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THE BASIC PROBLEM 

2 

The basic science question is to model detailed quantum structure of  
many‐body systems, such the structure of an atomic nucleus. 

To answer this, we solve Schrödinger’s equation: 

€ 

ˆ H Ψ = E Ψ
* H is generally a very large matrix – dimensions up to 
1010 have been tackled.  
* H is generally very sparse. 
* We usually only want a few low-lying states 

The algorithms described today are best applied to many body systems with 
(a)  two “species” (protons and neutrons, or +1/2 and ‐1/2 electrons) 
(b)  single‐particle basis states with good rotational symmetry (j, m) 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THE KEY IDEAS 

Basic problem: find extremal eigenvalues of  very large, very 
sparse Hermitian matrix    

     Lanczos algorithm 
     fundamental operation is matrix-vector multiply 

3 

Despite sparsity, nonzero matrix elements can require TB of  storage 

Only a fraction of  matrix elements are unique; most are reused. 
Reuse of matrix elements understood through spectator particles. 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 
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THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 

4 

We want to solve Schrödinger’s equation: 

€ 

ˆ H Ψ = E Ψ

  

€ 

−

2

2m
∇2 + U(ri)

i
∑ + V ( r i −

 r j )
i< j
∑

 

 
  

 

 
  Ψ(
 r 1,
 r 2,
 r 3…) = EΨ

or 
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THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 

5 

This differential equation is too difGicult to solve directly 

€ 

ˆ H Ψ = E Ψ

  

€ 

−

2

2m
∇2 + U(ri)

i
∑ + V ( r i −

 r j )
i< j
∑

 

 
  

 

 
  Ψ(
 r 1,
 r 2,
 r 3…) = EΨ

so we use the matrix formalism 
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THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 

6 

€ 

ˆ H Ψ = E Ψ

so we use the matrix formalism 

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα if 

€ 

α β = δαβ
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Nuclear Hamiltonian: 

Solve by diagonalizing H in a basis of many-body states. 

€ 

HAB = A ˆ H B

What do we use for the many-body 
basis states { | A> ? ? 
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Nuclear Hamiltonian: 

Solve by diagonalizing H in a basis of many-body states. 
The many-body states are Slater determinants, or 
anti-symmeterized products of single-particle wfns. 

The single-particle states are defined by 
a single-particle potential U(r)  (such as 

harmonic oscillator or Hartree-Fock) 

At this point one generally goes to occupation representation: 

single-particle energies two-body matrix elements 

Maria Mayer 



When running a fermion shell model code (e.g. MFD, 
BIGSTICK), one enters the following information: 

(1)  The single-particle valence space  
(such as sd or pf); assumes  inert core 

(2) The many-body model space  
(number of protons and  
neutrons, truncations, etc.) 

(3) The interaction:  
single-particle energies  
and  
two-body matrix elements 
VJT(ab,cd) 

inert core 

excluded 

valence space } 



(3) The interaction:  
single-particle energies  
and  
two-body matrix elements 
VJT(ab,cd) 

The two-body matrix elements in principle but not in practice 
depend on the single-particle wfns: 

But only the final 
number is read in! 



Summary:  
The Schrödinger eqn has become a matrix 
eigenvalue equation 

One chooses a basis of approx104 - 1010 states 

Key point:  Once a basis is chosen, the two-body interaction is reduced to 
integrals between single-particle states and is stored as a list of real numbers 
(the two-body matrix elements)  

A shell model program then computes the many-body matrix elements 
from  the two-body matrix elements and solves for eigenvalues/vectors. 



THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 

12 

€ 

Hαβ = α ˆ H β
* H is generally a very large matrix – dimensions up to 
1010 have been tackled.  
* H is generally very sparse. 
* We usually only want a few low-lying states 

Lanczos algorithm! 
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THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 

13 

Lanczos algorithm! 

Standard algorithm to obtain all eigenvalues of a real, symmetric 
matrix A: Householder 

Find orthogonal matrix U such that UT A U = B, a tridiagonal matrix 

The Lanczos algorithm is similar, in that it also uses an orthogonal 
matrix to take A to a tridiagonal matrix B..... 
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THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 

14 

Lanczos algorithm! 

  

€ 

A v 1 =α1
 v 1 + β1

 v 2
  

€ 

A v 2 = β1
 v 1 +α2

 v 2 + β2
 v 3

  

€ 

A v 3 =   

€ 

β2
 v 2 +α3

 v 3 + β3
 v 4

  

€ 

A v 4 =   

€ 

β3
 v 3 +α4

 v 4 + β4
 v 5
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THE BASIC PROBLEM 

 Find extremal eigenvalues of  very large, very sparse Hermitian matrix    

     Lanczos algorithm 

     fundamental operation is matrix-vector multiply 

15 

Lanczos algorithm! 

  

€ 

A v 1 =α1
 v 1 + β1

 v 2
  

€ 

A v 2 = β1
 v 1 +α2

 v 2 + β2
 v 3

  

€ 

A v 3 =   

€ 

β2
 v 2 +α3

 v 3 + β3
 v 4

  

€ 

A v 4 =   

€ 

β3
 v 3 +α4

 v 4 + β4
 v 5

matrix-vector multiply 
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

16 

I need to quickly cover: 
• How the basis states are represented 
• How the Hamiltonian operator is represented 
• Why most matrix elements are zero 
• Typical dimensions and sparsity 
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

17 

• How the basis states are represented 

This differential equation is too difGicult to solve directly 

  

€ 

−

2

2m
∇2 + U(ri)

i
∑ + V ( r i −

 r j )
i< j
∑

 

 
  

 

 
  Ψ(
 r 1,
 r 2,
 r 3…) = EΨ

Can only really solve 1D differential equation 

  

€ 

−

2

2m
d2

dr2
+U(r)

 

 
 

 

 
 φi(r) = εiφi(r)
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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• How the basis states are represented 

Can only really solve 1D differential equation 

  

€ 

−

2

2m
d2

dr2
+U(r)

 

 
 

 

 
 φi(r) = εiφi(r)   

€ 

φi(
 r ){ }

Single-particle wave functions labeled by, e.g.,   n, j, l, m 

Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc 

Nuclear: 0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2, 0d3/2, etc 
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

19 

• How the basis states are represented 

Can only really solve 1D differential equation 

  

€ 

−

2

2m
d2

dr2
+U(r)

 

 
 

 

 
 φi(r) = εiφi(r)   

€ 

φi(
 r ){ }

  

€ 

Ψ( r 1,
 r 2,
 r 3…) = φn1

( r 1)φn2
( r 2)φn3

( r 3)…φnN
( r N )

Product wavefunction (“Slater Determinant”) 
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

20 

• How the basis states are represented 

  

€ 

Ψ( r 1,
 r 2,
 r 3…) = φn1

( r 1)φn2
( r 2)φn3

( r 3)…φnN
( r N )

Product wavefunction (“Slater Determinant”) 

Each many-body state can be uniquely determined  
by a list of “occupied” single-particle states 
= “occupation representation”  

  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

21 

• How the Hamiltonian is represented 

“occupation representation”  
  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0
“creation operator”  

€ 

ˆ H = Tij ˆ a i
+ ˆ a j

ij
∑ + 1

4 Vijkl ˆ a i
+ ˆ a j

+ ˆ a l
ijkl
∑ ˆ a k

motion of a single particle 
(“one-body  operator”) 

interaction of  two particles 
(“two-body operator”) 

  

€ 

Vijkl = φi(
 r )∫∫ φ j (

 r ')V ( r , r ')φk (
 r )φl (

 r ')d3rd3r'
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

22 

• How the Hamiltonian is represented 

“occupation representation”  
  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0
ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

23 

• How the Hamiltonian is represented 

some technical details: 
the “M-scheme”   

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

label  N  l  ml 

1  1  0 (S)  0 

2  2  0 (S)  0 

3  2  1 (P)  1 

4  2  1 (P)  0 

5  2  1 (P)  ‐1 

For any Slater determinant, 
the total M = sum of the ml’s 

Because Jz commutes with H, 
we can use a basis with M fixed 
= “M-scheme” 
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

24 

• How the Hamiltonian is represented 

some technical details: 
the “M-scheme”   

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

label  N  l  ml 

1  1  0 (S)  0 

2  2  0 (S)  0 

3  2  1 (P)  1 

4  2  1 (P)  0 

5  2  1 (P)  ‐1 

So for 2-particle system, 
positive parity, M = 0: 
1 and 2  (1sm=0)(2sm=0) 
3 and 5 (2pm=1)(2pm=-1) 

negative parity, M = 0 
1 and 4  (1sm=0)(2pm=0) 
2 and 4  (2sm=0)(2pm=0) INSTITUTE FOR NUCLEAR THEORY – SEPT 2012 



 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

25 

• How the Hamiltonian is represented 

some technical details: 
the “M-scheme”   

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

label  N  l  ml 

1  1  0 (S)  0 

2  2  0 (S)  0 

3  2  1 (P)  1 

4  2  1 (P)  0 

5  2  1 (P)  ‐1 

If I have two species (spin up/down) 
then combined M must be fixed: 

e.g. 4 electrons, M = 0, + parity 
spin up: states 1 + 2 (1Sm=0)(2Sm=0) 
spin down: 3 +5  (2Pm=1)(2Pm=-1) 
or 
spin up: states 1 + 3 (1Sm=0)(2Pm=1) 
spin down: states 2, 5 (2Sm=0)(2Pm=-1) 



 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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• How the Hamiltonian is represented 

“occupation representation”  
  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

€ 

ˆ H = Tij ˆ a i
+ ˆ a j

ij
∑ + 1

4 Vijkl ˆ a i
+ ˆ a j

+ ˆ a l
ijkl
∑ ˆ a k

ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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• How the Hamiltonian is represented 

“occupation representation”  
  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

€ 

ˆ a 3
+ ˆ a 6

+ ˆ a 4 ˆ a 5 α =1 = α = 2

ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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• How the Hamiltonian is represented 

“occupation representation”  
  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

€ 

ˆ a 2
+ ˆ a 4

+ ˆ a 1 ˆ a 7 α = 2 = α = 3

ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 
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• Why most matrix elements are zero 

“occupation representation”  
  

€ 

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+
… ˆ a nN

+ 0

€ 

ˆ a 2
+ ˆ a 4

+ ˆ a 6
+ ˆ a 1 ˆ a 5 ˆ a 7 α =1 = α = 3

ni  1  2  3  4  5  6  7 

α=1  1  0  0  1  1  0  1 

α=2  1  0  1  0  0  1  1 

α=3  0  1  1  1  0  1  0 

need 3 particles to  
interact simultaneously! 
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

30 

• Typical dimensions and sparsity 

Nuclide valence
space

valence 
Z

valence 
N

basis
dim

sparsity
(%)

20Ne “sd” 2 2 640 10
25Mg “sd” 4 5 44,133 0.5
49Cr “pf ” 4 5 6M 0.01
56Fe “pf ” 6 10 500M 2x10-4
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

31 

• Typical dimensions and sparsity 

Nuclide valence
space

valence 
Z

valence 
N

basis
dim

sparsity
(%)

20Ne “sd” 2 2 640 10
25Mg “sd” 4 5 44,133 0.5
49Cr “pf ” 4 5 6M 0.01
56Fe “pf ” 6 10 500M 2x10-4

12C Nmax=8 6 6 600M 4x10-4

12C Nmax=8 6 6 600M 2x10-2

2-body force 

3-body force 
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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

32 

Nuclide  Space  Basis dim  matrix store 

56Fe  pf  501 M  4.2 Tb 

7Li  Nmax=12  252 M  3.6 Tb 

7Li  Nmax=14  1200 M  23 Tb 

12C  Nmax=6  32M  0.2 Tb 

12C  Nmax=8  590M  5 Tb 

12C  Nmax=10  7800M  111 Tb 

16O  Nmax=6  26 M  0.14 Tb 

16O  Nmax=8  990 M  9.7 Tb 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 A SPARSE MATRIX, BUT.... 

Despite sparsity, nonzero matrix elements can require TB of  storage 

33 

Nuclide  Space  Basis 
dim 

matrix store 
(2‐body) 

matrix store 
(3‐body) 

4He  Nmax=16  6 M  0.2 Gb  12 Tb 

4He  Nmax=20  39 M  3 Tb  270 Tb 

7Li  Nmax=10  43 M  0.4 Tb  176 Tb 

12C  Nmax=6  32M  0.2 Tb  6.2 Tb 

12C  Nmax=8  590M  5 Tb  200 Tb 

INSTITUTE FOR NUCLEAR THEORY – SEPT 2012 



RECYCLED MATRIX ELEMENTS 
Only a fraction of  matrix elements are unique; most are reused. 

Reuse of matrix elements understood through spectator particles. 

34 

ni  1  2  3  4  5  6  7  8 

α=1  1  1  1  0  0  0  0  1 

α=2  1  1  0  1  1  0  0  0 

α=3  0  1  1  0  0  1  0  1 

α=4  0  1  0  1  1  1  0  0 

α=5  0  0  1  0  0  1  1  1 

α=6  0  0  0  1  1  1  1  0 

€ 

ˆ a 4
+ ˆ a 5

+ ˆ a 3 ˆ a 8 α =1 = α = 2
ˆ a 4

+ ˆ a 5
+ ˆ a 3 ˆ a 8 α = 3 = α = 4

ˆ a 4
+ ˆ a 5

+ ˆ a 3 ˆ a 8 α = 5 = α = 6
All of these have the same  
matrix element: V4538 
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RECYCLED MATRIX ELEMENTS 
Only a fraction of  matrix elements are unique; most are reused. 

Reuse of matrix elements understood through spectator particles. 

35 

# of nonzero matrix elements vs. # unique matrix elements 

Nuclide valence 
space

valence
Z

valence
N 

# 
nonzero

# 
unique

28Si “sd” 6 6 26 x 106 3600
52Fe “pf ” 6 6 90 x 109 21,500

Nuclide ab initio
space

basis
dim

# nonzero
m.e.s

# 
unique

avg
redundancy

4He Nmax=16 6M 2 x 1010 109 18
12C Nmax=8 600M 6 x 1011 5 x 107 10,000
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FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

36 

We work in an M-scheme basis: 

Because J2 and Jz both commute with H, one does not  
need all basis states, but can use many-body basis  
restricted to the same M.   

This is easy because M is an additive quantum number 
so it is possible for a single Slater determinant to be  
a state of good M. 

(It’s possible to work in a J-basis, e.g. OXBASH or NuShell, but each 
basis state is generally a complicated sum of Slater determinants). 
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FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

37 

Because the M values are discrete integers or half-integers 
(-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2....) 
we can organize the basis states in discrete sectors 

Example: 2 protons, 4 neutrons, total M = 0 

Mz(π) = -4 Mz(υ) = +4 

Mz(π) = -3 Mz(υ) = +3 

Mz(π) =-2 Mz (υ) = +2 
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FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

38 

In fact, we can see an example of factorization here because 
all proton Slater determinants in one M-sector must combine 
with all the conjugate neutron Slater determinants 

Example: 2 protons, 4 neutrons, total M = 0 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

Mz(π) = -3: 4 SDs Mz(υ) = +3: 39 SDs 156 combined 

Mz(π) = -2: 9 SDs Mz(υ) = +2: 60 SDs 540 combined 
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FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

39 

In fact, we can see an example of factorization here because 
all proton Slater determinants in one M-sector must combine 
with all the conjugate neutron Slater determinants 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

€ 

π1
π 2

  

€ 

ν1
ν 2
ν 3
ν 4


ν 24

× = 

  

€ 

π1 ν1
π 2 ν1
π1 ν 2
π 2 ν 2


π1 ν 24
π 2 ν 24INSTITUTE FOR NUCLEAR THEORY – SEPT 2012 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

40 

Neutron SDs 

P
ro

to
n 

S
D

s 

20Ne 640 66 

24Mg        28,503               495 

28Si          93,710               924 

48Cr      1,963,461           4895 

52Fe    109,954,620       38,760 

56Ni   1,087,455,228   125,970 

Example N = Z nuclei 
Nuclide   Basis dim       # pSDs (=#nSDs) 
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FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

41 

Factorization allows us to keep track of all basis states 
without writing out every one explicitly 
-- we only need to write down the proton/neutron components 

The same trick can be applied to matrix-vector multiply 

€ 

ˆ H = ˆ H pp + ˆ H nn + ˆ H pn
Move 2 protons; 
neutrons are  
spectators 

Move 2 neutrons; 
protons are  
spectators 

Move 1 proton + 
1 neutron; 
rest are  
spectators 
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FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

42 

€ 

ˆ H pp
Move 2 protons; 
neutrons are  
spectators 

Example: 2 protons, 4 neutrons, total M = 0 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

There are potentially 48 × 48 matrix elements 
But for Hpp at most 4  × 24 are nonzero 
and we only have to look up 4 matrix elements 

Advantage: we can store 98 matrix elements as 4 matrix elements 
and avoid 2000+ zero matrix elements. 
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FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

43 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

Advantage: we can store 98 matrix elements as 4 matrix elements 
and avoid 2000+ zero matrix elements. 

€ 

π1
π 2

  

€ 

ν1
ν 2
ν 3
ν 4


ν 24€ 

Hpp =
H11 H12

H21 H22
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FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

44 

Mz(π) = -4: 2 SDs Mz(υ) = +4: 24 SDs 48 combined 

Advantage: we can store 98 matrix elements as 4 matrix elements 
and avoid 2000+ zero matrix elements. 

€ 

π1
π 2

  

€ 

ν1
ν 2
ν 3
ν 4


ν 24€ 

Hpp =
H11 H12

H21 H22

 

 
 

 

 
 

  

€ 

Hpp π1 ν1 = H11 π1 ν1 + H12 π 2 ν1

Hpp π 2 ν1 = H12 π1 ν1 + H22 π 2 ν1

Hpp π1 ν 2 = H11 π1 ν 2 + H12 π 2 ν 2

Hpp π 2 ν 2 = H12 π1 ν 2 + H22 π 2 ν 2


Hpp π1 ν 24 = H11 π1 ν 24 + H12 π 2 ν 24

Hpp π 2 ν 24 = H12 π1 ν 24 + H22 π 2 ν 24
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FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

45 

Nuclide  Space  Basis dim  matrix store  factoriza<on 

56Fe  pf  501 M  290 Gb  0.72 Gb 

7Li  Nmax=12  252 M  3600 Gb  96 Gb 

7Li  Nmax=14  1200 M  23 Tb  624 Gb 

12C  Nmax=6  32M  196 Gb  3.3 Gb 

12C  Nmax=8  590M  5000 Gb  65 Gb 

12C  Nmax=10  7800M  111 Tb  1.4 Tb 

16O  Nmax=6  26 M  142 Gb  3.0 Gb 

16O  Nmax=8  990 M  9700 Gb  130 Gb 

Comparison of nonzero matrix storage with factorization 

INSTITUTE FOR NUCLEAR THEORY – SEPT 2012 



FACTORIZATION 

Reuse can be exploited using exact factorization  
enforced through additive/multiplicative quantum numbers 

46 

Nuclide  Space  Basis dim  matrix store  factoriza<on 

7Li  Nmax=12  252 M  3600 Gb  96 Gb 

7Li  Nmax=14  1200 M  23 Tb  624 Gb 

12C  Nmax=6  32M  196 Gb  3.3 Gb 

12C  Nmax=8  590M  5000 Gb  65 Gb 

12C  Nmax=10  7800M  111 Tb  1.4 Tb 

16O  Nmax=6  26 M  142 Gb  3.0 Gb 

16O  Nmax=8  990 M  9700 Gb  130 Gb 

Comparison of nonzero matrix storage with factorization 
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FACTORIZATION 

47 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nmax=14  2M  46 Gb  1.2 Gb  2 Tb  16 Gb 

Nmax=16  6M  200 Gb  4 Gb  12 Tb  60 Gb 

Nmax=18  16M  820 Gb  11 Gb  60 Tb  190 Gb 

Nmax=20  39M  3 Tb  29 Gb  270 Tb  600 Gb 

Nmax=22  86M  9 Tb  70 Gb  1.1 Pb  1.4 Tb 

Comparison of nonzero matrix storage with factorization 

4He 

INSTITUTE FOR NUCLEAR THEORY – SEPT 2012 



FACTORIZATION 

48 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nshell=8  29 M  1.4 Tb  0.6  Gb  120 Tb  11 Gb 

Nshell=9  93 M  8 Tb  1.7 Gb  870 Tb  40 Gb 

Nshell=10  270 M  36 Tb  5 Gb  5 Pb  120 Gb 

Nshell=11  700 M  150 Tb  12 Gb  28 Pb  350 Gb 

Nshell=12  1.7 G  500 Tb  27 Gb  130 Pb  900 Gb 

Nshell=13  4 G  1.7 Pb  60 Gb  500 Pb  2 Tb 

Comparison of nonzero matrix storage with factorization 

4He 
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FACTORIZATION 

49 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nmax=8  6 M  36 Gb  1.5 Gb  1 Tb  26 Gb 

Nmax=10  43 M  430 Gb  10 Gb  170 Tb  250 Gb 

Nmax=12  250 M  4 Tb  60 Gb 

Comparison of nonzero matrix storage with factorization 
7Li 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nshell=3  0.4 M  0.8 Gb  6 Mb  10 Gb  44 Mb 

Nshell=4  45 M  330 Gb  0.3 Gb  9 Tb  4 Gb 

Nshell=5  2 G  38 Tb  16 Gb  2 Pb  140 Gb 

Nshell=6  50 G  2 Pb  87 Gb  170 Pb  3 Tb 



FACTORIZATION 

50 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nmax=6  5 M  22 Gb  1 Gb  0.6 Tb  12 Gb 

Nmax=8  63 M  460 Gb  9 Gb  17 Tb  200 Gb 

Nmax=10  570 M  7 Tb  70 Gb 

Comparison of nonzero matrix storage with factorization 
9Be 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nshell=3  4 M  15 Gb  30 Mb  240 Gb  240 Mb 

Nshell=4  3 G  30 Tb  3 Gb  1 Pb  50 Gb 

Nshell=5  400 G  12 Pb  130 Gb  800 Pb  3.6 Tb 



FACTORIZATION 

51 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nmax=6  12 M  60 Gb  1.3 Gb  1.6 Tb  22 Gb 

Nmax=8  165 M  1.3 Tb  16 Gb  52 Tb  360 Gb 

Comparison of nonzero matrix storage with factorization 
10B 
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FACTORIZATION 

52 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nmax=6  32 M  170 Gb  3 Gb  5 Tb  60 Gb 

Nmax=8  590 M  5 Tb  45 Gb  200 Tb  1 Tb 

Nmax=10  8 G  100 Tb  440 Gb 

Comparison of nonzero matrix storage with factorization 
12C 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nshell=3  82 M  400 Gb  0.1 Gb  9 Tb  1.5 Gb 

Nshell=4  600 G  10 Pb  43 Gb  580 Tb  0.9 Tb 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FACTORIZATION 

53 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nmax=4  0.3 M  1 Gb  70 Mb  17 Gb  0.7 Gb 

Nmax=6  26 M  140 Gb  3 Gb  4 Tb  53 Gb 

Nmax=8  1 G  8.6 Tb  70 Gb 

Comparison of nonzero matrix storage with factorization 
16O 

Space  Basis dim  matrix store 
(2‐body) 

factoriza<on 
(2‐body) 

matrix store 
(3‐body) 

factoriza<on 
(3‐body) 

Nshell=3  800 M  6 Tb  0.7 Gb  140 Tb  7.5 Gb 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54 

Drawbacks of factorization/on-the-fly algorithms: 

Much more complicated to code up (even matrix storage  
is not trivial) 

Less flexible in basis—for example, importance truncation 
much harder (if even possible) 
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55 

4-body is in principle straightforward 

Experience in going from 2-body to 3-body shows  
most difficult part is correctly matching indices of  
input interaction to internal representation  
(+ induced phases etc) – useful to have small cases 
with known solutions for debugging 
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PARALLEL IMPLEMENTATION 

Factorization makes it easier to compute workload 
and distribute across multiple nodes 

56 

length of   
sides = 
information 
to be stored 

Area = total # of operations 

length of sides = 
information to be stored 

We can compute the !
number of operations!
without actually !
counting them!!

Then we can !
easily divide !
the work across !
compute nodes!
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PARALLEL IMPLEMENTATION 

Factorization makes it easier to compute workload 
and distribute across multiple nodes 
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THE BIGSTICK CODE 

Many-fermion code: 2nd generation after REDSTICK code 
(started in Baton Rouge, La.) 

58 

Arbitrary single-particle radial waveforms 
Allows local or nonlocal two-body interaction 
Applies to both nuclear and atomic cases 

Runs on both desktop and parallel machines 
--can run at least dimension 100M+ on desktop 
(20 Lanczos iterations in 300 CPU minutes) 

20-30k lines of codes 
Fortran 90 + MPI + OpenMP 
Partially funded by SciDAC 
Plans to run on 50,000-100,000 compute nodes 
Plans to publish code 
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THE BIGSTICK CODE 

What about other codes? 

59 

MFDn (Vary et al): M-scheme code, includes 3-body, 
mostly stores H in memory; optimized for ab initio and  
is leading CI code today for ab initio.  
Less flexible in model space, awkward to run on desktop machines. 

NuShell(X) (Rae, Brown,Horoi et al): J-scheme code. 
Uses factorization. Flexible single-particle space.  
Leading CI code for phenomenological shell model. 
No 3-body yet, awkward for Nmax truncations 

ANTOINE (Caurier et al): M-scheme code. 
Uses factorization. Flexible single-particle  
space. Includes 3-body. Was leading CI code. 
Not (fully) parallelized 

MCSM (Otsuka et al): Samples  
J-scheme basis stochastically.  
Includes (?) 3-body. Significant effort  
has gone into numerics 
Cannot truncate many-body space 
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CONCLUSIONS 

Factorization allows one to represent and store a many-body  
Hamiltonian efficiently and compactly.   

The trade-off is a more complex algorithm with  
many subtleties in parallelization. 

BIGSTICK attempts to approach “best of both codes”,  
the ab initio capability (in truncation and 3-body) of MFDn 
and the efficiency and flexibility of NuShellX. 

LOOKING TO PARTNER WITH FEW-BODY / INTERACTION 
SPECIALISTS 
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