Momentum-space evolution of chiral three-nucleon forces

Kai Hebeler (OSU)

INT workshop: Light nuclei from first principles

Seattle, October 8, 2012

• So far (in momentum basis): intermediate (c_D) and short-range (c_E) 3NF couplings fitted to few-body systems at different resolution scales:

- $E_{\rm 3H} = -8.482 \,\text{MeV}$ and $r_{\rm 4He} = 1.95 1.96 \,\text{fm}$
	- \longrightarrow coupling constants of natural size
	- in neutron matter contributions from c_D , c_E and c_4 terms vanish
	- long-range 2π contributions assumed to be invariant under RG evolution

• So far (in momentum basis): intermediate (c_D) and short-range (c_E) 3NF couplings fitted to few-body systems at different resolution scales:

 $E_{\rm 3H} = -8.482 \,\text{MeV}$ and $r_{\rm 4He} = 1.95 - 1.96 \,\text{fm}$

- coupling constants of natural size
- in neutron matter contributions from c_D , c_E and c_4 terms vanish
- long-range 2π contributions assumed to be invariant under RG evolution

• So far (in momentum basis): intermediate (c_D) and short-range (c_E) 3NF couplings fitted to few-body systems at different resolution scales:

 $E_{\rm 3H} = -8.482 \,\text{MeV}$ and $r_{\rm 4He} = 1.95 - 1.96 \,\text{fm}$

- coupling constants of natural size
- in neutron matter contributions from c_D , c_E and c_4 terms vanish
- long-range 2π contributions assumed to be invariant under RG evolution

Otsuka et al. PRL 105, 032501 (2010)

• So far (in momentum basis): intermediate (c_D) and short-range (c_E) 3NF couplings fitted to few-body systems at different resolution scales:

- $E_{\rm 3H} = -8.482 \,\text{MeV}$ and $r_{\rm 4He} = 1.95 1.96 \,\text{fm}$
	- \longrightarrow coupling constants of natural size
	- in neutron matter contributions from c_D , c_E and c_4 terms vanish
	- long-range 2π contributions assumed to be invariant under RG evolution
- Ideal case: evolve 3NF consistently with NN within the SRG
	- has been achieved in oscillator basis (Jurgenson, Roth)
	- promising results in very light nuclei
	- puzzling effects in heavier nuclei (higher-body forces?)
	- not immediately applicable to infinite systems
	- limitations on $\hbar\Omega$

- Ideal case: evolve 3NF consistently with NN within the SRG FIG. 2: (color online) IT-NCSM ground-state energies for 12C and volve 3NF consistently with NN $r \sim r \sim \text{const}$ i_{thin} the CD cost. Previously, even the vertex theorem the vertex the verte most extensive number of \sim
	- has been achieved in oscillator basis (Jurgenson, Roth) from the *N*max-dependence of the ground-state energies, this increase in *N*max is vital for obtaining precise extrapolations.
	- · promising results in very light nuclei δ . Section in the δ influence in δ
	- · puzzling effects in heavier nuclei (higher-body forces?) CIIC Δx forced Δy \mathbf{I} y iorces: \mathbf{I}
	- not immediately applicable to infinite systems ediately applicable to infinite syst ζ confirming that induced 4N contributions are irrelevant when
	- limitations on $\hbar\Omega$ α and α is on the α is no sizable the NN-

- application to infinite systems
	- ‣ equation of state
	- ‣ systematic study of induced many-body contributions, scaling behavior
	- ‣ include initial N3LO 3N interactions

- application to infinite systems
	- ‣ equation of state (in this talk: first results for neutron matter)
	- ‣ systematic study of induced many-body contributions, scaling behavior
	- ‣ include initial N3LO 3N interactions

- application to infinite systems
	- ‣ equation of state (in this talk: first results for neutron matter)
	- ‣ systematic study of induced many-body contributions, scaling behavior
	- ‣ include initial N3LO 3N interactions
- transformation of evolved interactions to oscillator basis
	- ‣ application to finite nuclei, complimentary to HO evolution (no core shell model, coupled cluster) in collaboration with Robert Roth and Angelo Calci

- application to infinite systems
	- ‣ equation of state (in this talk: first results for neutron matter)
	- ‣ systematic study of induced many-body contributions, scaling behavior
	- ‣ include initial N3LO 3N interactions
- transformation of evolved interactions to oscillator basis

‣ application to finite nuclei, complimentary to HO evolution (no core shell model, coupled cluster) in collaboration with Robert Roth and Angelo Calci

- study of various generators
	- \triangleright different decoupling patterns (e.g. $V_{\text{low k}}$)
	- ‣ improved efficiency of evolution
	- ‣ suppression of many-body forces?

Lower a cutoff *ⁱ* in *k, k* , Drive the Hamiltonian toward Anderson et al. , PRC 77, 037001 (2008)

- application to infinite systems
	- ‣ equation of state (in this talk: first results for neutron matter)
	- ‣ systematic study of induced many-body contributions, scaling behavior
	- ‣ include initial N3LO 3N interactions
- transformation of evolved interactions to oscillator basis

‣ application to finite nuclei, complimentary to HO evolution (no core shell model, coupled cluster) in collaboration with Robert Roth and Angelo Calci

- study of various generators
	- \blacktriangleright different decoupling patterns (e.g. $V_{\text{low k}}$)
	- ‣ improved efficiency of evolution
	- ‣ suppression of many-body forces?

- ▶ RG evolution of operators
- \rightarrow study of correlations in nuclear systems \rightarrow factorization

Lower a cutoff *ⁱ* in *k, k* , Drive the Hamiltonian toward Anderson et al. , PRC 77, 037001 (2008)

Leading-order 3N forces in chiral EFT

RG evolution of 3N interactions in momentum space

Three-body Faddeev basis:

$$
|pq\alpha\rangle_i \equiv |p_iq_i; [(LS)J(ls_i)j] \mathcal{JJ}_z(Tt_i)TT_z\rangle
$$

Faddeev bound state equations:

 $|\psi_i\rangle = G_0 \left[2t_i P + (1 + t_i G_0) V_{3N}^i (1 + 2P) \right] |\psi_i\rangle$ \int *i* $\langle pq\alpha|P|p'q'\alpha'\rangle$ _{*i*} = \int $\langle pq\alpha|p'q'\alpha'\rangle$ $\langle j \rangle$

SRG flow equations of NN and 3N forces in Faddeev basis

$$
\frac{dH_s}{ds} = [\eta_s, H_s] \qquad \eta_s = [T_{\text{rel}}, H_s]
$$

$$
H = T + V_{12} + V_{13} + V_{23} + V_{123}
$$

- \bullet spectators correspond to delta functions, matrix representation of H_s ill-defined
- solution: explicit separation of NN and 3N flow equations

$$
\frac{dV_{ij}}{ds} = [[T_{ij}, V_{ij}], T_{ij} + V_{ij}],
$$
\n
$$
\frac{dV_{123}}{ds} = [[T_{12}, V_{12}], V_{13} + V_{23} + V_{123}] + [[T_{13}, V_{13}], V_{12} + V_{23} + V_{123}] + [[T_{23}, V_{23}], V_{12} + V_{13} + V_{123}] + [[T_{rel}, V_{123}], H_s]
$$

• only connected terms remain in $\frac{dV_{123}}{d}$, 'dangerous' delta functions cancel *ds*

see Bogner, Furnstahl, Perry PRC 75, 061001(R) (2007)

SRG evolution in momentum space

• evolve the antisymmetrized 3N interaction

$$
\overline{V}_{123} = i \langle pq\alpha | (1 + P_{123} + P_{132}) V_{123}^{(i)} (1 + P_{123} + P_{132}) | p'q'\alpha' \rangle_i
$$

• embed NN interaction in 3N basis:

 $V_{13} = P_{123}V_{12}P_{132}$, $V_{23} = P_{132}V_{12}P_{123}$ with $\frac{3}{pq\alpha}|V_{12}|p'q'\alpha'\rangle_{3} = \langle p\tilde{\alpha}|V_{\rm NN}|p'\tilde{\alpha}'\rangle\,\delta(q-q')/q^{2}$

• use $P_{123}V_{123} = P_{132}V_{123} = V_{123}$

$$
\Rightarrow d\overline{V}_{123}/ds = C_1(s, T, V_{NN}, P)
$$

$$
+ C_2(s, T, V_{NN}, \overline{V}_{123}, P)
$$

$$
+ C_3(s, T, \overline{V}_{123})
$$

Invariance of $E_{\rm gs}^{^*H}$ within $\leq 1 \, {\rm eV}$ for consistent chiral interactions at $\frac{3H}{\rm gs}$ within $\le 1\,{\rm eV}$ for consistent chiral interactions at ${\rm N^2LO}$

Invariance of $E_{\rm gs}^{^*H}$ within $\leq 1 \, {\rm eV}$ for consistent chiral interactions at $\frac{3H}{\rm gs}$ within $\leq 1\,{\rm eV}$ for consistent chiral interactions at ${\rm N^2LO}$

Invariance of $E_{\rm gs}^{^*H}$ within $\leq 1 \, {\rm eV}$ for consistent chiral interactions at $\frac{3H}{\rm gs}$ within $\leq 1\,{\rm eV}$ for consistent chiral interactions at ${\rm N^2LO}$

Unitarity of SRG evolution

- Faddeev basis not complete under permutation of particles
- \bullet embedding of NN forces in finite 3N basis not exact: $V_{12} = PV_{23}P^{-1}, ...$

violation of unitarity can be systematically reduced by increasing the model space

same decoupling patterns like in NN interactions

Universality in 3N interactions at low resolutions and the Universality in 3N interactions and the Universality $\mathsf{SN}}$ into and off-diagonal (right) momentum-space matrix elements for various phe-

To what extent are 3N interactions constrained at low resolution?

- only two low-energy constants c_D and c_E
- 3N interactions give only subleading contributions to observables

Universality in 3N interactions at low resolution

- \bullet remarkably reduced scheme dependence for typical momenta $\sim 1\, {\rm fm}^{-1}$, matrix elements with significant phase space well constrained at low resolution
- new momentum structures induced at low resolution
- study based on $\mathrm{N}^2\mathrm{LO}$ chiral interactions, improved universality at $\mathrm{N}^3\mathrm{LO}$?

Application to neutron matter: Equation of state

- evolve consistently NN + 3NF in the isospin $\mathcal{T} = 3/2$ channel
- calculate EOS by taking all blue-boxed contributions into account
- in this approximation NN and 3NF contributions factorize

First results for neutron matter

• all channels included up to $J = 7/2$ in SRG evolution and EOS calculation

First results for neutron matter

• all channels included up to $\mathcal{J} = 7/2$ in SRG evolution and EOS calculation

Resolution-scale dependence (HF + 2nd-order NN)

Resolution-scale dependence (HF + 2nd-order NN)

• below $\lambda \lesssim 1.8\ \mathrm{fm}^{-1}$ EOS results invariant within theoretical uncertainties

• at larger scale higher-order many-body diagrams become important

 \bullet energy in HF approximation agrees within $50\,\mathrm{keV}$ with exact result at nuclear saturation density for $\mathcal{J}_\text{max}=7/2$ at $s=0$

$$
\xi^2 = p^2 + \frac{3}{4}q^2 \qquad \tan \theta = \frac{2p}{\sqrt{3}q}
$$

show dominant channel for ${\cal J}=1/2$ and positive total parity:

$$
\xi^2 = p^2 + \frac{3}{4}q^2 \qquad \tan \theta = \frac{2p}{\sqrt{3}q}
$$

show dominant channel for ${\cal J}=1/2$ and positive total parity:

$$
\xi^2 = p^2 + \frac{3}{4}q^2 \qquad \tan \theta = \frac{2p}{\sqrt{3}q}
$$

show dominant channel for ${\cal J}=1/2$ and positive total parity:

$$
\xi^2 = p^2 + \frac{3}{4}q^2 \qquad \tan \theta = \frac{2p}{\sqrt{3}q}
$$

show dominant channel for ${\cal J}=1/2$ and positive total parity:

$$
\xi^2 = p^2 + \frac{3}{4}q^2 \qquad \tan \theta = \frac{2p}{\sqrt{3}q}
$$

show dominant channel for ${\cal J}=1/2$ and positive total parity:

$$
\xi^2 = p^2 + \frac{3}{4}q^2 \qquad \tan \theta = \frac{2p}{\sqrt{3}q}
$$

show dominant channel for ${\cal J}=1/2$ and positive total parity:

$$
\xi^2 = p^2 + \frac{3}{4}q^2 \qquad \tan \theta = \frac{2p}{\sqrt{3}q}
$$

show dominant channel for ${\cal J}=1/2$ and positive total parity:

Scaling of three-body contributions

Scaling of three-body contributions

• at larger resolution scales ratio depends on details of the interaction

• at low resolution, 3N contributions seem to grow systematically, however apparently no simple power law (still under investigation)

Summary

- demonstrated the feasibility of SRG evolution of NN+3NF in momentum space
- first results of neutron matter based on consistently evolved NN+3NF interactions
- strong renormalization effects of chiral two-pion exchange interaction in neutron matter
- 4N force contributions seem to be small in neutron matter down to $\lambda = 1.2 \, \mathrm{fm}^{-1}$

Outlook

- inclusion of N3LO contributions
- extend RG evolution to $\mathcal{T}=1/2$ channels, application to nuclear matter and finite nuclei
- RG evolution of operators: nuclear scaling and correlations in nuclear systems

Effects of N3LO 3NF contributions: Neutron matter

Thews, Krueger, KH and Schwenk, arXiv:1206.0025

Reminder:

SRG evolution of operators (see Scott's and Dick's talk)

Instructive test case: density operator in the deuteron

- perfect invariance of momentum distribution function with evolved density operator
- u the strength in the expectation value is in the low-momentum region. The original spike u • strong/slight evolution of short/long-distance operators
- $\alpha \gg \lambda \cdot H_{\alpha} (k_{\alpha}) \sim K_{\alpha} (k_{\alpha}) \cap (\alpha)$ \bullet $U_{\lambda}(k,q)$ factorizes for $k<\lambda$ and $q\gg\lambda\colon U_{\lambda}(k,q)\approx K_{\lambda}(k)Q_{\lambda}(q)$

Correlations in nuclear systems (
inthack by Dick Furnstahl next week)

- detection of knocked out pairs with large relative momenta
- excess of np pairs over pp pairs

Subedi et al., Science 320, 1476 (2008)

interpretation: Explanation in terms of low-momentum interactions? Correlations in nuclear systems (
inthack by Dick Furnstahl next week)

FIGURE 1. The simple goal of short-range nucleon-nucleon-nucleon-nucleon-nucleon-nucleon-nucleon-nucleon-nucleon-
The simple studies is to cleanly isolate diagram by the simple studies is to contract the simple studies i Higinbotham, arXiv:1010.4433

- detection of knocked out pairs with large relative momenta
- excess of np pairs over pp pairs

Subedi et al., Science 320, 1476 (2008)

interpretation: Explanation in terms of low-momentum interactions?

> Vertex depends on the resolution! RG provides systematic way to calculate such processes at low resolution.

Scaling in nuclear systems required to obtain convergence α $\mathsf{C}_{\mathsf{collings}}$ in nuclear systems tially for 1*:*5 *< xB <* 2, which indicates that *NN* SRCs

- scaling behavior of momentum distribution function: $\qquad/$ $\rho_{NN}(q,Q=0) \approx C_A \times \rho_{NN,Deuteron}(q,Q=0)$ at large q $\mathbf{u} = \mathbf{u} \cdot \mathbf{u} + \mathbf$
	- dominance of np pairs over pp pairs
	- "hard" (high resolution) interaction used, calculations hard!
	- dominance explained by short-range tensor forces

Nuclear scaling at low resolution

 $\langle \psi_\lambda|O_\lambda|\psi_\lambda\rangle$ **factorizes** into a low-momentum structure and a **universal** high momentum part if the initial operator only weakly couples low and high momenta \longrightarrow explains scaling! $\langle \psi_{\lambda} | O_{\lambda} | \psi_{\lambda} \rangle$ \setminus

RG transformation of pair density operator (induced many-body terms neglected):

"simple" calculation of pair density at low resolution in nuclear matter:

Nuclear scaling at low resolution

- pair-densities approximately resolution independent
- significant enhancement of np pairs over nn pairs due to tensor force
- reproduction of previous results using a "simple" calculation at low resolution

Nuclear scaling at low resolution

 $\langle \psi_\lambda|O_\lambda|\psi_\lambda\rangle$ **factorizes** into a low-momentum structure and a **universal** high momentum part if the initial operator only weakly couples low and high momenta \longrightarrow explains scaling! $\langle \psi_{\lambda} | O_{\lambda} | \psi_{\lambda} \rangle$ \setminus

key:
$$
U_{\lambda}(k, q) \approx K(k)Q(q)
$$
 for $k < \lambda$ and $q \gg \lambda$
factorization!

That leads to:

$$
\langle \psi_{\lambda} | O_{\lambda} | \psi_{\lambda} \rangle = \int_{0}^{\lambda} dk \, dk' \int_{0}^{\infty} dq \, dq' \psi^{\dagger}(k) U_{\lambda}(k, q) O(q, q') U_{\lambda}(q', k') \psi_{\lambda}(k')
$$

$$
\approx \int_{0}^{\lambda} dk \, dk' \, \psi_{\lambda}^{\dagger}(k) \left[\int_{0}^{\lambda} dq \, dq' K(k) K(q) O(q, q') K(q') K(k') + I_{QOQ} K(k) K(k') \right] \psi_{\lambda}(k')
$$

with the **universal** quantity:

$$
I_{QOQ} = \int_{\lambda}^{\infty} dq \, dq' Q(q) O(q, q') Q(q')
$$

valid if initial operator weakly couples low and high momenta

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence
- good agreement with other approaches (different NN interactions)

Equation of state of symmetric nuclear matter, Nuclear saturation

- saturation point consistent with experiment, without free parameters
- cutoff dependence at 2nd order significantly reduced
- 3rd order contributions small
- cutoff dependence consistent with expected size of 4N force contributions

Changing the resolution: The (Similarity) Renormalization Group

- elimination of coupling between low- and high momentum components, calculations much easier
- observables unaffected by resolution change (for exact calculations)
- residual resolution dependences can be used as tool to test calculations

Not the full story:

RG transformation also changes three-body (and higher-body) interactions.

Hierarchy of many-body contributions

• binding energy results from cancellations of much larger kinetic and potential energy contributions

- chiral hierarchy of many-body terms preserved for considered density range
- cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Chiral 3N interaction as density-dependent two-body interaction

(2) construct effective density-dependent NN interaction

Basic idea: Sum one particle over occupied states in the Fermi sea

(3) combine with free-space NN interaction

combinatorial factor c depends on type of diagram

