Range effects on Efimov physics in cold atoms

An Effective field theory approach

Chen Ji || TRIUMF

in collaboration with D. R. Phillips, L. Platter

INT workshop, November 7 2012

Range effects on Efimov physics in cold atoms 1 / 22

- Separation of scales: $a \gg \ell$
- 2-body S-wave universality: $B_d = 1/Ma^2$

- Separation of scales: $a \gg \ell$
- 2-body S-wave universality: $B_d = 1/Ma^2$
- Physics at large distance is insensitive to physics at short distance
- Large-distance physics is studied in ℓ/a expansion
- Effects from SR-dynamics can be included in perturbation theory

Large-scattering-length physics

Universal Physics exists in systems with $\ell \ll a$

- Nuclear Physics
 - Few-nucleon systems (*NN*, *NNN*):
 - i.e., $\ell_{np}^t\sim 1.7~{\rm fm}$, $a_{np}^t\sim 5.4~{\rm fm}$ \bullet Halo nuclei (^6He, $^{11}{\rm Li})$
 - Halo nuclei (⁶He, ¹¹Li) $E_{sep} \ll E_{core}$

[www.theurbn.com]

[www.anl.gov]

Large-scattering-length physics

Universal Physics exists in systems with $\ell \ll a$

- Nuclear Physics
 - Few-nucleon systems (NN, NNN): *i.e.*, $\ell_{np}^t \sim 1.7$ fm, $a_{np}^t \sim 5.4$ fm • Halo nuclei (⁶He, ¹¹Li) $E_{sep} \ll E_{core}$
- Atomic Physics
 - Cold atomic gases (¹³³Cs, ⁷Li, ³⁹K): *r*₀ and *a* varies near Feshbach resonance
 - ⁴He atoms (dimer, trimer, tetramer): $\ell_{vdw} \sim 7$ Å, $a \sim 100$ Å

Effective field theory

- An approach to systems with a separation of scales
 - Systems with $\ell \ll a
 ightarrow$ an EFT with contact interactions
 - Few-nucleon systems \rightarrow pionless EFT
 - Halo nuclei \rightarrow halo EFT
 - Atomic systems \rightarrow short-range EFT
 - Physical quantities are expanded in powers of r_0/a
- Contact interactions at LO
 - 2-body contact interaction (LO)

$$\sum = -iC_0$$

 C_0 determined by a 2-body observable

• 3-body contact interaction (LO)

$$iD_0$$

 D_0 determined by a 3-body observable

Effective field theory

- An approach to systems with a separation of scales
 - Systems with $\ell \ll a
 ightarrow$ an EFT with contact interactions
 - Few-nucleon systems \rightarrow pionless EFT
 - Halo nuclei \rightarrow halo EFT
 - Atomic systems \rightarrow short-range EFT
 - Physical quantities are expanded in powers of r_0/a
- Contact interactions at LO
 - 2-body contact interaction (LO)

introduce a dimer field

= ih

 C_0 determined by a 2-body observable

• 3-body contact interaction (LO)

D₀ determined by a 3-body observable Bedaque, Hammer, van Kolck '99

EFT for 3 identical bosons

• LO $(r_0/a)^0$ EFT Lagrangian for 3 identical bosons

$$\mathcal{L} = \psi^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2m} \right) \psi - d^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{4m} - \Delta \right) d - \frac{g}{\sqrt{2}} \left(d^{\dagger}\psi\psi + \text{h.c} \right) + hd^{\dagger}d\psi^{\dagger}\psi + \cdots$$

• terms with more derivatives are at higher orders $(r_0/a)^n$

Non-perturbative features at LO

• atom-atom (dimer) scattering (tune g)

atom-dimer scattering (tune h)

Bedaque, Hammer, van Kolck '99

LO renormalization

• Without 3BF:

• 3-body spectrum: cutoff dependent ($\Lambda \sim 1/\ell$) Platter '09

• LO 3BF h:

- tune $H(\Lambda) = \Lambda^2 h/2mg^2$: fix one 3-body observable
- limit cycle:
 - $H(\Lambda)$ periodic for $\Lambda \to \Lambda(22.7)^n$ Bedaque *et al.* '00
- scaling invariance \rightarrow Efimov physics Efimov '71

Universal physics at LO

- Universal features in three-body systems (Efimov effects)
 - 3-body spectrum: a function of scattering length a
- geometric spectrum

•
$$E_n = (22.7)^{-2} E_{n-1}$$
 in the limit $a \to \infty$

universal relation of recombination features

•
$$a^* = a^+/4.5 = -a^-/21.3$$

• i.e.
$$a_{(n)}^- = 22.7a_{(n-1)}^-$$

Range effects on Efimov physics in cold atoms 7 / 22

Recombination features of cold atoms

loss rates of free atoms in ultracold atomic gases

- ³⁹K atoms
 - Zaccanti et al. '09

• ⁷Li atoms
$$|F = 1, m_F = 0\rangle$$

Gross *et al.* '09

• ⁷Li atoms
$$|F = 1, m_F = 1\rangle$$

Pollack *et al.* '09

Pic. credit: Ferlaino, Grimm '10

Beyond universality: range effects

• range effects on universal physics

- 2-body observable: $k \cot \delta_0 = -\frac{1}{a} + \frac{r_0}{2}k^2 + \cdots$
- 3-body observables: \rightarrow in r_0/a expansion

• Previous EFT calculations of r_0/a corrections (fixed a):

- Hammer, Mehen '01 (NLO)
- Bedaque, Rupak, Griesshammer, Hammer '03 (N²LO, partial iteration)
- Platter, Phillips '06 (N²LO, partial iteration)

• We perform a rigorous perturbative caluclation

- NLO (systems with variable a)
 - ultracold atomic gases (r_0/a varies near Feshbach resonance)
 - 3-body recombination
- N²LO (systems with a fixed *a*)
 - ⁴He atoms $(r_0/a \sim 0.07)$
 - ⁴He trimer (bound state), atom-dimer phase shift (scattering state)

NLO (r_0/a) range effects

- Calculate r_0/a correction to atom-dimer amplitude
 - NLO correction to atom-atom propagator (dimer):

$$= ir_0 \frac{2\pi}{mg^2} \frac{1/a + ik}{-1/a + ik}$$

• NLO correction to atom-dimer contact term (3BF):

$$= i\frac{2mg^2}{\Lambda^2}H_1(a,\Lambda)$$

• Contribution in $\mathbf{1}^{st}$ order perturbation theory:

NLO 3-body force:

 $H_1(\Lambda) = r_0 \Lambda \ h_{10}(\Lambda) + r_0/a \ h_{11}(\Lambda)$

- a fixed: h_{11} is absorbed (no additional 3-body input is needed)
- a varies: one additional 3-body input is needed

NLO three-body 3BF

•
$$H_1(\Lambda) = r_0 \Lambda h_{10}(\Lambda) + r_0/a h_{11}(\Lambda)$$

a and r_0 are functions of the magnetic field

Gross et al. '09

	$Experiment^{\dagger \ddagger}$	
$\begin{array}{c} 3A \ res \ a^{(-)} \ [a_B] \ rec \ min \ a^+ \ [a_B] \ Ad \ res \ a^* \ [a_B] \end{array}$	-264^{\dagger} 1160^{\dagger} 180^{\ddagger}	

† Gross et al. '09 ‡ Machtey et al. '12 * Ji, Phillips, Platter '10 Range effects on Efimov physics in cold atoms

	Experiment ^{†‡}	LO
3A res $a_{(-)}^- [a_B]$	-264 [†]	-264
$rec \ min \ a^+ \ [a_B]$	1160^{\dagger}	1254
Ad res a^* $[a_B]$	180^{\ddagger}	281

† Gross *et al.* '09 ‡ Machtey *et al.* '12 ★ Ji, Phillips, Platter '10

Range effects on Efimov physics in cold atoms 13 / 22

3A res $a_{(-)}^ [a_B]$ -264 [†] -264-244rec min a^+ $[a_B]$ 1160 [†] 12541160Ad res a^* $[a_B]$ 180 [‡] 281259		Experiment ^{†‡}	LO	LO
rec min a^+ $[a_B]$ 1160 [†] 12541160Ad res a^* $[a_B]$ 180 [‡] 281259	$\overline{3A \text{ res } a^{(-)} [a_B]}$	-264 [†]	-264	-244
Ad res $a^* [a_B]$ 180 [‡] 281 259	$rec \min a^+ [a_B]$	1160^{\dagger}	1254	1160
	Ad res a^* $[a_B]$	180^{\ddagger}	281	259

† Gross *et al.* '09 ‡ Machtey *et al.* '12 ★ Ji, Phillips, Platter '10

Range effects on Efimov physics in cold atoms 13 / 22

	Experiment ^{†‡}	LO	LO	NLO*
$\overline{3A}$ res $a^{(-)}$ $[a_B]$	-264^{\dagger}	-264	-244	-264
${rec} \min a^{+} [a_B]$	1160^{\dagger}	1254	1160	1160
Ad res a^* $[a_B]$	180^{\ddagger}	281	259	210(44)

† Gross *et al.* '09 ‡ Machtey *et al.* '12 ★ Ji, Phillips, Platter '10

Range effects on Efimov physics in cold atoms 13 / 22

3A res $a_{(-)}^{-}[a_{B}]$

3A res $a^ [a_B]$

rec min a^+ $[a_B]$

Ad res a^* $[a_B]$

-298

-6301

2676

608

rec min a^+ $[a_B]$

Ad res a^* $[a_B]$

1415

317

2676

608

•
$$\frac{1}{a} = \gamma - \frac{1}{2}r_0\gamma^2$$

Ji, Phillips, Platter '12

Range effects on Efimov physics in cold atoms 15 / 22

•
$$\frac{1}{a} = \gamma - \frac{1}{2}r_0\gamma^2$$

NLO corrections

$$\begin{split} \gamma_0 &= -0.210\gamma_-^{(-)} + r_0(a_0) \cdot \ \mathcal{I}_0^{(-)}\gamma_-^{(-)^2} \\ \gamma_* &= -0.939\gamma_-^{(-)} + r_0(a_*) \cdot \ \mathcal{I}_*^{(-)}\gamma_-^{(-)^2} \end{split}$$

•
$$\frac{1}{a} = \gamma - \frac{1}{2}r_0\gamma^2$$

NLO corrections

$$\begin{aligned} \gamma_0 &= -0.210\gamma_-^{(-)} + r_0(a_0) \cdot \ \mathcal{I}_0^{(-)}\gamma_-^{(-)^2} \\ \gamma_* &= -0.939\gamma_-^{(-)} + r_0(a_*) \cdot \ \mathcal{I}_*^{(-)}\gamma_-^{(-)^2} \end{aligned}$$

• Linear correlation at NLO $\mathcal{I}_{*}^{(-)} = -0.309 + 7.17 \ \mathcal{I}_{0}^{(-)}$

•
$$\frac{1}{a} = \gamma - \frac{1}{2}r_0\gamma^2$$

NLO corrections

$$\begin{split} \gamma_0 &= -0.210\gamma_-^{(-)} + r_0(a_0) \cdot \ \mathcal{I}_0^{(-)}\gamma_-^{(-)^2} \\ \gamma_* &= -0.939\gamma_-^{(-)} + r_0(a_*) \cdot \ \mathcal{I}_*^{(-)}\gamma_-^{(-)^2} \end{split}$$

- Linear correlation at NLO $\mathcal{I}_*^{(-)} = -0.309 + 7.17 \ \mathcal{I}_0^{(-)}$
- Universal relation at NLO $\gamma_* = -0.939 \gamma_-^{(-)} - 0.309 r_0(a_*) \gamma_-^{(-)^2} + 7.17 \frac{r_0(a_*)}{r_0(a_0)} \left(\gamma_0 + 0.210 \gamma_-^{(-)}\right)$

•
$$\frac{1}{a} = \gamma - \frac{1}{2}r_0\gamma^2$$

NLO corrections

$$\begin{split} \gamma_0 &= -0.210\gamma_-^{(-)} + r_0(a_0) \cdot \ \mathcal{I}_0^{(-)}\gamma_-^{(-)^2} \\ \gamma_* &= -0.939\gamma_-^{(-)} + r_0(a_*) \cdot \ \mathcal{I}_*^{(-)}\gamma_-^{(-)^2} \end{split}$$

- Linear correlation at NLO $\mathcal{I}_*^{(-)} = -0.309 + 7.17 \ \mathcal{I}_0^{(-)}$
- Universal relation at NLO $\gamma_* = -0.939\gamma_-^{(-)} - 0.309 r_0(a_*)\gamma_-^{(-)^2} + 7.17 \frac{r_0(a_*)}{r_0(a_0)} \left(\gamma_0 + 0.210\gamma_-^{(-)}\right)$ $\gamma_* = 4.47\gamma_0 - 7.02 r_0(a_*)\gamma_0^2 + 0.566 \frac{r_0(a_*)}{r_0(a_-^{(-)})} \left(\gamma_-^{(-)} + 4.76\gamma_0\right)$

$N^2LO (r_0/a)^2$ range effects

N²LO corrections to atom-dimer scattering amplitude:
 in 2nd order perturbation theory (~ r₀²/a²):

N²LO dimer:

 t_0

 $N^{2}LO 3BF$:

two NLO terms:

• N²LO 3-body force: $H_2(E,\Lambda) = r_0^2 \Lambda^2 h_{20}(\Lambda) + r_0^2 m E_3 h_{22}(\Lambda)$ \rightarrow one additional 3-body input is needed (even when *a* is fixed)

c.f. Bedaque et al. '03 & Platter, Phillips '06

•
$$H_2 = r_0^2 \Lambda^2 h_{20}$$

•
$$H_2 = r_0^2 \Lambda^2 h_{20} + r_0^2 m E_t h_{22}$$

NLO three-body 3BF

•
$$H_2(\Lambda) = r_0^2 \Lambda^2 h_{20}(\Lambda) + r_0^2 m E_t h_{22}(\Lambda)$$

Input	$B_t^{(1)} \left[B_d \right]$	$B_t^{(0)} \left[B_d \right]$	$a_{ad} \left[\gamma^{-1} \right]$	$r_{ad} \left[\gamma^{-1} \right]$
TTY potential	1.738	96.33	1.205	

Input		$B_t^{(1)}$ $\begin{bmatrix} B_d \end{bmatrix}$	$B_t^{(0)} \left[B_d \right]$	$a_{ad} \left[\gamma^{-1} \right]$	$r_{ad} \left[\gamma^{-1} \right]$
TTY pot	ential	1.738	96.33	1.205	
$ \begin{array}{c} a_{ad} \\ a_{ad} \\ a_{ad}, B_t^{(1)} \end{array} $	LO NLO N ² LO	1.723 1.736 1.738	97.12 89.72 116.9	1.205 1.205 1.205	0.8352 0.9049 0.9132

Input		$B_t^{(1)}$ $\begin{bmatrix} B_d \end{bmatrix}$	$B_t^{(0)} \left[B_d \right]$	$a_{ad} \left[\gamma^{-1} \right]$	$r_{ad} \left[\gamma^{-1} \right]$
TTY pot	ential	1.738	96.33	1.205	
$ \frac{a_{ad}}{a_{ad}} $ $ a_{ad}, B_t^{(1)} $	LO	1.723	97.12	1.205	0.8352
	NLO	1.736	89.72	1.205	0.9049
	N ² LO	1.738	116.9	1.205	0.9132
$\overline{\begin{matrix} B_t^{(1)} \\ B_t^{(1)} \\ B_t^{(1)}, \ a_{ad} \end{matrix}}$	LO	1.738	99.37	1.178	0.8752
	NLO	1.738	89.77	1.201	0.9130
	N ² LO	1.738	115.9	1.205	0.9135

Input		$B_t^{(1)}$ $\begin{bmatrix} B_d \end{bmatrix}$	$B_t^{(0)} \left[B_d \right]$	$a_{ad} \left[\gamma^{-1} \right]$	$r_{ad} \left[\gamma^{-1} \right]$
TTY pot	ential	1.738	96.33	1.205	
$ \begin{array}{c} a_{ad} \\ a_{ad} \\ a_{ad}, B_t^{(1)} \end{array} $	LO	1.723	97.12	1.205	0.8352
	NLO	1.736	89.72	1.205	0.9049
	N ² LO	<mark>1.738</mark>	116.9	1.205	0.9132
$\overline{ \begin{matrix} B_t^{(1)} \\ B_t^{(1)} \\ B_t^{(1)} \\ B_t^{(1)} \text{, } a_{ad} \end{matrix} }$	LO	1.738	99.37	1.178	0.8752
	NLO	1.738	89.77	1.201	0.9130
	N ² LO	1.738	115.9	1.205	0.9135

- Difference in 2 renormalization schemes (LO \rightarrow NLO \rightarrow N²LO):
 - atom-dimer effective range r_{ad} : 5% ightarrow 0.9% ightarrow 0.02%
 - ground-state trimer $B_t^{(0)}$: 2% \rightarrow 0.07% \rightarrow 0.9%

Input		$B_t^{(1)} \left[B_d \right]$	$B_t^{(0)} \left[B_d \right]$	$a_{ad} \left[\gamma^{-1} \right]$	$r_{ad} \left[\gamma^{-1} \right]$
TTY pot	ential	1.738	96.33	1.205	
$ \begin{array}{c} a_{ad} \\ a_{ad} \\ a_{ad}, B_t^{(1)} \end{array} $	LO	1.723	97.12	1.205	0.8352
	NLO	1.736	89.72	1.205	0.9049
	N ² LO	<mark>1.738</mark>	116.9	1.205	0.9132
$\overline{ \begin{matrix} B_t^{(1)} \\ B_t^{(1)} \\ B_t^{(1)} \\ B_t^{(1)} \text{, } a_{ad} \end{matrix} }$	LO	1.738	99.37	1.178	0.8752
	NLO	1.738	89.77	1.201	0.9130
	N ² LO	1.738	115.9	1.205	0.9135

- Difference in 2 renormalization schemes (LO \rightarrow NLO \rightarrow N²LO):
 - atom-dimer effective range r_{ad} : 5% \rightarrow 0.9% \rightarrow 0.02%
 - ground-state trimer $B_t^{(0)}$: 2% \rightarrow 0.07% \rightarrow 0.9%
- Compare with TTY:
 - $\Delta B_t^{(0)} \sim 20\%$
 - $r_0^2 B_t^{(0)} \sim 0.5$
 - EFT expansion needs to be corrected for deep trimer with U_{vdw} [Gao '98]

Range effects on Efimov physics in cold atoms 19 / 22

He-4 trimer phase shift at N²LO

•
$$a_{ad} \rightarrow LO/NLO/N^2LC$$

• $B_t^{(1)} \rightarrow N^2LO$

•
$$B_t^{(1)} \rightarrow \text{LO/NLO/N}^2\text{LO}$$

• $a_{ad} \rightarrow \text{N}^2\text{LO}$

• LO \rightarrow NLO \rightarrow N²LO

- We studied effective-range corrections on Efimov physics in perturbation theory
- NLO for varying *a*:
 - recombination in cold atoms
 - $H_1(\Lambda) = r_0 \Lambda h_{10}(\Lambda) + r_0/a h_{11}(\Lambda)$
 - one additional 3-body input is needed for NLO renormalization
- N²LO for fixed *a*:
 - He-4 trimer
 - $H_2(E,\Lambda) = r_0^2 \Lambda^2 h_{20}(\Lambda) + r_0^2 m E_3 h_{22}(\Lambda)$
 - one additional 3-body data is needed for N²LO renormalization
- Range corrections are also important in nuclear physics