

Characterizing neutron Op-1sOd single-particle evolution in neutronrich nuclei

Calem R. Hoffman Argonne National Laboratory

Outline

- The 0p-1s0d shell region
- In proximity to the oxygen drip line
 - Drip line anamoly (Z = 8 & 9)
 - Evolution of SPE's
 - Recent measurements
 - Systematics and comparisons with theory
- Direct reactions in 0p-1s0d nuclei
 - ¹⁹O(d,p)²⁰O and ¹⁷N(d,p)¹⁸N
 - SPE's as functions of proton and neutron occupancies
 - HELIOS at Argonne National Laboratory
 - Recent results
- Conclusions, outlook, and future work

The Op-1sOd shell region

10/12/12

3

The neutron sd shell region (N = 9 - 20)

10/12/12

4

The oxygen-fluorine drip line anomaly

H. Sakurai et al., PLB 448, 180 (1999) S. M. Lukyanov et al., Phys. At. Nucl. 67, 1627 (2004)

5

2

10/12/1

Evidence for an enhanced N = 16 gap

M. Stanoiu et al., PRC 69, 034312 (2004) B. Jurado et al., PLB 649, 43 (2007)

 $S_{\rm n}~({\rm MeV})$

Evidence for an enhanced N = 16 gap

[0/[2/]

Neutron resonances in the oxygen isotopes

Unbound states in ²⁴O

- ${}^{24}O \rightarrow {}^{23}O + n \text{ or } {}^{22}O + n + n$
- 2 Resonances from ²⁶F proton knock-out
- Proton elastic scattering established spin-partiy of lowest level as 2⁺

Unbound states in ²⁴O

- ${}^{24}O \rightarrow {}^{23}O + n \text{ or } {}^{22}O + n + n$
- 2 Resonances from ²⁶F proton knock-out
- Proton elastic scattering established spin-partiy of lowest level as 2⁺

Even – Even 2⁺ systematics for Z = 6 - 14

Calem R. Hoffman - Argonne National Laboratory

Shell model interactions

- Two-body Nucleon-Nucleon forces
 - G-matrix
 - V_{lowk} from chiral NN @ N³LO
- WBP/T interactions
 - USD for sd orbitals
- USD & USDA/B Interactions
 - Data available at 1988 / 2005
- SDPF-M Interaction
 - Reproduce unbound ²⁶O g.s.
 - Monopole + pairing modified

$$\delta V_{0d_{5/2},0d_{3/2}}^{T=1,0} = +0.30, -0.70 \text{ MeV},$$

 $\delta V_{0d_{5/2},0f_{7/2}}^{T=1,0} = +0.16, -0.50 \text{ MeV},$

E. K. Warburton and B. A. Brown, PRC 46, 923 (1992) B. A. Brown and B. H. Wildenthal, Rev. Part. Nucl. Sci. 38, 29 (1988) B. A. Brown and W. A. Richter, PRC 74, 034315 (2006) Y. Utsuno et al., PRC 60, 054315 (1999)

|()/|2/|2

²⁴O calculated 2⁺ (1⁺) energies

K. Tsukiyama et al., PRC 80, 051301(R) (2009), A. Volya, PRC 79, 044308 (2009); K. Tsukiyama et al., arXiv:1001.0729 (2010), G. Hagen et al., PRL 108, (2012)

Ground state measurements: ²⁵O & ²⁶O

- E = 0.77(30) MeV
- Γ = 0.17(30) MeV
- Mass excess:
 - 27440(110) MeV

- ²⁶O ground state is unbound to 2-neutron decay
- E = 0.15(10) MeV
- Γ = 0.005 MeV

C. R. Hoffman et al., PRL 100, 152502 (2008) E. Lunderberg et al., PRL 108, 142503 (2012)

Neutron separation energies

What is driving the shell evolution?

Components of the NN interaction

$$V(1,2) = V(\vec{r_1}, \vec{\sigma_1}, \vec{\tau_1}; \vec{r_2}, \vec{\sigma_2}, \vec{\tau_2}).$$

$$V_T(1,2) = \left(V_T^{is}(r) + V_T^{iv}(r)\vec{\tau_1} \cdot \vec{\tau_2} \right) S_{12}(r),$$

$$S_{12}(r) = \frac{3}{r^2} (\vec{\sigma_1} \cdot \vec{r}) (\vec{\sigma_2} \cdot \vec{r}) - \vec{\sigma_1} \cdot \vec{\sigma_2}.$$

 $V_{c}(1,2) = V_{0}(r) + V_{\sigma}(r)\vec{\sigma_{1}}\cdot\vec{\sigma_{2}} + V_{\tau}(r)\vec{\tau_{1}}\cdot\vec{\tau_{2}} + V_{\sigma\tau}(r)\vec{\sigma_{1}}\cdot\vec{\sigma_{2}}\vec{\tau_{1}}\cdot\vec{\tau_{2}}$

T. Otsuka et al., PRL 87, 082502 (2001), 95, 232502 (2005), 97, 162501, 104, 012501 (2010)

What is driving the shell evolution?

- Coupling to the continuum
 - Time dependent continuum shell model (TDCSM)
 - Gamow shell model calculations (GSM)
 - Continuum Coupled Shell Model (CCSM)
- Impact felt on excited states not binding energies

A. Volya, PRC 79, 044308 (2009) K. Tsukiyama et al. PRC 80, 051301(R); arXiv:1001.0729

|()/|2/

Three-body effects at the drip line

(d) $V_{low k}$ NN + 3N (Δ , N²LO) forces

NN + 3N (N²LO NN + 3N (Δ)

14

Neutron Number (N)

16

d3/

d 5/2

8

- Qualitative reproduction of the drip line & binding energies
- 2N + 3N forces needed for neutronrich nuclei
- Slight difference in 3N force used

(c) G-matrix NN + 3N (Δ) forces

14

Neutron Number (N)

16

d3/

 Long-range two-pion exchange dominates

20

T. Otsuka et al., PRL 105, 032501 (2010)

Calem R. Hoffman – Argonne National Laboratory

20

Single-Particle Energy (MeV)

-8

8

Coupled-Cluster Method

G. Hagen et al., PRL 108, 242501 (2012)

0.04

 $0.03^{+0.12}_{-0.03}$

0.005

0.01

0.04

10/12/12

0.56

 Γ_{CC}

 Γ_{Exp}

0.03

 $0.05^{+0.21}_{-0.05}$

0/12/12 2

Future work

- ²⁸O ground state binding energy
 - Extremely difficult
 - ²⁴0 + n + n + n + n
 - Need ²⁷O first
- ²⁶O 2⁺ state
 - Above ²⁵O g.s.
- Neutron angular correlations
 - High-lying states
- Unbound states in the Ca region
 - Unlikely to reach drip line with current facilities

Direct reactions to track single-particle

Previous direct reaction work (d,p)

B. Fernandez-Dominguez et al., PRC 84, 011301R (2011) Z. Elekes et al., PRL (2007)

- Excellent reproduction of the neutron 0d_{5/2} and 0s_{1/2} levels
- The neutron Od_{3/2} is ok
- Heaviest elemental chain with such complete information

Single-particle evolution across isotones

Single-particle evolution across isotones

10/12/12

2

Location of the $1s_{1/2}$ - $0d_{5/2}$ neutron orbitals

- Neutron adding (d,p) reaction
 - $^{19}O(d,p)^{20}O$ neutron sd orbitals as a function of N _
 - $^{17}N(d,p)^{18}N$ neutron *sd* orbitals as a function of Z _

Experimental details

B. Harss et al., Rev. Sci. Instrum. 71, 380 (2000)

Calem R. Hoffman - Argonne National Laboratory

HELIcal Orbit Spectrometer (HELIOS) $T_{\rm cyc} = \frac{2\pi}{B} \frac{m}{qe}.$ $E_{\text{lab}} = E_{\text{c.m.}} - \frac{m}{2}V_{\text{c.m.}}^2 + \frac{mV_{\text{c.m.}}z}{T_{\text{cyc}}}.$ HELI⊙S Up to 2.85 T superconducting solenoid ~250 cm overall length e.g. Protons from (d,p)e.g. Recoil diamete Si array Recoil 1.0 detector Target fan Ę Beam Adjustable in z 35-cm prototype position-sensitive Si array $\cos\theta_{\rm c.m.} = \frac{1}{2\pi} \frac{qeBz - 2\pi mV_{\rm c.m.}}{\sqrt{2mE_{\rm lab} + m^2V_{\rm c.m.}^2 - mV_{\rm c.m.}qeBz/\pi}}.$ A. H. Wuosmaa et al., NIMA 580, 1290 (2007) J. C. Lighthall et al., NIMA 622, 97 (2010) 10/12/12 2

¹⁹O(d,p)²⁰O data

- 8 states identified up to 7 MeV
- Absolute σ from deuteron scattering (20%)
- Angular distributions

(a)

E_{lab} (MeV)

0.00 MeV 0

3.57 Me

-50

- **Distorted wave Born** approximation
- Identified $I = 0.3^+$ level at 5.23 MeV

-40

Calem R. Hoffman – Argonne National Laboratory

¹⁹O(d,p)²⁰O results

- Distorted wave analysis to extract spectroscopic factors
 - Normalized to ¹⁶O(d,p)¹⁷O data
 - 30% uncertainty in total
 - 15% relative to one-another
- Checks w/ sum rules & ¹⁸O(d,p)¹⁹O data
- Superb reproduction of strength by sd shell interactions
- Some strength to 2p-2h (1p-1h) dominated states
 - 0⁺ @ 4.46 MeV
 - 4.99 or 5.64 MeV states
- SOLID \rightarrow *I* = 0 HATCHED \rightarrow *I* = 2

$$G_{+} = \frac{2J_f + 1}{2J_i + 1}C^2S,$$

3

[0/12/1]

C. R. Hoffman et al., PRC 85, 054318 (2012)

Diagonal T = 1 TBME of the empirical NN interaction

- Consider ${}^{20}\text{O}$ as two-neutron holes inside ${}^{22}\text{O}$ (N = 14 0d_{5/2}) neutron shell
 - ²²O is a good closed core
 - Most (>97%) measured strength belongs to 0d_{5/2}

Diagonal T = 1 TBME of the empirical NN interaction

- Consider ${}^{20}O$ as two-neutron holes inside ${}^{22}O$ (N = 14 0d_{5/2}) neutron shell
 - ²²O is a good closed core
 - Most (>97%) measured strength belongs to $Od_{5/2}$

Preliminary ¹⁷N(d,p)¹⁸N results

10/12/12

3

Preliminary ¹⁷N(d,p)¹⁸N results

Preliminary ¹⁷N(d,p)¹⁸N results

10/12/1

Future works

								²² Si	²³ Si	²⁴ Si	²⁵ Si	²⁶ Si	²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si		⁴² Si
								²¹ AI	²² AI	²³ AI	²⁴ AI	²⁵ AI	²⁶ AI	²⁷ AI	²⁸ AI	²⁹ AI	³⁰ AI	³¹ AI	³² AI	³³ AI	³⁴ AI	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI	³⁹ AI	⁴⁰ AI	⁴¹ AI
								²⁰ Mg	²¹ Mg	²² Mg	²³ Mg	²⁴ Mg	²⁵ Mg	²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		⁴⁰ Mg
							¹⁸ Na	¹⁹ Na	²⁰ Na	²¹ Na	²² Na	²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na	³⁶ Na			
						¹⁶ Ne	¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne	³³ Ne					
					¹⁴ F	¹⁵ F	¹⁶ F	¹⁷ F	¹⁸ F	¹⁹ F	²⁰ F	²¹ F	²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	²⁷ F		²⁹ F	³⁰ F							
				¹² O	¹³ O	¹⁴ O	¹⁵ O	¹⁶ O	¹⁷ O	¹⁸ O	¹⁹ O	²⁰ O	²¹ O	²² 0	²³ O	²⁴ 0			-									
			¹⁰ N	¹¹ N	¹² N	¹³ N	¹⁴ N	¹⁵ N	¹⁶ N	¹⁷ N	¹⁸ N	¹⁹ N	²⁰ N	²¹ N	²² N	²³ N												
		⁸ C	°C	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴ C	¹⁵ C	¹⁶ C	¹⁷ C	¹⁸ C	¹⁹ C	²⁰ C		²² C			Т	une	ed ⁻	to I	HEI		S			
		⁷ B	⁸ B	⁰₿	¹⁰ B	¹¹ B	¹² B	¹³ B	¹⁴ B	¹⁵ B		¹⁷ B		¹⁹ B														
		⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be		¹⁴ Be													(1 -)	1	.11			
	⁴Li	⁵Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li		¹¹ Li												205	SSIC	ole i	00	lay				
	³ He	⁴He		⁶ He		⁸ He		¹⁰ He																				
Ή	² H	³Н		⁵H					-										4	-2n	(18	BO	14 C	: 22	2)			
	¹ n																					Ο,		,	,			

10/12/12 3

Summary and conclusions

- Understanding shell evolution in nuclei is a leading area of research
- The oxygen isotopes provide a rich environment to approach single-particle evolution
- Large influx of data & theoretical investments has lead to leaps and bounds of understanding
 - Increasing the 0d_{3/2} single-particle energy is not the answer
 - 3-body forces are crucial to binding in Z = 8 nuclei
 - Do they consistently explain Z = 9 as well??
 - Calculations including the continuum show promise for unbound excited states
 - Combine w/ 3-body?
- Characterize the 0d_{3/2} orbital from stability to the drip line
- Used direct reactions with HELIOS to characterize the neutron sd orbitals
 - ¹⁷N(d,p)¹⁸N track evolution as a function of proton occupancy
 - $^{19}O(d,p)^{20}O$ track evolution as a function of neutron occupancy
- ¹⁷N(d,p)¹⁸N preliminary results
 - Consistant with single-particle level assignments, candidate for *I* = 0 level
 - See high-lying strength (neutron unbound)
- ¹⁹O(d,p)²⁰O results
 - $0d_{5/2}$ and $1s_{1/2}$ neutron strengths well described by sd shell model calculations
 - Extracted diagonal two-body matrix elements are in agreement with ¹⁷O(d,p)¹⁸O results as well as global survey

Acknowledgments

The HELIOS Collaboration

B.B. Back, B.P. Kay, J.P. Schiffer, M. Albers, M. Alcorta, S. Almaraz-Calderon, S.I. Baker, S. Bedoor, P.F. Bertone, J.A. Clark, C.M. Deibel, B. DiGiovine, S.J. Freeman, J.P. Greene, J.C. Lighthall, S.T. Marley, T. Palchan-Hazan, R.C. Pardo, G. Perdikakis, K.E. Rehm, A.M. Rogers, A. Rojas, D. Santiago-Gonzalez, D.K. Sharp, D.V. Shetty, J.S. Thomas, I. Wiedenhover, and A.H. Wuosmaa

Argonne National Laboratory, University of Manchester, MSU/NSCL, Western Michigan University, & Florida State University

Florida State University – S.L. Tabor, V. Tripathi, G. Rogachev

A. Volya

The MoNA Collaboration

T. Baumann, D. Bazin, J. Brown, G. Christian, P.A. DeYoung, J.E. Finck, N. Frank, J. Hinnefeld, R. Howes, W.F. Rogers, G. Peaslee, W.A. Peters, A. Schiller, and M. Thoennessen

Michigan State University, NSCL, Wabash College, Hope College, CMU, IUSB, Marquette U., & Westmont College

University of Tokyo - T. Otsuka & K. Tsukiyama

