Big Calculations in Little Boxes: the BIGSTICK shell model code

Collaborators:

W. Erich Ormand, Lawrence Livermore Plamen G. Krastev, SDSU/Harvard Hai Ah Nam, SDSU/ Oak Ridge Collaborator-in-training: Micah Schuster, SDSU

The basic *science question* is to model detailed quantum structure of many-body systems, such the structure of an atomic nucleus.

The algorithms described today are best applied to many body systems with(a) two "species" (protons and neutrons, or +1/2 and -1/2 electrons)(b) single-particle basis states with good rotational symmetry (j, m)

To answer this, we solve *Schrödinger's equation*:

$$\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$$

* **H** is generally a very large matrix – dimensions up to 10^{10} have been tackled.

- * **H** is generally very sparse.
- * We usually only want a few low-lying states

THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm

fundamental operation is *matrix-vector multiply*

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm fundamental operation is matrix-vector multiply

We want to solve *Schrödinger's equation*:

$$\left(\sum_{i} -\frac{\hbar^2}{2m} \nabla^2 + U(r_i) + \sum_{i < j} V(\vec{r}_i - \vec{r}_j)\right) \Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3 \dots) = E \Psi$$

$$\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$$

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm fundamental operation is matrix-vector multiply

This differential equation is too difficult to solve directly

$$\begin{split} \left(\sum_{i} -\frac{\hbar^{2}}{2m} \nabla^{2} + U(r_{i}) + \sum_{i < j} V(\vec{r}_{i} - \vec{r}_{j}) \right) \Psi(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3} \dots) &= E \Psi \\ \text{so we use the matrix formalism} \\ \hat{\mathbf{H}} \left| \Psi \right\rangle &= E \left| \Psi \right\rangle \end{split}$$

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm fundamental operation is matrix-vector multiply

$$\begin{split} |\Psi\rangle &= \sum_{\alpha} c_{\alpha} |\alpha\rangle \qquad H_{\alpha\beta} = \left\langle \alpha \left| \hat{\mathbf{H}} \right| \beta \right\rangle \\ \sum_{\beta} H_{\alpha\beta} c_{\beta} &= E c_{\alpha} \quad \text{if} \quad \left\langle \alpha \left| \beta \right\rangle = \delta_{\alpha\beta} \\ &\text{so we use the matrix formalism} \end{split}$$

$$\hat{\mathbf{H}}|\Psi\rangle = E|\Psi\rangle$$

The Hamiltonian:
$$\hat{H} = \sum_{i} -\frac{\hbar^2}{2M} \nabla_i^2 + \sum_{i < j} V(r_i, r_j)$$

Nuclear

Solve by diagonalizing **H** in a basis of many-body states.

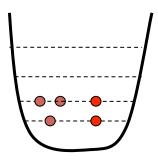
$$\sum_{B} H_{AB} \mathbf{v}_{B} = E_{A} \mathbf{v}_{A} \qquad H_{AB} = \langle A | \hat{H} | B \rangle$$

What do we use for the many-body basis states $\{ | A > ? ? \}$

Nuclear Hamiltonian:

$$\hat{H} = \sum_{i} -\frac{\hbar^2}{2M} \nabla_i^2 + \sum_{i < j} V(r_i, r_j)$$

Solve by diagonalizing **H** in a basis of many-body states. The many-body states are *Slater determinants*, or anti-symmeterized products of single-particle wfns.



The single-particle states are defined by a single-particle potential U(r) (such as harmonic oscillator or Hartree-Fock)

At this point one generally goes to occupation representation:

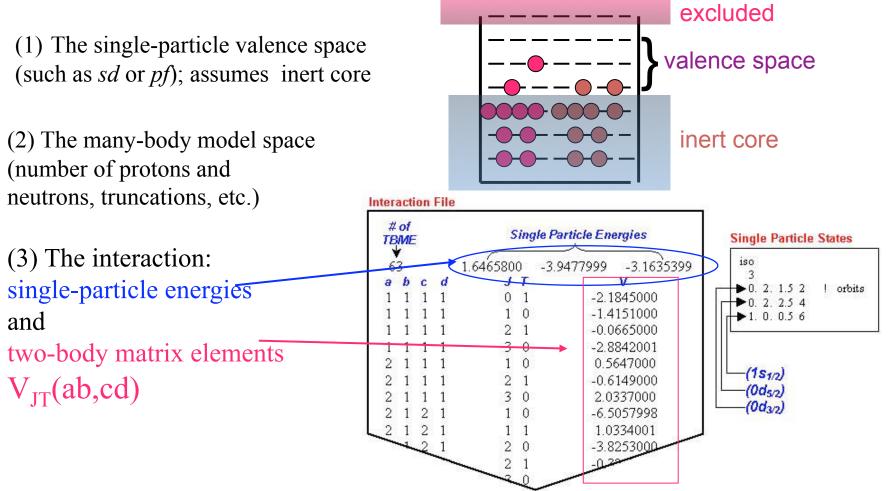
$$\hat{H} = \sum_{i} \varepsilon_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} + \frac{1}{4} \sum_{ij \, kl} V_{ij \, kl} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{k}$$

Maria Mayer

single-particle energies

two-body matrix elements

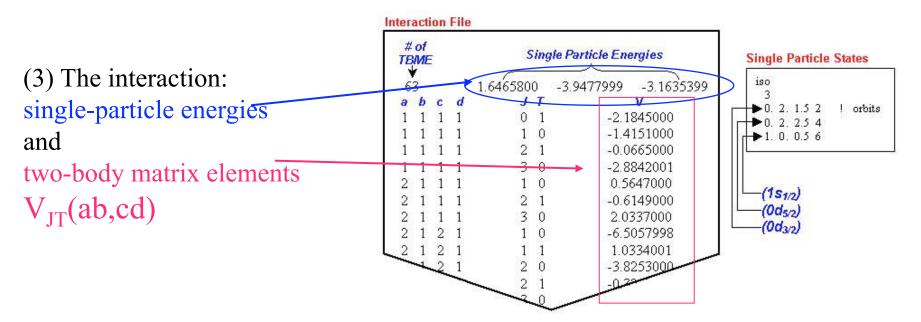
When running a fermion shell model code (e.g. MFD, BIGSTICK), one enters the following information:



The two-body matrix elements *in principle but not in practice* depend on the single-particle wfns:

$$\langle ab; JT | \hat{H} | cd; JT \rangle = \int d^3r \int d^3r' \varphi_a * (r) \varphi_b * (r')$$

$$V(r, r') (\varphi_c(r) \varphi_d(r') - \varphi_c(r') \varphi_d(r))$$
But only the final number is read in!



Summary:

The Schrödinger eqn has become a matrix

eigenvalue equation

$$\sum_{B} H_{AB} \mathbf{v}_{B} = E_{A} \mathbf{v}_{A}$$

One chooses a basis of approx10⁴ - 10¹⁰ states

Key point: Once a basis is chosen, the two-body interaction is reduced to integrals between single-particle states and is stored as a list of real numbers (the *two-body matrix elements*)

A *shell model program* then computes the *many-body matrix elements* from the *two-body matrix elements* and solves for eigenvalues/vectors.

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm

fundamental operation is *matrix-vector multiply*

$$H_{\alpha\beta} = \left\langle \alpha | \hat{\mathbf{H}} | \beta \right\rangle$$

* **H** is generally a very large matrix – dimensions up to 10^{10} have been tackled.

- * **H** is generally very sparse.
- * We usually only want a few low-lying states

Lanczos algorithm!

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm fundamental operation is matrix-vector multiply

Standard algorithm to obtain *all* eigenvalues of a real, symmetric matrix **A**: <u>Householder</u>

Find orthogonal matrix U such that $U^T A U = B$, a tridiagonal matrix

The Lanczos algorithm is similar, in that it also uses an orthogonal matrix to take **A** to a tridiagonal matrix **B**.....

Lanczos algorithm!

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm fundamental operation is matrix-vector multiply

$$\mathbf{A}\vec{v}_{1} = \alpha_{1}\vec{v}_{1} + \beta_{1}\vec{v}_{2}$$

$$\mathbf{A}\vec{v}_{2} = \beta_{1}\vec{v}_{1} + \alpha_{2}\vec{v}_{2} + \beta_{2}\vec{v}_{3}$$

$$\mathbf{A}\vec{v}_{3} = \beta_{2}\vec{v}_{2} + \alpha_{3}\vec{v}_{3} + \beta_{3}\vec{v}_{4}$$

$$\mathbf{A}\vec{v}_{4} = \beta_{3}\vec{v}_{3} + \alpha_{4}\vec{v}_{4} + \beta_{4}\vec{v}_{5}$$

Lanczos algorithm!

Find extremal eigenvalues of very large, very sparse Hermitian matrix Lanczos algorithm fundamental operation is matrix-vector multiply

$$\begin{aligned} \mathbf{A}\vec{v}_1 &= \alpha_1\vec{v}_1 + \beta_1\vec{v}_2 \\ \mathbf{A}\vec{v}_2 &= \beta_1\vec{v}_1 + \alpha_2\vec{v}_2 + \beta_2\vec{v}_3 \\ \mathbf{A}\vec{v}_3 &= \beta_2\vec{v}_2 + \alpha_3\vec{v}_3 + \beta_3\vec{v}_4 \\ \mathbf{A}\vec{v}_4 &= \beta_3\vec{v}_3 + \alpha_4\vec{v}_4 + \beta_4\vec{v}_5 \end{aligned}$$

matrix-vector multiply

Lanczos algorithm!

Despite sparsity, nonzero matrix elements can require TB of storage

I need to quickly cover:

- How the basis states are represented
- How the Hamiltonian operator is represented
- •Why most matrix elements are zero
- Typical dimensions and sparsity

Despite sparsity, nonzero matrix elements can require TB of storage

• How the basis states are represented

This differential equation is too difficult to solve directly

$$\left(\sum_{i} -\frac{\hbar^2}{2m} \nabla^2 + U(r_i) + \sum_{i < j} V(\vec{r}_i - \vec{r}_j)\right) \Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3 \dots) = E \Psi$$

Can only really solve 1D differential equation

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2} + U(r)\right)\phi_i(r) = \varepsilon_i\phi_i(r)$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the basis states are represented

Can only really solve 1D differential equation

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}+U(r)\right)\phi_i(r)=\varepsilon_i\phi_i(r) \quad \Longrightarrow \quad \left\{\phi_i(\vec{r})\right\}$$

Single-particle wave functions labeled by, *e.g.*, *n*, *j*, *l*, *m*

Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc

Nuclear: $0s_{1/2}$, $0p_{3/2}$, $0p_{1/2}$, $0d_{5/2}$, $1s_{1/2}$, $0d_{3/2}$, *etc*

Despite sparsity, nonzero matrix elements can require TB of storage

• How the basis states are represented

Can only really solve 1D differential equation

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dr^2}+U(r)\right)\phi_i(r)=\varepsilon_i\phi_i(r) \quad \Longrightarrow \quad \left\{\phi_i(\vec{r})\right\}$$

Product wavefunction ("Slater Determinant") $\Psi(\vec{r}_1, \vec{r}_2, \vec{r}_3...) = \phi_{n_1}(\vec{r}_1)\phi_{n_2}(\vec{r}_2)\phi_{n_3}(\vec{r}_3)...\phi_{n_N}(\vec{r}_N)$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the basis states are represented

Product wavefunction ("Slater Determinant")

$$\Psi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}...) = \phi_{(\vec{r}_{1})}\phi_{(\vec{r}_{2})}\phi_{(\vec{r}_{3})}...\phi_{(\vec{r}_{N})}(\vec{r}_{N})$$

Each many-body state can be *uniquely* determined by a list of "occupied" single-particle states = "occupation representation"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented "occupation representation" $|\alpha\rangle =$

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

"creation operator"

$$\hat{H} = \sum_{ij} T_{ij} \hat{a}_{i}^{\dagger} \hat{a}_{j} + \frac{1}{4} \sum_{ijkl} V_{ijkl} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{k}$$

motion of a single particle ("one-body operator") interaction of two particles ("two-body operator")

$$V_{ijkl} = \iint \phi_i(\vec{r})\phi_j(\vec{r}')V(\vec{r},\vec{r}')\phi_k(\vec{r})\phi_l(\vec{r}')d^3rd^3r'$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented

"occupation re	epresentation"
----------------	----------------

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

n _i	1	2	3	4	5	6	7
α=1	1	0	0	1	1	0	1
α=2	1	0	1	0	0	1	1
α=3	0	1	1	1	0	1	0

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented some technical details: $|\alpha\rangle =$ the "M-scheme"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

label	Ν		m	
1	1	0 (S)	0	
2	2	0 (S)	0	
3	2	1 (P)	1	
4	2	1 (P)	0	
5	2	1 (P)	-1	

For any Slater determinant, the total M = sum of the m_1 's

Because J_z commutes with H, we can use a basis with M fixed = "M-scheme"

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented some technical details: $|\alpha\rangle =$ the "M-scheme"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

label	Ν		m _I	
1	1	0 (S)	0	
2	2	0 (S)	0	
3	2	1 (P)	1	
4	2	1 (P)	0	
5	2	1 (P)	-1	

So for 2-particle system, positive parity, M = 0: 1 and 2 $(1s_{m=0})(2s_{m=0})$ 3 and 5 $(2p_{m=1})(2p_{m=-1})$

 $\begin{array}{c|c} \hline p & 0 \\ \hline p & -1 \\ \hline \hline negative parity, M = 0 \\ 1 \text{ and } 4 & (1s_{m=0})(2p_{m=0}) \\ 2 \text{ and } 4 & (2s_{m=0})(2p_{m=0}) \\ 2 \text{ and } 4 & (2s_{m=0})(2p_{m=0}) \end{array}$

24

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented some technical details: $|\alpha\rangle =$ the "M-scheme"

$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

label	Ν	I	m _l	
1	1	0 (S)	0	
2	2	0 (S)	0	
3	2	1 (P)	1	
4	2	1 (P)	0	
5	2	1 (P)	-1	

If I have two species (spin up/down) then *combined* M must be fixed:

e.g. 4 electrons, M = 0, + parity spin up: states 1 + 2 $(1S_{m=0})(2S_{m=0})$ spin down: 3 +5 $(2P_{m=1})(2P_{m=-1})$ or spin up: states 1 + 3 $(1S_{m=0})(2P_{m=1})$ spin down: states 2, 5 $(2S_{m=0})(2P_{m=-1})$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented

"occupation representation"

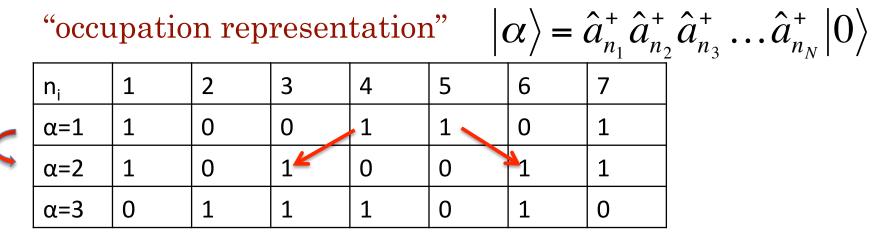
$$|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$$

n _i	1	2	3	4	5	6	7
α=1	1	0	0	1	1	0	1
α=2	1	0	1	0	0	1	1
α=3	0	1	1	1	0	1	0

$$\hat{H} = \sum_{ij} T_{ij} \hat{a}_{i}^{\dagger} \hat{a}_{j} + \frac{1}{4} \sum_{ijkl} V_{ijkl} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{k}$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented



$$\hat{a}_3^+ \hat{a}_6^+ \hat{a}_4 \hat{a}_5 |\alpha = 1\rangle = |\alpha = 2\rangle$$

Despite sparsity, nonzero matrix elements can require TB of storage

• How the Hamiltonian is represented

 $|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$ "occupation representation" n_i **α=1 α=2** α=3

$$\hat{a}_2^+ \hat{a}_4^+ \hat{a}_1 \hat{a}_7 | \alpha = 2 \rangle = | \alpha = 3 \rangle$$

Despite sparsity, nonzero matrix elements can require TB of storage

• Why most matrix elements are zero $|\alpha\rangle = \hat{a}_{n_1}^+ \hat{a}_{n_2}^+ \hat{a}_{n_3}^+ \dots \hat{a}_{n_N}^+ |0\rangle$ "occupation representation" n_i **α=1 α=2** $\alpha = 3$

 $\hat{a}_{2}^{+}\hat{a}_{4}^{+}\hat{a}_{6}^{+}\hat{a}_{1}\hat{a}_{5}\hat{a}_{7}|\alpha=1\rangle = |\alpha=3\rangle$ need 3 particles to interact simultaneously!

Despite sparsity, nonzero matrix elements can require TB of storage

• Typical dimensions and sparsity

Nuclide	valence space	valence Z	valence N	basis dim	sparsity (%)
²⁰ Ne	"sd"	2	2	640	10
^{25}Mg	"sd"	4	5	44,133	0.5
⁴⁹ Cr	"pf"	4	5	6M	0.01
⁵⁶ Fe	"pf"	6	10	500M	2x10-4

Despite sparsity, nonzero matrix elements can require TB of storage

• Typical dimensions and sparsity

Nuclide	valence space	valence Z	valence N	basis dim	sparsity (%)	
²⁰ Ne	"sd"	2	2	640	10	
^{25}Mg	"sd"	4	5	44,133	0.5	
⁴⁹ Cr	"pf"	4	5	6M	0.01	
⁵⁶ Fe	"pf"	6	10	500M	2x10-4	
$^{12}\mathbf{C}$	N _{max} =8	6	6	600M	4x10-4	2-body force
$^{12}\mathbf{C}$	N _{max} =8	6	6	600M	2x10 ⁻²	3-body force

Despite sparsity, nonzero matrix elements can require TB of storage

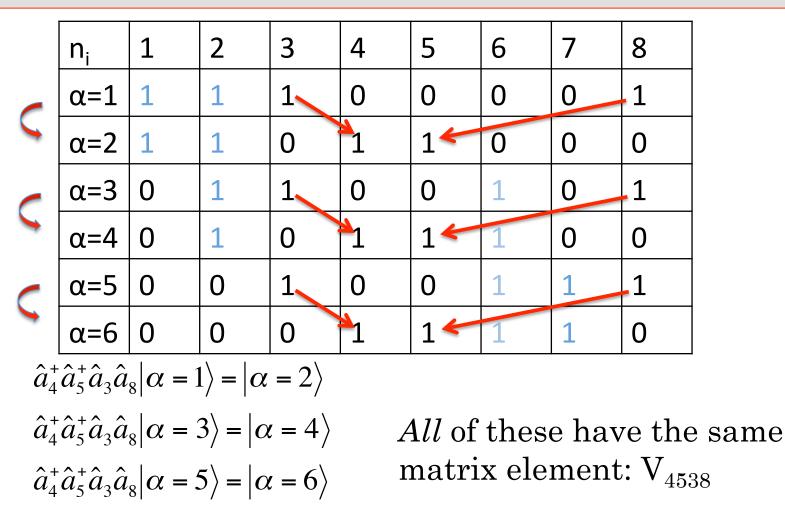
Nuclide	Space	Basis dim	matrix store
⁵⁶ Fe	pf	501 M	4.2 Tb
⁷ Li	N _{max} =12	252 M	3.6 Tb
⁷ Li	N _{max} =14	1200 M	23 Tb
¹² C	N _{max} =6	32M	0.2 Tb
¹² C	N _{max} =8	590M	5 Tb
¹² C	N _{max} =10	7800M	111 Tb
¹⁶ O	N _{max} =6	26 M	0.14 Tb
¹⁶ O	N _{max} =8	990 M	9.7 Tb

Despite sparsity, nonzero matrix elements can require TB of storage

Nuclide	Space	Basis dim	matrix store (2-body)	matrix store (3-body)
⁴ He	N _{max} =16	6 M	0.2 Gb	12 Tb
⁴ He	N _{max} =20	39 M	3 Tb	270 Tb
⁷ Li	N _{max} =10	43 M	0.4 Tb	176 Tb
¹² C	N _{max} =6	32M	0.2 Tb	6.2 Tb
¹² C	N _{max} =8	590M	5 Tb	200 Tb

RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.



RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; **most are reused.** Reuse of matrix elements understood through *spectator* particles.

of nonzero matrix elements vs. # unique matrix elements

Nuclide	valence space	valence Z	valence N	# nonzero	# unique
²⁸ Si	"sd"	6	6	$26 \ge 10^{6}$	3600
⁵² Fe	"pf"	6	6	90 x 10 ⁹	21,500

Nuclide	ab initio space	basis dim	# nonzero m.e.s	# unique	avg redundancy
⁴ He	$N_{max} = 16$	6M	$2 \ge 10^{10}$	109	18
$^{12}\mathrm{C}$	N _{max} =8	600M	$6 \ge 10^{11}$	$5 \ge 10^{7}$	10,000

FACTORIZATION

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

We work in an *M*-scheme basis:

Because J^2 and J_z both commute with **H**, one does not need *all* basis states, but can use many-body basis restricted to the same *M*.

This is easy because M is an additive quantum number so it is possible for a single Slater determinant to be a state of good M.

(It's possible to work in a *J*-basis, e.g. OXBASH or NuShell, but each basis state is generally a complicated sum of Slater determinants).

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

Because the M values are discrete integers or half-integers (-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2...) we can organize the basis states in discrete *sectors*

Example: 2 protons, 4 neutrons, total M = 0

$$M_z(π) = -4$$

 $M_z(υ) = +4$
 $M_z(π) = -3$
 $M_z(υ) = +3$

$$M_{z}(\pi) = -2$$
 $M_{z}(\upsilon) = +2$

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M = 0

$$M_{z}(\pi) = -4: 2 \text{ SDs}$$

$$M_{z}(\upsilon) = +4: 24 \text{ SDs}$$

$$M_{z}(\pi) = -3: 4 \text{ SDs}$$

$$M_{z}(\upsilon) = +3: 39 \text{ SDs}$$

$$M_{z}(\upsilon) = +2: 60 \text{ SDs}$$

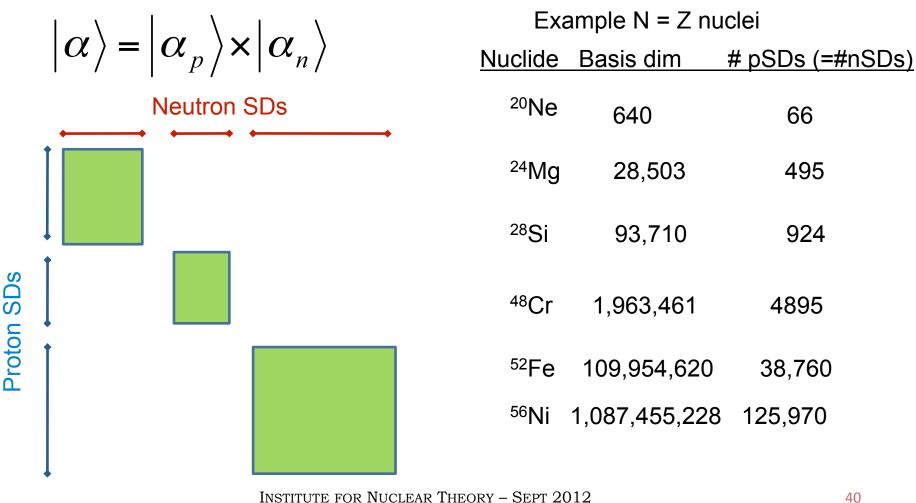
$$M_{z}(\upsilon) = +2: 60 \text{ SDs}$$

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector *must* combine with all the conjugate neutron Slater determinants

M _z (π) = -4: 2 SDs	M _z (υ) = +4: 24 SDs	48 combined
$egin{array}{c} \pi_1 angle \ \pi_2 angle \qquad igstacksquare$	$egin{array}{c c} m{v}_1 angle \\ m{v}_2 angle \\ m{v}_3 angle &= \\ m{v}_4 angle \\ dots & dots &$	$egin{aligned} \pi_1 angle oldsymbol{v}_1 angle \ \pi_2 angle oldsymbol{v}_1 angle \ \pi_1 angle oldsymbol{v}_2 angle \ \pi_2 angle oldsymbol{v}_2 angle \ . \end{aligned}$
	$\ket{oldsymbol{ u}_{24}}$	$ \pi_1 angle u_{24} angle$
Institute fo	or Nuclear Theory – Sept 2012	$ \pi_2 angle u_{24} angle$

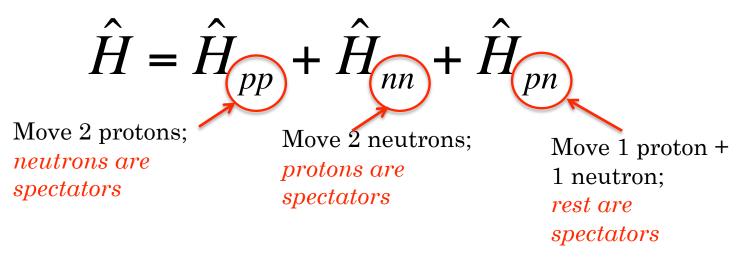
Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers



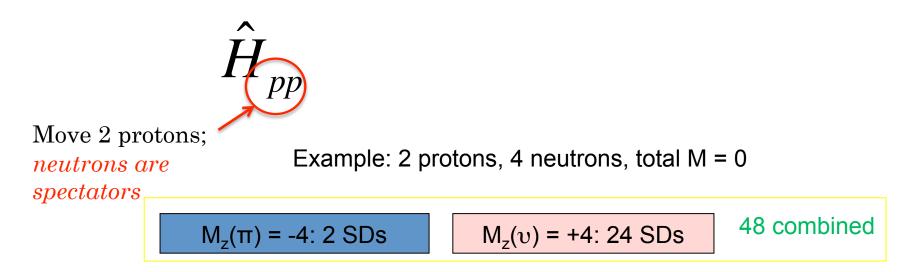
Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

Factorization allows us to keep track of all basis states without writing out every one explicitly -- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply



Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*



There are potentially 48×48 matrix elements But for H_{pp} at most 4×24 are nonzero and we only have to look up 4 matrix elements

Advantage: we can store 98 matrix elements as 4 matrix elements and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

 $M_{z}(\pi) = -4: 2 \text{ SDs} \qquad M_{z}(\upsilon) = +4: 24 \text{ SDs} \qquad 48 \text{ combined}$ $\begin{vmatrix} v_{1} \rangle \\ |v_{2} \rangle \\ |\pi_{2} \rangle \qquad H_{pp} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \qquad \begin{vmatrix} v_{1} \rangle \\ |v_{2} \rangle \\ |v_{3} \rangle \\ |v_{4} \rangle \\ \vdots \\ |v_{24} \rangle$

Advantage: we can store 98 matrix elements as 4 matrix elements and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

N	_z (π) = -4: 2 SDs	M _z (υ) =	+4: 24 SDs	48 combined	
$egin{array}{c} \pi_1 angle \ \pi_2 angle \end{array}$	$H_{pp} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$	$egin{aligned} egin{aligned} egi$	$H_{pp} \pi_{2}\rangle \nu_{1}\rangle =$ $H_{pp} \pi_{1}\rangle \nu_{2}\rangle =$ $H_{pp} \pi_{2}\rangle \nu_{2}\rangle =$ \vdots $H_{pp} \pi_{1}\rangle \nu_{24}\rangle =$	$H_{11} \pi_{1}\rangle \nu_{1}\rangle + H_{12} \pi_{2}\rangle \nu_{1}\rangle$ = $H_{12} \pi_{1}\rangle \nu_{1}\rangle + H_{22} \pi_{2}\rangle \nu_{1}\rangle$ = $H_{11} \pi_{1}\rangle \nu_{2}\rangle + H_{12} \pi_{2}\rangle \nu_{2}\rangle$ = $H_{12} \pi_{1}\rangle \nu_{2}\rangle + H_{22} \pi_{2}\rangle \nu_{2}\rangle$ = $H_{11} \pi_{1}\rangle \nu_{24}\rangle + H_{12} \pi_{2}\rangle \nu_{24}\rangle$ = $H_{12} \pi_{1}\rangle \nu_{24}\rangle + H_{22} \pi_{2}\rangle \nu_{24}\rangle$	

Advantage: we can store 98 matrix elements as 4 matrix elements and avoid 2000+ zero matrix elements.

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

Comparison of nonzero matrix storage with factorization

Nuclide	Space	Basis dim	matrix store	factorization
⁵⁶ Fe	pf	501 M	290 Gb	0.72 Gb
⁷ Li	N _{max} =12	252 M	3600 Gb	96 Gb
⁷ Li	N _{max} =14	1200 M	23 Tb	624 Gb
¹² C	N _{max} =6	32M	196 Gb	3.3 Gb
¹² C	N _{max} =8	590M	5000 Gb	65 Gb
¹² C	N _{max} =10	7800M	111 Tb	1.4 Tb
¹⁶ O	N _{max} =6	26 M	142 Gb	3.0 Gb
¹⁶ O	N _{max} =8	990 M	9700 Gb	130 Gb

Reuse can be **exploited using exact factorization** enforced through *additive/multiplicative quantum numbers*

Comparison of nonzero matrix storage with factorization

Nuclide	Space	Basis dim	matrix store	factorization
⁷ Li	N _{max} =12	252 M	3600 Gb	96 Gb
⁷ Li	N _{max} =14	1200 M	23 Tb	624 Gb
¹² C	N _{max} =6	32M	196 Gb	3.3 Gb
¹² C	N _{max} =8	590M	5000 Gb	65 Gb
¹² C	N _{max} =10	7800M	111 Tb	1.4 Tb
¹⁶ O	N _{max} =6	26 M	142 Gb	3.0 Gb
¹⁶ O	N _{max} =8	990 M	9700 Gb	130 Gb

Comparison of nonzero matrix storage with factorization

⁴He

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =14	2M	46 Gb	1.2 Gb	2 Tb	16 Gb
N _{max} =16	6M	200 Gb	4 Gb	12 Tb	60 Gb
N _{max} =18	16M	820 Gb	11 Gb	60 Tb	190 Gb
N _{max} =20	39M	3 Tb	29 Gb	270 Tb	600 Gb
N _{max} =22	86M	9 Tb	70 Gb	1.1 Pb	1.4 Tb

Comparison of nonzero matrix storage with factorization

⁴He

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{shell} =8	29 M	1.4 Tb	0.6 Gb	120 Tb	11 Gb
N _{shell} =9	93 M	8 Tb	1.7 Gb	870 Tb	40 Gb
N _{shell} =10	270 M	36 Tb	5 Gb	5 Pb	120 Gb
N _{shell} =11	700 M	150 Tb	12 Gb	28 Pb	350 Gb
N _{shell} =12	1.7 G	500 Tb	27 Gb	130 Pb	900 Gb
N _{shell} =13	4 G	1.7 Pb	60 Gb	500 Pb	2 Tb

Comparison of nonzero matrix storage with factorization

⁷Li

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =8	6 M	36 Gb	1.5 Gb	1 Tb	26 Gb
N _{max} =10	43 M	430 Gb	10 Gb	170 Tb	250 Gb
N _{max} =12	250 M	4 Tb	60 Gb		

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{shell} =3	0.4 M	0.8 Gb	6 Mb	10 Gb	44 Mb
N _{shell} =4	45 M	330 Gb	0.3 Gb	9 Tb	4 Gb
N _{shell} =5	2 G	38 Tb	16 Gb	2 Pb	140 Gb
N _{shell} =6	50 G	2 Pb	87 Gb	170 Pb	3 Tb

Comparison of nonzero matrix storage with factorization

⁹Be

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =6	5 M	22 Gb	1 Gb	0.6 Tb	12 Gb
N _{max} =8	63 M	460 Gb	9 Gb	17 Tb	200 Gb
N _{max} =10	570 M	7 Tb	70 Gb		

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{shell} =3	4 M	15 Gb	30 Mb	240 Gb	240 Mb
N _{shell} =4	3 G	30 Tb	3 Gb	1 Pb	50 Gb
N _{shell} =5	400 G	12 Pb	130 Gb	800 Pb	3.6 Tb

Comparison of nonzero matrix storage with factorization

 ^{10}B

Space	Basis dim	matrix store (2-body)	factorization (2-body)		
N _{max} =6	12 M	60 Gb	1.3 Gb	1.6 Tb	22 Gb
N _{max} =8	165 M	1.3 Tb	16 Gb	52 Tb	360 Gb

Comparison of nonzero matrix storage with factorization

¹²C

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =6	32 M	170 Gb	3 Gb	5 Tb	60 Gb
N _{max} =8	590 M	5 Tb	45 Gb	200 Tb	1 Tb
N _{max} =10	8 G	100 Tb	440 Gb		

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{shell} =3	82 M	400 Gb	0.1 Gb	9 Tb	1.5 Gb
N _{shell} =4	600 G	10 Pb	43 Gb	580 Tb	0.9 Tb

Comparison of nonzero matrix storage with factorization

¹⁶O

Space	Basis dim	matrix store (2-body)	factorization (2-body)	matrix store (3-body)	factorization (3-body)
N _{max} =4	0.3 M	1 Gb	70 Mb	17 Gb	0.7 Gb
N _{max} =6	26 M	140 Gb	3 Gb	4 Tb	53 Gb
N _{max} =8	1 G	8.6 Tb	70 Gb		

Space	Basis dim	matrix store (2-body)	factorization (2-body)		
N _{shell} =3	800 M	6 Tb	0.7 Gb	140 Tb	7.5 Gb

Drawbacks of factorization/on-the-fly algorithms:

Much more complicated to code up (even matrix storage is not trivial)

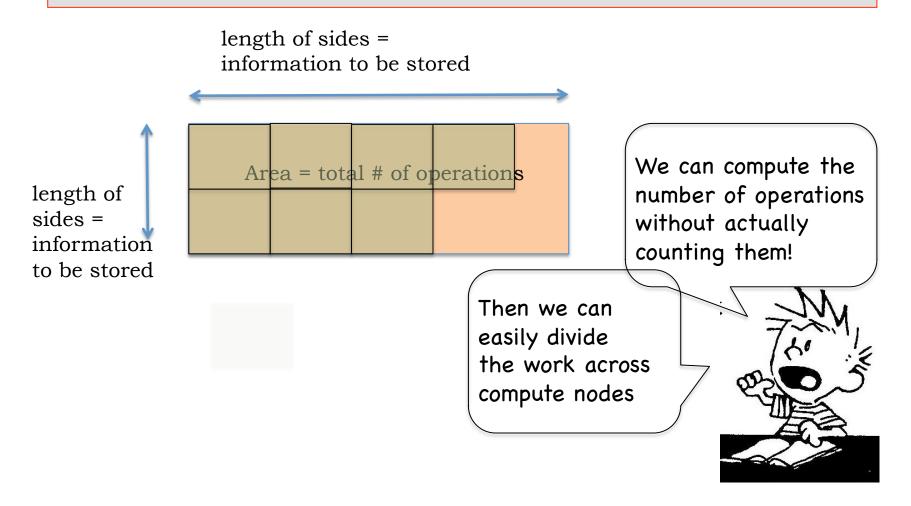
Less flexible in basis—for example, importance truncation much harder (if even possible)

4-body is in principle straightforward

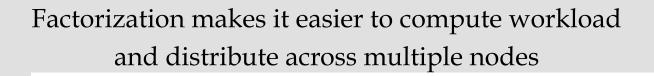
Experience in going from 2-body to 3-body shows most difficult part is correctly matching indices of input interaction to internal representation (+ induced phases etc) – useful to have *small* cases with known solutions for debugging

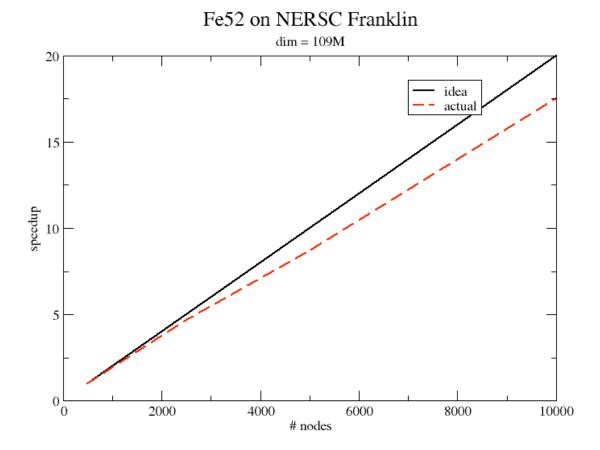
PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload and distribute across multiple nodes



PARALLEL IMPLEMENTATION





THE BIGSTICK CODE

Many-fermion code: 2nd generation after REDSTICK code (started in *Baton Rouge, La*.)

Arbitrary single-particle radial waveforms Allows local or nonlocal two-body interaction Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines --can run at least dimension 100M+ on desktop (20 Lanczos iterations in 300 CPU minutes)

20-30k lines of codes Fortran 90 + MPI + OpenMP Partially funded by SciDAC Plans to run on 50,000-100,000 compute nodes Plans to publish code

THE BIGSTICK CODE

What about other codes?

MFDn (Vary et al): M-scheme code, includes 3-body, mostly stores H in memory; optimized for ab initio and is leading CI code today for ab initio.

Less flexible in model space, awkward to run on desktop machines.

NuShell(X) (Rae, Brown,Horoi et al): J-scheme code. Uses factorization. Flexible single-particle space. Leading CI code for phenomenological shell model. No 3-body yet, awkward for Nmax truncations

ANTOINE (Caurier et al): M-scheme code. Uses factorization. Flexible single-particle space. Includes 3-body. Was leading CI code. Not (fully) parallelized

MCSM (Otsuka et al): Samples J-scheme basis stochastically. Includes (?) 3-body. Significant effort has gone into numerics Cannot truncate many-body space

CONCLUSIONS

Factorization allows one to represent and store a many-body Hamiltonian efficiently and compactly.

The trade-off is a more complex algorithm with many subtleties in parallelization.

BIGSTICK attempts to approach "best of both codes", the *ab initio* capability (in truncation and 3-body) of MFDn and the efficiency and flexibility of NuShellX.

LOOKING TO PARTNER WITH FEW-BODY / INTERACTION SPECIALISTS

Institute for Nuclear Theory – Sept 2012