A Halo EFT description of Helium-6

Chen Ji 计晨 || TRIUMF

in collaboration with D. R. Phillips, C. Elster (Ohio University)

INT program 12-3, November 2 2012

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Universal features at low energies

• 2-body universality: $B_2 = 1/Ma^2$

- Separation of scales: $a \gg \ell$
- 2-body universality: $B_2 = 1/Ma^2$
- Physics at large distance is insensitive to physics at short distance
- Large-distance physics is studied in ℓ/a expansion
- Effects from SR-dynamics can be included in perturbation theory

Large-scattering-length physics

Universal Physics exists in systems with $\ell \ll a$

- Atomic Physics
 - Cold atomic gases (¹³³Cs, ⁷Li, ³⁹K):
 - r_0 and a varies near Feshbach resonance
 - ⁴He atoms (dimer, trimer, tetramer): $\ell_{vdw} \sim 7$ Å, $a \sim 100$ Å
- Nuclear Physics
 - Few-nucleon systems (³H, ³He, ⁴He): *i.e.*, $\ell_{nn}^t \sim 1.7$ fm, $a_{nn}^t \sim 5.4$ fm

0

Large-scattering-length physics

Universal Physics exists in systems with $\ell \ll a$

- Atomic Physics
 - Cold atomic gases (¹³³Cs, ⁷Li, ³⁹K): r₀ and *a* varies near Feshbach resonance
 - ⁴He atoms (dimer, trimer, tetramer): $\ell_{vdw} \sim 7$ Å, $a \sim 100$ Å

- Nuclear Physics
 - Few-nucleon systems (³H, ³He, ⁴He): *i.e.*, $\ell_{np}^t \sim 1.7$ fm, $a_{np}^t \sim 5.4$ fm

• Halo nuclei

a tightly bound core with one/few loosely bound valence nucleons $^{6}\text{He:}~\epsilon^{*}_{\alpha}\sim 20\text{MeV},~\epsilon^{*}_{^{6}\text{He}}\sim 1\text{MeV}$ $r_{\alpha}\sim 1.45$ fm, $r_{\alpha-nn}\sim 3.7$ fm

Effective field theory

- An approach to systems with a separation of scales
 - Systems with $\ell \ll a
 ightarrow$ an EFT with contact interactions
 - Atomic systems \rightarrow zero-range EFT
 - Few-nucleon systems \rightarrow pionless EFT
 - Halo nuclei \rightarrow halo EFT
 - Physical quantities are expanded in powers of ℓ/a
- Contact interactions at LO
 - 2-body contact interaction (LO)

 C_0 determined by a 2-body observable

• 3-body contact interaction (LO)

$$iD_0$$

 D_0 determined by a 3-body observable

Effective field theory

- An approach to systems with a separation of scales
 - Systems with $\ell \ll a
 ightarrow$ an EFT with contact interactions
 - Atomic systems \rightarrow zero-range EFT
 - Few-nucleon systems \rightarrow pionless EFT
 - Halo nuclei \rightarrow halo EFT
 - Physical quantities are expanded in powers of ℓ/a

 $c_0 = g^2/\Delta$

- Contact interactions at LO
 - 2-body contact interaction (LO)

introduce a dimer field

 C_0 determined by a 2-body observable

• 3-body contact interaction (LO)

 D_0 determined by a 3-body observable

=ih

Bedaque, Hammer, van Kolck '99

• EFT Lagrangian for 3 identical bosons at LO

$$\mathcal{L} = \psi^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2m} \right) \psi - d^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{4m} - \Delta \right) d - \frac{g}{\sqrt{2}} \left(d^{\dagger}\psi\psi + \text{h.c} \right) + hd^{\dagger}d\psi^{\dagger}\psi + \cdots$$

- terms with more derivatives are at higher orders
- nuclear physics: add spin and isospin d.o.f.

• Non-perturbative features at LO

• particle-particle scattering (tune g)

$$= + - \frac{1}{1/a + ik}$$

• particle-dimer scattering (tune *h*)

LO renormalization

• Without 3BF:

• 3-body spectrum: cutoff dependent ($\Lambda \sim 1/\ell$) Platter '09

• LO 3BF h:

- tune $H(\Lambda) = \Lambda^2 h/2mg^2$: fix one 3-body observable
- Iimit cycle:

 $H(\Lambda)$ periodic for $\Lambda \to \Lambda(22.7)^n$ Wilson '71, Bedaque *et al.* '00

• 3-body correlation:

Phillips line (Phillips '68)

correlation btw $nd\ {\rm scattering}\ {\rm length}\ {\rm and}\ {\rm triton}\ {\rm binding}\ {\rm energy}$

• 3- and 4-body correlation:

Tjon line (Tjon '75)

correlation btw binding energies of triton and α -particle (no 4BF)

Phillips line (Bedaque et al. '00)

- Halo EFT is suitable for nuclei with $E^*_{core} \gg E_{sep}$
 - Core + valence nucleons
 - $M_{lo} \sim (M_N E_{sep})^{1/2}; M_{hi} \sim (M_N E_{core}^*)^{1/2}$
 - study properties of halo nculei in M_{lo}/M_{hi} expansion

• 1-neutron halo and resonant state

- ¹¹Be (n-¹⁰Be): E1 transition [Hammer, Phillips '11]
- ⁵He $(n-\alpha)$: p-wave resonance [Bertulani *et al.* '02, Bedaque *et al.* '02]

• 2-neutron halo:

- ¹¹Li, ¹²Be, ²⁰C: *n*-core in s-wave resonance [Canham, Hammer '08]
- ⁶He: n- α in p-wave resonance
 - EFT + Gamow shell model [Rotureau, van Kolck '12]
 - EFT + Faddeev Equations Ji, Elster, Phillips

• experiment in ⁶He

- matter radius Tanihata et al. '92, Alkhazov et al. '97, Kislev et al. '05
- charge radius Wang et al. '04, Mueller et al. '07
- ⁶He mass Brodeur *et al.* '12

cluster model

- separable potential Ghovanlou, Lehman '74
- density-dependent nn contact interaction Esbensen et al. '97

• ab intio calculation

- no-core shell model Navrátil et al. '01
- hyperspherical harmonics Bacca et al. '12
- Green's function Monte Carlo Pieper et al. '01

• halo EFT

- explore universal physics in halo nuclei
- understand the role of **3BF** $(nn\alpha)$
- compare predictions with experiments and other theories

n-n interaction

• nn interaction is dominated by the 1S_0 state

$$n = \frac{1}{4\pi^2 \mu_{nn}} \frac{1}{-1/a_0 + r_0 k^2/2 - ik}$$

 $a_0 = -18.7$ fm, $r_0 = 2.75$ fm González Trotter *et al.* '99

• *nn* EFT power counting:

- EFT: $a_0 \sim M_{lo}^{-1}$ $r_0 \sim M_{hi}^{-1}$
- $M_{lo}/M_{hi} \sim 0.15$
- ${}^1S_0 \rightarrow$ shallow virtual-bound state
 - $\gamma_0 \sim M_{lo}$
- LO nn t-matrix in halo EFT

$$t_{nn} = \frac{1}{4\pi^2 \mu_{nn}} \cdot \frac{1}{\gamma_0 + ik}$$

$n-\alpha$ interaction

• $n\alpha$ interaction is dominated by the $^2P_{\frac{3}{2}}$ state

$$a = \frac{1}{4\pi^2 \mu_{n\alpha}} \frac{\vec{p} \cdot \vec{q}}{-1/a_1 + r_1 k^2/2 - ik^3}$$

 $a_1 = -62.95 \text{ fm}^3$, $r_1 = -0.8819 \text{ fm}^{-1}$ Ardnt et al. '73

• $n \alpha$ EFT power counting: Bedaque, Hammer, van Kolck '02

⁶He in Jacobi coordinates

spin-orbit coupling for ⁶He ground state ($J = 0^+$)

pair, spec	pair	spectator	total L , S	total J
nn , α	$\ell = 0$, $s_1 = 0$	$\lambda = 0, s_2 = 0$	L = 0, S = 0	$I = 0^+$
no n	$\ell = 1 e_1 = 1$	$) - 1 e_{-} - 1$	L = 0, S = 0	J = 0
$n\alpha$, n	$\ell = 1, \ s_1 = \frac{1}{2}$	$\lambda = 1, \ s_2 = \frac{1}{2}$	L = 1, S = 1	

25

Faddeev equations

- decompose ⁶He ground-state wave function into Faddeev components
 - $|\Psi_{^{6}\mathrm{He}}\rangle = |\psi_{\alpha}\rangle + (1 \mathcal{P}_{nn}) |\psi_{n}\rangle$
- ${\scriptstyle \bullet}\,$ introduce 2-body dressed propagators \rightarrow redefine Faddeev components
 - $|\psi_{\alpha}\rangle = G_0 t_{\alpha} |F_{\alpha}\rangle$ $|\psi_n\rangle = G_0 t_n |F_n\rangle$
 - $F_n(F_{\alpha})$ depends only on $q_n(q_{\alpha})$ after partial-wave projection
- parameters in 2-body t-matrices from experiments (underlying theory)
- ⁶He is studied in a coupled-channel integral equations

Faddeev equations

- decompose ⁶He ground-state wave function into Faddeev components
 - $|\Psi_{^{6}\mathrm{He}}\rangle = |\psi_{\alpha}\rangle + (1 \mathcal{P}_{nn}) |\psi_{n}\rangle$
- ${\color{black} \bullet}$ introduce 2-body dressed propagators ${\color{black} \to}$ redefine Faddeev components
 - $|\psi_{\alpha}\rangle = G_0 t_{\alpha} |F_{\alpha}\rangle$ $|\psi_n\rangle = G_0 t_n |F_n\rangle$
 - F_n (F_{α}) depends only on q_n (q_{α}) after partial-wave projection
- parameters in 2-body t-matrices from experiments (underlying theory)
- ⁶He is studied in a coupled-channel integral equations

reduce to a single-channel equation

Cutoff dependence

- \bullet Before inserting $nn\alpha$ 3-body force:
 - ${\, \bullet \,}$ Use a hard cutoff Λ
 - calculate 2n separtion energy S_{2n}
 - S_{2n} is strongly cutoff dependent: $S_{2n} \sim \Lambda^{2.7} \leftarrow \text{need 3BF!}$

• candiates for $nn\alpha$ counterterms

• only the $[n\overleftrightarrow{\partial}(\alpha\overleftrightarrow{\partial}n)]^{\dagger}[n\overleftrightarrow{\partial}(\alpha\overleftrightarrow{\partial}n)]$ counterterm is needed

- Pauli principle
- A similar three-body counterterm is discovered by Rotureau, van Kolck arXiv:1201.3351v1 (2012)

3-body renormalization

- Add $nn\alpha$ 3BF to Faddeev equation
- renormalize F_n by reproducing one 3-body observable

• F_{α} is simultaneously renormalized without additional 3BFs

Running of $nn\alpha$ 3BF

• 3BF parameter:

- reproduce $S_{2n} = 0.973 {\rm MeV}$
- log oscillation
- No limit cycle (c.f. 3-body in S-wave)

$F_{\alpha}(\alpha, nn)$ and $F_{n}(n, \alpha n)$: cutoff independent

⁶He ground-state wave function $(\alpha - nn)$ RTRIUMF

• $|\Psi\rangle$ in $\alpha-(nn)$ Jacobi representation

momenta in MeV

⁶He ground-state wave function $(n - \alpha n)$ RTRIUMF

• $|\Psi\rangle$ in $n-(\alpha n)$ Jacobi representation

momenta in MeV

⁶He matter density form factors

one-body matter form factors

$$\mathcal{F}_i(k^2) = \frac{\int dq^3 \int dp^3 \Psi_i^{\dagger}(\vec{p}, \vec{q}) \Psi_i(\vec{p}, \vec{q} - \vec{k})}{\int dq^3 \int dp^3 |\Psi_i(\vec{p}, \vec{q})|^2}$$
$$\mathcal{F}_i(k^2) = 1 - \frac{1}{6} k^2 \langle r_i^2 \rangle + \cdots$$

⁶He matter density form factors

• two-body matter form factors

$$\mathcal{F}_{jk}(k^2) = \frac{\int dq^3 \int dp^3 \Psi_i^{\dagger}(\vec{p}, \vec{q}) \Psi_i(\vec{p} - \vec{k}, \vec{q})}{\int dq^3 \int dp^3 |\Psi_i(\vec{p}, \vec{q})|^2}$$

$$\mathcal{F}_{jk}(k^2) = 1 - \frac{1}{6}k^2 \langle r_{jk}^2 \rangle + \cdots$$

⁶He matter density form factors

• two-body matter form factors

$$\mathcal{F}_{jk}(k^2) = \frac{\int dq^3 \int dp^3 \Psi_i^{\dagger}(\vec{p}, \vec{q}) \Psi_i(\vec{p} - \vec{k}, \vec{q})}{\int dq^3 \int dp^3 |\Psi_i(\vec{p}, \vec{q})|^2}$$
$$\mathcal{F}_{jk}(k^2) = 1 - \frac{1}{6} k^2 \langle r_{jk}^2 \rangle + \cdots$$

- $F_{\alpha n}$ vanishes at $\Lambda \to \infty$?
- further study $F_{\alpha n}$
- use only F_{α} and F_n for predictions

		EFT [fm]	Exp [fm]
	$r_{pp}[\alpha]$	_	1.455(1)
116-4	$r_m[lpha]$	_	1.455(1)
Не-б			

		EFT [fm]	Exp [fm]
	$r_{pp}[\alpha]$	_	1.455(1)
ne-4	$r_m[\alpha]$	—	1.455(1)
	$r_{lpha(nn)}$	3.235	_
	$r_{n(\alpha n)}$	4.096	_
He-6			

He-4 $r_{pp}[\alpha]$ - 1.45 $r_m[\alpha]$ - 1.45 $r_{\alpha(nn)}$ 3.235 -	5(1)
$r_{\alpha(nn)}$ 3.235 -	5(1)
	_
$r_{n(\alpha n)}$ 4.096 -	_
$r_{\alpha} = \frac{1}{3} r_{\alpha(nn)} \qquad \qquad 1.078 \qquad \qquad -$	_
He-6 $r_n = rac{5}{6} r_{n(lpha n)}$ 3.413 -	_

		EFT [fm]	Exp [fm]
	$r_{pp}[lpha]$	_	1.455(1)
116-4	$r_m[lpha]$	_	1.455(1)
	$r_{lpha(nn)}$	3.235	_
	$r_{n(\alpha n)}$	4.096	—
	$r_{lpha} = rac{1}{3}r_{lpha(nn)}$	1.078	—
He-6	$r_n = rac{5}{6} r_{n(lpha n)}$	3.413	
	$r_{pp}(^{6}He) = \sqrt{r_{lpha}^{2} + r_{pp}^{2}[lpha]}$	1.811(1)	1.938(23), 1.953(22)
	$r_m(^6\text{He}) = \sqrt{\frac{1}{6}(4r_{\alpha}^2 + 2r_n^2 + 4r_m^2[\alpha])}$	2.464(1)	2.33(4), 2.30(7), 2.37(5)

		EFT [fm]	Exp [fm]
	$r_{pp}[lpha]$	_	1.455(1)
	$r_m[lpha]$	_	1.455(1)
	$r_{lpha(nn)}$	3.235	_
	$r_{n(\alpha n)}$	4.096	—
	$r_{\alpha} = \frac{1}{3}r_{\alpha(nn)}$	1.078	_
He-6	$r_n=rac{5}{6}r_{n(lpha n)}$	3.413	—
	$r_{pp}(^{6}He) = \sqrt{r_{lpha}^{2} + r_{pp}^{2}[lpha]}$	1.811(1)	1.938(23), 1.953(22)
	$r_m(^6 \text{He}) = \sqrt{\frac{1}{6} \left(4r_{\alpha}^2 + 2r_n^2 + 4r_m^2[\alpha]\right)}$	2.464(1)	2.33(4), 2.30(7), 2.37(5)

EFT discrepancy from experiment: (consistent with EFT expansion)

•
$$r_{pp} \sim 7\% \rightarrow r_{\alpha} \sim 20\%$$

• $r_m \sim 6\% \rightarrow r_n \sim 25\%$

compare with theory and experiment

cf. Bacca, Barnea, Schwenk '12

• He-6 point-proton radius

• He-6 matter radius

• ⁶He is a 2n halo with $n\alpha$ interacting in ${}^2P_{\frac{3}{2}}$ resonance

- LO halo EFT analysis:
 - A p-wave $n(n\alpha)$ 3BF is needed for proper renormalization
 - Tune 3BF to reproduce $S_{2n}(^{6}He) = 0.973$ MeV
 - Halo EFT predictions of r_m and r_{pp} is consistent with EFT expansion
- two-body form factors need to be checked
- application to ¹¹Li

BACK UP

point-proton charge radius of ⁶He

Point-Proton Radius of He-6 (fm)

Wang et al. '04

Cluster-model calculations

2-body Yamaguchi potential	[Ghovanlou, Lehman '74]
$V_{nn}(\vec{p},\vec{q}) = \frac{\lambda_0}{4\pi}g_0(p)g_0(q)$	$g_0(p) = 1/\left(p^2 + \beta_0^2\right)$
$V_{n\alpha}(\vec{p},\vec{q}) = \frac{3\lambda_1}{4\pi}g_1(p) \ \vec{p} \cdot \vec{q} \ g_1(q)$	$g_1(p) = 1/\left(p^2 + \beta_1^2\right)^2$

nn	$\beta_0 \; [{ m fm}^{-1}]$	$\lambda_0 \; [{ m fm}^{-2}]$	a_0 [fm]	r_0 [fm]
	1.13	-0.3484	-16.4	2.84
$n\alpha$	$\beta_1 \; [fm^{-1}]$	$\lambda_1 [\text{fm}^{-4}]$	a_1 [fm ³]	$r_1 \; [fm^{-1}]$
	1.45	-7.969	-71.5	-0.851

Cluster-model calculations

2-body Yamaguchi potential	[Ghovanlou, Lehman '74]
$V_{nn}(\vec{p},\vec{q}) = \frac{\lambda_0}{4\pi}g_0(p)g_0(q)$	$g_0(p) = 1/\left(p^2 + \beta_0^2\right)$
$V_{n\alpha}(\vec{p},\vec{q}) = \frac{3\lambda_1}{4\pi}g_1(p) \ \vec{p} \cdot \vec{q} \ g_1(q)$	$g_1(p) = 1/\left(p^2 + \beta_1^2\right)^2$

- ⁶He ground-state binding energy:
 - Prediction: $B(^{6}He) = 0.78$ MeV
 - Experiment: $B(^{6}He) = 0.97$ MeV underbind? $\rightarrow nn\alpha$ counterterm

nn	$\beta_0 \; [{ m fm}^{-1}]$	$\lambda_0 \; [{ m fm}^{-2}]$	a_0 [fm]	r_0 [fm]
	1.13	-0.3484	-16.4	2.84
$n\alpha$	$\beta_1 \; [fm^{-1}]$	$\lambda_1 \; [{ m fm}^{-4}]$	a_1 [fm ³]	$r_1 \; [\mathrm{fm}^{-1}]$
	1.45	-7.969	-71.5	-0.851

eigen-value

