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Neutron stars

Neutron star is a wonderful natural laboratory

D. Page

• Atmosphere: atomic and
plasma physics

• Crust: physics of superfluids
(neutrons, vortex), solid state
physics (nuclei)

• Inner crust: deformed nuclei,
pasta phase

• Outer core: nuclear matter

• Inner core: hyperons? quark
matter? π or K condensates?

There is job for very different fields, from condensed matter to string
theory, you can publish results related to neutron stars in PRL, PRA,
PRB, PRC, PRD and PRE!!



Homogeneous neutron matter



Inhomogeneous neutron matter

W. Nazarewicz − UNEDF



Neutron drops

Why study neutron drops?
Are they nothing more than a pure simple toy model?

Neutron drops are interesting because:

• Provide a strong benchmark for microscopic calculations

• Model neutron-rich nuclei

• Calibrate Skyrme models for neutron-rich systems (useful to check
∇ρ terms in different geometries)
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Nuclear Hamiltonian
Model: non-relativistic nucleons interacting with an effective
nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

H = − ~2
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vij NN (Argonne AV8’) fitted on scattering data. Sum of operators:
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∑
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Urbana–Illinois Vijk models processes like

π

π

∆

π

π

π

π
∆

π

π

π

∆

π

∆

+ short-range correlations (spin/isospin independent).



Light nuclei spectrum computed with GFMC
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Quantum Monte Carlo

Evolution of Schrodinger equation in imaginary time t:

ψ(R, t) = e−(H−ET )tψ(R, 0)

In the limit of t →∞ it approaches to the lowest energy eigenstate (not
orthogonal to ψ(R, 0)).

Propagation performed by

ψ(R, t) = 〈R|ψ(t)〉 =

∫
dR ′G (R,R ′, t)ψ(R ′, 0)

G (R,R ′, t) is an approximate propagator (small-time limit). We iterate
the above integral equation many times in the small time-step limit.
→ parallel codes and supercomputers.

For a given microscopic Hamiltonian, this method solves the ground–state
within a systematic uncertainty of 1–2% in a non-perturbative way.



Quantum Monte Carlo

Recall: propagation in imaginary-time

e−(T+V )∆τψ ≈ e−T∆τe−V∆τψ

Kinetic energy is sampled as a diffusion of particles:

e−∇
2∆τψ(R) = e−(R−R′)2/2∆τψ(R) = ψ(R ′)

The (scalar, local) potential gives the weight of the configuration:

e−V (R)∆τψ(R) = wψ(R)

Algorithm for each time-step:

• do the diffusion: R ′ = R + ξ

• compute the weight w

• compute observables using the configuration R ′ weighted using w
over a trial wave function ψT .

For spin-dependent potentials things are much worse!



GFMC and AFDMC

Because the Hamiltonian is state dependent, all spin/isospin states of
nucleons must be included in the wave-function.

Example: spin for 3 neutrons (radial parts also needed in real life):

GFMC wave-function:

ψ =



a↑↑↑
a↑↑↓
a↑↓↑
a↑↓↓
a↓↑↑
a↓↑↓
a↓↓↑
a↓↓↓


A correlation like

1 + f (r)σ1 · σ2

can be used, and the variational wave

function can be very good. Any operator

accurately computed.

AFDMC wave-function:

ψ = A
[
ξs1

(
a1

b1

)
ξs2

(
a2

b2

)
ξs3

(
a3

b3

)]
We must change the propagator by using
the Hubbard-Stratonovich transformation:
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Auxiliary fields x must also be sampled.

The wave-function is pretty bad, but we

can deal to large systems (up to A ≈ 100).

Operators (except the energy) are very

hard to be computed, but in some case

there is some trick!



Neutron matter equation of state

Motivations:

• EOS of neutron matter main ingredient to study neutron stars.

• EOS of neutron matter useful to study the symmetry energy and its
slope at saturation.

Assumptions/observations:

• The two-nucleon interaction reproduces well (elastic) pp, np and nn
scattering data up to high energies (Elab ∼ 600MeV).

• The three-neutron force (T = 3/2) very weak in light nuclei, while
T = 1/2 is the dominant part (but zero in neutron matter).
No direct T = 3/2 experiments available!

• In neutron matter the short-range repulsive part of three-body force
is the dominant term.

Systematic uncertainties of 3-neutron forces must be understood!



Symmetry energy
Nuclear matter EOS:

E (ρ, x) = ESNM(ρ) + E (2)
sym(ρ)(1− 2x)2 + · · ·

where

ρ = ρn + ρp , x =
ρp
ρ

0
ρ

0
 = 0.16 fm

-3

E
0
 = -16 MeV

symmetric nuclear matter
pure neutron matter

Nuclear saturation

Symmetry energy



Neutron matter

We consider different forms of three-neutron interaction by only requiring
a particular value of Esym at saturation.
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Neutron matter and symmetry energy
We then try to change the neutron matter energy at saturation:
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Neutron matter and symmetry energy

From the EOS, we can fit the symmetry energy around ρ0 using

Esym(ρ) = Esym +
L

3
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Very weak dependence to the model of 3N force for a given Esym.



Neutron star structure

Given an EOS, we can study the neutron star structure by integrating the
Tolman-Oppenheimer-Volkoff (TOV) equations:

dP

dr
= −G [m(r) + 4πr3P/c2][ε+ P/c2]

r [r − 2Gm(r)/c2]
,

dm(r)

dr
= 4πεr2 ,

where P = ρ2(∂E/∂ρ) and ε = ρ(E + mN).

What we get is the maximum mass M of a neutron star as a function of
its radius R.



Neutron star structure
EOS used to solve the TOV equations.
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Accurate measurement of Esym would put a constraint to the radius of
neutron stars, OR observation of M and R would constrain Esym!

M = 1.97Msolar recently observed – Nature (2010).



Neutron stars

Observations of the mass-radius relation of neutron stars are becoming
available:
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→ We can fit an EOS to observations.



Neutron star matter

We model neutron star matter as

ENSM = a

(
ρ

ρ0

)α
+ b

(
ρ

ρ0

)β
, ρ < ρt

(form suggested by QMC simulations),

and a high density model for ρ > ρt

i) two polytropes

ii) polytrope+quark matter model, Alford et al., ApJ (2005).

By changing ρt and the high density model we can understand systematic
errors in ENSM parametrization.

From observations we can extract all the parameters a, α, ...



Observations

What can we learn by fitting our model to observations?

• Symmetry energy and its slope:

Esym = a + b + 16 , L = 3(aα + bβ)

• Strength of 3N:

3N force Esym L a α b β
(MeV) (MeV) (MeV) (MeV)

none 30.5 31.3 12.7 0.49 1.78 2.26
V2π + V R

µ=300 32.0 40.6 12.8 0.488 3.19 2.20

V2π + V R
µ=600 32.0 41.3 12.8 0.488 3.19 2.20

V2π + VR 32.1 41.3 12.7 0.476 3.34 2.22
V3π + VR 32.0 44.0 13.0 0.49 3.21 2.47
V2π + VR 33.7 52.9 13.3 0.512 4.38 2.39
V3π + VR 33.8 56.2 13.0 0.50 4.71 2.49
UIX 35.1 63.6 13.4 0.514 5.62 2.436

Note: a and α don’t depend too much to the model of 3N!



Neutron star observations

20 40 60 80 100

2

4

6

8

Fiducial

No corr. unc.

Quarks

Quarks, no corr. unc.

IAS

PDR

HIC

Masses

Pb (p,p)

L (MeV)

P
ro

b
ab

il
it

y
 d

is
tr

ib
u

ti
o

n

8 9 10 11 12 13 14 15
R (km)

0

0.5

1

1.5

2

2.5

M
 (

M
so

la
r)

E
sym

= 33.7 MeV

E
sym

=32 MeV

Polytropes

Quark matter

32 < Esym < 34MeV , 43 < L < 52MeV

Steiner, Gandolfi, PRL (2012).

Can we use neutron star observations to constrain the model of 3N?



Neutron drops

Now let’s study inhomogeneous neutron matter.

We confine neutrons by adding an external potential:

H = − ~2

2m

A∑
i=1

∇2
i +

∑
i<j

vij +
∑

i<j<k

Vijk +
∑
i

Vext(ri )

Vext is a Wood-Saxon or Harmonic well:

VWS = − V0

1 + exp[(r − R)/a]

VHO =
1

2
mω2r2

=⇒ different geometries and densities.



Neutron drops, harmonic oscillator well

External well: harmonic oscillator with ~ω=5, 10 MeV.
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Neutron drops, harmonic oscillator well

Fixing Skyrme force:
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Neutron drops, adjusted Skyrme force
Note: bulk term of Skyrme fit neutron matter.

We add the missing repulsion by adjusting the gradient term Gd [∇ρn]2,
the pairing and spin-orbit terms.
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Neutron drops, adjusted Skyrme force

Neutrons in the Wood-Saxon well are also better reproduced by the
adjusted SLY4.

8 10 12 14 16 18 20
N

-14

-12

-10

-8

E
/N

 (
M

eV
)

AFDMC
GFMC
SLY4
SLY4-adj

Gandolfi, Carlson, Pieper, PRL (2011).



Neutron drops: radii
Correction to radii using the adjusted-SLY4.
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Neutron drops: radial density
Neutron radial density:
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Gradient term

Where is the gradient term important?

Just few examples:

• Medium large neutron-rich nuclei

• Phases in the crust of neutron stars

• Isospin-asymmetry energy of nuclear matter



Conclusions

• Effect of three–neutron forces to high-density neutron matter; the
systematic uncertainty due to 3N is relatively small.

• Esym strongly constrain L. Weak dependence to the model of 3N.

• Uncertainty of the radius of neutron stars mainly due Esym rather
than 3N.

• Neutron star observations becoming competitive with terrestrial
experiments.

• Skyrme can be better constrained by ab-initio calculations.

Thanks for the attention


