb
160 N, =8 990 M 9700 Gb 130 Gb

max

INSTITUTE FOR NUCLEAR THEORY — SEPT 2012
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Comparison of nonzero matrix storage with factorization

e e i

252 M 3600 Gb 96 Gb
1 Nmax=14 1200 M 23 Tb 624 Gb
2 N_ =6 32M 196 Gb 3.3 Gb
2 N__=8 590M 5000 Gb 65 Gb
12c N,__=10 7800M 111 Tb 1.4 Tb
160 N__=6 26 M 142 Gb 3.0 Gb
160  N__=8 990 M 9700 Gb 130 Gb

max
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Comparison of nonzero matrix storage with factorization

FACTORIZATION

“He

Basis dim | matrix store | factorization | matrix store | factorization
(2-body) (2-body) (3-body) (3-body)

N, ..

Nmax=
N, =
N =
N =

16
18

=20
=22

46 Gb 1.2 Gb

6M 200 Gb 4 Gb
16M 820 Gb 11 Gb
39M 3Tb 29 Gb
86M 9Tb 70 Gb

INSTITUTE FOR NUCLEAR THEORY — SEPT 2012

2Thb
12 Tb
60 Tb
270Tb
1.1 Pb

16 Gb
60 Gb
190 Gb
600 Gb
1.4Tb
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Comparison of nonzero matrix storage with factorization

FACTORIZATION

“He

Basis dim | matrix store | factorization | matrix store | factorization
(2-body) (2-body) (3-body) (3-body)

sheII_8
Ngpe=9

Nghen=10
N e =11
Nghe=12
Nghen=13

shel

29 M 1.47Tb 0.6 Gb
93 M 8Thb 1.7 Gb
270 M 36 Tb 5Gb
700 M 150 Tb 12 Gb
1.7G 500 Tb 27 Gb
4G 1.7 Pb 60 Gb
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120 Tb
870Tb
5Pb
28 Pb
130 Pb
500 Pb

11 Gb
40 Gb
120 Gb
350 Gb
900 Gb
2Thb
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FACTORIZATION

Comparison of nonzero matrix storage with factorization

Lj
Basis dim | matrix store | factorization | matrix store | factorization
(2-body) (2-body) (3-body)
N .,=8 6 M

36 Gb 1.5Gb 1Tb 26 Gb
N, .=10 43 M 430 Gb 10 Gb 170 Tb 250 Gb
N, =12 250 M 4Th 60 Gb
(2-body) (3-body) (3-body)
N =3 0.4 M 0.8 Gb 6 Mb 10 Gb 44 Mb
N o =4 45 M 330Gb 0.3Gb 9Tb 4 Gb
N o =5 2G 38Th 16 Gb 2 Pb 140 Gb

N, =6 50 G 2 Pb 87 Gb 170 Pb 3Th
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FACTORIZATION

Comparison of nonzero matrix storage with factorization

Be
Basis dim | matrix store | factorization | matrix store | factorization
(2-body) (2-body) (3-body)
N, .,.=6 5M

22 Gb 1 Gb 0.6 Tb 12 Gb
N,..=8 63 M 460 Gb 9 Gb 17 Tb 200 Gb
N, =10 570 M 7 Th 70 Gb

max

Basis dim | matrix store | factorization | matrix store | factorization
(2-body) (3-body) (3-body)
N o =3 4 M 15 Gb 30 Mb 240 Gb 240 Mb

N, o =4 3G 30 Tb 3 Gb 1 Pb 50 Gb
N, o =5 400 G 12 Pb 130 Gb 800 Pb 3.6 Th
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FACTORIZATION

Comparison of nonzero matrix storage with factorization

1OB
Basis dim | matrix store | factorization | matrix store | factorization
(2-body) (2-body) (3-body)
N, .,.=6 12 M 60 Gb 1.3 Gb 1.6Tb 22 Gb
N __=8 165 M 1.3Tb 16 Gb 52Tb 360 Gb

max
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FACTORIZATION

Comparison of nonzero matrix storage with factorization

12C
Basis dim | matrix store | factorization | matrix store | factorization
(2-body) (2-body) (3-body)
Nmax=6

32M  170Gb 3 Gb 5 Th 60 Gb
N,..=8 590 M 5 Tb 45 Gb 200 Th 1Tb
N, =10 8G  100Th 440 Gb

max

Basis dim | matrix store | factorization | matrix store | factorization

(2-body) (3-body) (3-body)
Npe =3 82 M 400 Gb 0.1 Gb 9Thb 1.5 Gb
N.poi=4 600 G 10 Pb 43 Gb 580 Tb 09Tb
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FACTORIZATION

Comparison of nonzero matrix storage with factorization

160
Basis dim | matrix store | factorization | matrix store | factorization
(2-body) (2-body) (3-body)

N, . =4 0.3 M 1Gb 70 Mb 17 Gb 0.7 Gb
N, .=6 26 M 140 Gb 3Gb 4Tb 53 Gb
N, .8 1G 8.6 Tb 70 Gb
Basis dim | matrix store | factorization | matrix store | factorization
(2-body) (3-body) (3-body)

Nyog=3 800 M 6 Tb 0.7 Gb 140 Tb 7.5Gb
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Drawbacks of factorization/on-the-fly algorithms:

Much more complicated to code up (even matrix storage
1s not trivial)

Less flexible 1n basis—for example, importance truncation
much harder (if even possible)
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4-body 1s 1n principle straightforward

EFxperience 1n going from 2-body to 3-body shows
most dithicult part 1s correctly matching indices of
Input mteraction to mnternal representation

(+ induced phases etc) - usetul to have small cases
with known solutions for debugging
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PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload

and distribute across multiple nodes

length of sides =
information to be stored

4 N
Arga = total # of operationfs We can compute the
length of number of operations
§1des = without actually
information counting them!
to be stored

Then we can
easily divide
the work across
compu’re nodes
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PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload
and distribute across multiple nodes

Fe52 on NERSC Franklin
dim = 109M
20 T I T I T I T I T

— idea
— = actual -~

speedup
o
[

0 1 I 1 I 1 I 1 I 1
0 2000 4000 6000 8000 10000

# nodes
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THE BIGSTICK CODE

Many-fermion code: 2"4 generation after REDSTICK code
(started in Baton Rouge, La.)

Arbitrary single-particle radial waveforms
Allows local or nonlocal two-body interaction
Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines
--can run at least dimension 100M+ on desktop
(20 Lanczos iterations in 300 CPU minutes)

20-30k lines of codes

Fortran 90 + MPI + OpenMP

Partially funded by SciDAC

Plans to run on 50,000-100,000 compute nodes
Plans to publish code
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THE BIGSTICK CODE

What about other codes?

MFDn (Vary et al): M-scheme code, includes 3-body,

mostly stores H in memory; optimized for ab initio and
1s leading CI code today for ab initio.

Less flexible in model space, awkward to run on desktop machines.

NuShell(X) (Rae, Brown,Horo1 et al): J-scheme code.
Uses factorization. Flexible single-particle space.
Leading CI code for phenomenological shell model.
No 3-body yet, awkward for Nmax truncations

ANTOINE (Caurier et al): M-scheme code.

Uses factorization. Flexible single-particle MCSM (Otsuka et al): Samples
space. Includes 3-body. Was leading CI code. ‘I]'S‘lzhgme 5351; S:;OC%&}SU??HY- «
Not (fully) parallelized ncludes (?) 3-body. Significant effort

has gone into numerics
Cannot truncate many-body space
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CONCLUSIONS

Factorization allows one to represent and store a many-body
Hamiltonian efficiently and compactly.

The trade-off 1s a more complex algorithm with
many subtleties in parallelization.

BIGSTICK attempts to approach “best of both codes”,

the ab initio capability (in truncation and 3-body) of MFDn
and the efficiency and flexibility of NuShellX.

LOOKING TO PARTNER WITH FEW-BODY / INTERACTION
SPECIALISTS
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