

Outline

Goal: understand the role of 3N forces for structure of medium-mass exotic nuclei

- What are the limits of nuclear existence?
- How do magic numbers form and evolve?

Chiral Effective Field Theory: Nuclear Forces

Nucleons interact via pion exchanges and contact interactions Hierarchy: $V_{NN} > V_{3N} > \dots$ Consistent treatment of NN, 3N, \dots electroweak operators Couplings fit to experiment once Evolve to **low-momentum** $V_{low k}$ (Improved convergence behavior)

3N constants fit to properties of light nuclei at low momentum

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meissner,...

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from $V_{\text{low }k}$ **Does not reproduce experimental data**

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from $V_{\text{low }k}$ Does not reproduce experimental data – **allow explicit breaking of core**

Strategy

0h, 1f, 2p1121) Effective valence space interaction -3^{rd} order MBPT2) HO basis of 13 major shells0g, 1d, 2s703) Single-particle energies calculated self-consistently0f, 1p405) Consistent treatment of chiral NN and 3N forces20 $0d_{322}$ "sd"-valence space0p8 $16_{0 core}$ 0p8 $16_{0 core}$

Assume filled core

0s

Convergence Properties

NN matrix elements derived from:

- Chiral N³LO (Machleidt, 500 MeV) using smooth-regulator $V_{\text{low }k}$
- Third order in MBPT
- 13 major HO shells for intermediate state configurations

Clear convergence with HO basis size Promising order-by-order behavior

Convergence Properties

NN matrix elements derived from:

- Chiral N³LO (Machleidt, 500 MeV) using smooth-regulator $V_{\text{low }k}$
- Third order in MBPT
- 13 major HO shells for intermediate state configurations

G-matrix – no sign of convergence

Comparison to Coupled Cluster

Benchmark against *ab-initio* Coupled Cluster at NN level SPEs: one-particle attached CC energies in ¹⁷O and ⁴¹Ca

Energies relative to ¹⁶O and ⁴⁰Ca Small difference in many-body methods ~5%

Limits of Nuclear Existence: Oxygen Anomaly

Limits of Nuclear Existence: Oxygen Anomaly

Mass Number A

Extended-space – more binding

Single Particle Energies

SPEs self-consistently from one-body diagrams

sd-shell: overbound, unreasonable spacing

Orbit	"Exp"	USDb	$T + V_{NN} \left(3^{rd} \right)$
<i>d</i> _{5/2}	-4.14	-3.93	-5.43
s _{1/2}	-3.27	-3.21	-5.32
d _{3/2}	0.944	2.11	-0.97

Typical approach: use empirical SPEs

3N forces eliminate need for adjusted parameters?

Chiral Effective Field Theory: 3N Forces

c terms given from NN fits: constrained by NN, π N data

c_D c_E fit to properties of light nuclei: Triton binding energy, ⁴He radius

3N Forces for Valence-Shell Theories

Normal-ordered 3N: contribution to valence nucleon interactions

Effective one-body

Effective two-body

Combine with microscopic NN (Third Order): no empirical adjustments

Extended Valence Space SPEs

3N forces: additional repulsion – comparable to phenomenology

Orbit	USDb	$T + V_{NN} + V_{3N}$	SDPF-M	$T + V_{NN} + V_{3N}$
<i>d</i> _{5/2}	-3.93	-3.78	-3.95	-3.46
<i>s</i> _{1/2}	-3.21	-2.42	-3.16	-2.20
<i>d</i> _{3/2}	2.11	1.45	1.65	1.92
$f_{7/2}$			3.10	3.71
P3/2			3.10	7.72

Similar behavior in standard/extended spaces

Ground-State Energies of Oxygen Isotopes

Valence-space interaction and SPEs from NN+3N

JDH, Menendez, Schwenk, arXiv:1108.2680

Repulsive character improves agreement with experiment *sd*-shell results underbound; improved in **extended space** $sdf_{7/2} p_{3/2}$

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N

 $5/2^+$, $3/2^+$ indicate position of $d_{5/2}$ and $d_{3/2}$ orbits

Shell Formation/Evolution in Calcium Isotopes

Goal: understand the role of 3N forces for structure of medium-mass exotic nuclei

- What are the limits of nuclear existence?
- How do magic numbers form and evolve?

Nuclear Pairing

$$T = 1, J = 0$$

Pairing of even number of nucleons – even/odd staggering

Pairing gaps deduced from **3-point mass difference**:

$$\Delta_n^{(3)} = \frac{(-1)^N}{2} \Big[BE(N+1,Z) + BE(N-1,Z) - 2BE(N,Z) \Big]$$

Allows comparison with experiment

Relative peak in pairing strength indicates **shell closure**

Pairing in EDF with 3N Forces

In Energy Density Functional theory: 3N forces lower gaps systematically $\sim 30\%$

Lesinski, Hebeler, Duguet, Schwenk, JPG (2012)

What are the contributions from neglected many-body effects? (Core polarization)

Pairing in Calcium Isotopes: Ladders

Compare with $\Delta_n^{(3)}$ calculated from microscopic NN+3N in calcium

HFB iterates ladders microscopically in pairing channel Compare with *pp, hh* ladders to 3rd order Improved agreement with experiment Convergence in order-by-order ladders Suppression from 3N forces as in EDF Incorrect odd/even staggering

Pairing in Calcium Isotopes: Full 3rd order

Compare with $\Delta_n^{(3)}$ calculated from microscopic NN+3N in calcium

Full 3rd-order MBPT

Further increases gaps Correct odd/even staggering; more pronounced Good experimental reproduction with 3rd-order NN+3N Can account for missing physics in EDF calculations

JDH, Menendez, Schwenk, in prep.

Pairing for Shell Evolution N=28

Peak in pairing gaps: complementary signature for shell closure Compare with 2⁺ energies for Ca

N=28: strong peak, overprediction in both cases

Pairing for Shell Evolution N=32

Peak in pairing gaps: complementary signature for shell closure Compare with 2⁺ energies for Ca

N=32: moderate peak

Close to experimental value with new TITAN data

Experimental measurement of ⁵³Ca mass needed to reduce uncertainty

Evolution of Magic Numbers: N=34

N=34 magic number in calcium?

Strong phenomenological disagreement for neutron-rich calcium

Pairing for Shell Evolution N=34

Peak in pairing gaps: complementary signature for shell closure Compare with 2⁺ energies for Ca

N=34: suppressed with 3N forces

Neutron-Rich Ca Spectra Near N=34

Neutron-rich calcium spectra with NN+3N

JDH, Menendez, Schwenk, in prep.

Dramatic difference in phenomenology NN+3N similar to KB3G – no indication of N=34 magic number Consistent with predictions from Coupled-Cluster theory

Impact on Spectra: ⁴⁹Ca

Neutron-rich calcium spectra with NN+3N

Spectrum typically too compressed NN+3N in $pfg_{9/2}$ correct $1/2^-$ Comparable to phenomenology (as for all lighter Ca isotopes)

Impact on Spectra: ⁵¹Ca

Neutron-rich calcium spectra with NN+3N

Possibility to assign spin/parity where unknown Gamma-ray spectroscopy needed

Pairing for Shell Evolution N=40

Peak in pairing gaps: complementary signature for shell closure

Compare with 2⁺ energies for Ca

N=40: robust signature of shell closure

Proton-Rich Systems

Proton-Rich Systems

Ground-State Energies of N=8 Isotones

Data limited – use phenomenological isobaric multiplet mass equation (IMME) $E(A,T,T_z) = E(A,T,-T_z) + 2b(A,T)T_z$ $b = 0.7068A^{2/3} - 0.9133$

NN-only: overbound

JDH, Menendez, Schwenk, arXiv:1207.1590

Ground-State Energies of N=8 Isotones

Data limited – use phenomenological isobaric multiplet mass equation (IMME) $E(A,T,T_z) = E(A,T,-T_z) + 2b(A,T)T_z$ $b = 0.7068A^{2/3} - 0.9133$ **NN-only**: overbound **NN+3N**: improved agreement with experiment/IMME JDH, Menendez, Schwenk, arXiv:1207.1590

Dripline uncertain: Unbound in AME2011, NN+3N; bound in IMME

Ground-State Energies of N=8 Isotones

Data limited – use phenomenological isobaric multiplet mass equation (IMME) $E(A,T,T_z) = E(A,T,-T_z) + 2b(A,T)T_z$ $b = 0.7068A^{2/3} - 0.9133$ **NN-only**: overbound **NN+3N**: improved agreement with experiment/IMME JDH, Menendez, Schwenk, arXiv:1207.1590

Dripline uncertain: Unbound in AME2011, NN+3N; bound in IMME

	C	IMME	NN+3N (sd)	NN+3N ($sdf_{7/2}p_{3/2}$)
²² Si possible two-proton emitter	S _{2p}	0.01 MeV	-1.63 MeV	-0.12 MeV

Spectra of N=8 Isotones

JDH, Menendez, Schwenk, arXiv:1207.1590

NN+3N: reasonable agreement with experiment New measurement: excited state in ²⁰Mg close to predicted 4⁺-2⁺ doublet Predictions for proton-rich ²¹Al, ²²Si spectra Closed sub-shell signature in ²²Si

Ground-State Energies of N=20 Isotones

Ground-State Energies of N=20 Isotones

Dripline: Predicted to be ⁴⁶Fe in all calculations

C	Expt.	NN+3N (<i>pf</i>)	NN+3N ($pfg_{9/2}$)	Prediction for ⁴⁸ Ni within
S _{2p}	-1.28(6) MeV	-2.73 MeV	-1.02 MeV	300keV of experiment

Spectra of N=20 Isotones

JDH, Menendez, Schwenk, arXiv:1207.1590

NN+3N: reasonable agreement with measured ⁴²Ti Predictions for proton-rich spectra Mirror energy differences with Ca isotopes ~400keV Closed-shell signature in ⁴⁸Ni

Neutrinoless Double-Beta Decay

Nuclear weak processes: fundamental importance for particle physics

Rare cases when single β-decay is energetically forbiddenCan undergo ββ-decay

Observed in nature with:

 $T_{1/2}^{2
uetaeta}\gtrsim 10^{19}~{
m y}$

Nuclear weak processes: fundamental importance for particle physics

Determines character of neutrino (Majorana/Dirac) Lepton number violation

Nuclear weak processes: fundamental importance for particle physics

Determines character of neutrino (Majorana/Dirac) Lepton number violation **Neutrino mass scale**

Nuclear weak processes: fundamental importance for particle physics

Neutrino mass scale

New measurement of ⁸²Se at NSCL D. Lincoln, JDH *et al.*, submitted to PRL

Nuclear weak processes: fundamental importance for particle physics

Two essential ingredients: Q-value (experiment) Nuclear matrix element

$$T_{1/2}^{0\nu\beta\beta})^{-1} = G_{0\nu}(Q_{\beta\beta},Z)M_{0\nu}^2 |m_{\beta\beta}|^2$$

Determines character of neutrino (Majorana/Dirac) Lepton number violation Neutrino mass scale

Nuclear structure required for NME

Need microscopic framework capable of accurate prediction

Nuclear Matrix Element

$$M_{0v} = M_{0v}^{GT} - \frac{g_V^2}{g_A^2} M_{0v}^F + \cdots \quad \text{Corrections} \sim 30\%$$
$$M_{0v}^{GT} = \left\langle f \left| \sum_{ab} H(r_{ab}) \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ \right| i \right\rangle \quad M_{0v}^F = \left\langle f \left| \sum_{ab} H(r_{ab}) \tau_a^+ \tau_b^+ \right| i \right\rangle$$

Shell model: arbitrary correlations in small single-particle space **QRPA**: simple correlations in large single-particle space

Nuclear Matrix Element

$$M_{0v} = M_{0v}^{GT} - \frac{g_V^2}{g_A^2} M_{0v}^F + \cdots \quad \text{Corrections} \sim 30\%$$
$$M_{0v}^{GT} = \left\langle f \left| \sum_{ab} H(r_{ab}) \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ \right| i \right\rangle \quad M_{0v}^F = \left\langle f \left| \sum_{ab} H(r_{ab}) \tau_a^+ \tau_b^+ \right| i \right\rangle$$

Shell model: arbitrary correlations in small single-particle space

QRPA: simple correlations in large single-particle space

Standard SM approach: phenomenological wavefunctions + **bare** operator Calculate *effective* $0\nu\beta\beta$ operator using formalism of effective interaction theory Diagrammatically similar: replace one interaction vertex with $M_{0\nu}$ operator

Previous: G-matrix calculation in 2nd-order MBPT non-convergent Engel and Hagen, PRC (2009)

Standard SM approach: phenomenological wavefunctions + **bare** operator Calculate *effective* $0\nu\beta\beta$ operator using formalism of effective interaction theory Diagrammatically similar: replace one interaction vertex with $M_{0\nu}$ operator

Previous: G-matrix calculation in 2nd-order MBPT non-convergent Engel and Hagen, PRC (2009)

Low-momentum interactions: Improve convergence behavior?

- Chiral N³LO (Machleidt, 500 MeV) using smooth-regulator $V_{\text{low }k}$
- 13 major HO shells for intermediate state configuration

Calculate in MBPT:

2nd order

Calculate in MBPT:

3rd order

2nd order

Intermediate-State Convergence

First results in ⁸²Se (with phenomenological wavefunctions from A. Poves)

Results well converged in terms of intermediate state excitations

Intermediate-State Convergence

First results in ⁸²Se (with phenomenological wavefunctions from A. Poves)

Results **well converged** in terms of intermediate state excitations Comparison with G-matrix – no sign of convergence Order-by-order convergence analysis in progress...

Conclusion

- Nuclear structure theory of medium-mass nuclei with 3N forces, extended spaces
- Robust repulsive 3N mechanism for T=1 neutron/proton-rich nuclei

Oxygen isotopes

- Cures NN-only failings: dripline, shell evolution, spectra
- **Calcium isotopes** in *pf* and *pfg*_{9/2}-shells:
 - Prediction of N=28 magic number in ⁴⁸Ca
 - Shell evolution towards the dripline: modest N=34 closure, quenching of N=40
 - Pairing gaps reflect shell structure higher-order many-body processes essential
- **Proton-rich N=8,20 isotones**: similar improvements in g.s. energies/spectra
- First effective $0\nu\beta\beta$ operator with chiral NN interactions
- Clearly improvable upgrade path

Acknowledgments

