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Neutron stars

Neutron star is a wonderful natural laboratory

ANEUTRON STAR: SURFACE and INTERIOR

e Atmosphere: atomic and
plasma physics

e Crust: physics of superfluids
(neutrons, vortex), solid state
physics (nuclei)

e |nner crust: deformed nuclei,
pasta phase

e Quter core: nuclear matter

e Inner core: hyperons? quark
matter? 7 or K condensates?

D. Page

There is job for very different fields, from condensed matter to string
theory, you can publish results related to neutron stars in PRL, PRA,
PRB, PRC, PRD and PRE!!



Homogeneous neutron matter

temperature (K)
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Inhomogeneous neutron matter

Nuclear Landscape

Ab initio
Configuration Interaction
Density Functional Theory

AB-INITIO

W. Nazarewicz — UNEDF



Neutron drops

Why study neutron drops?
Are they nothing more than a pure simple toy model?

ol

NP self-bound N confined

Neutron drops are interesting because:
e Provide a strong benchmark for microscopic calculations
e Model neutron-rich nuclei

e Calibrate Skyrme models for neutron-rich systems (useful to check
Vp terms in different geometries)



Outline

The model and the method

Homogeneous neutron matter
e Three-neutron force and the equation of state of neutron matter
e Symmetry energy
e Neutron star structure
Inhomogeneous neutron matter: Skyrme vs ab-initio.
e Energy

e Density and radii

Conclusions



Nuclear Hamiltonian

Model: non-relativistic nucleons interacting with an effective
nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

ZV2+ZVU > Vi
i<j i<j<k

vii NN (Argonne AV8') fitted on scattering data. Sum of operators:

=007 (), 0P =(1,6i-6, S5, Ly~ Sy) x (1,7 7)

u

Urbana-lllinois Vjj models processes like

+  short-range correlations (spin/isospin independent).



Energy (MeV)

Light nuclei spectrum computed with GFMC
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Quantum Monte Carlo
Evolution of Schrodinger equation in imaginary time t:
(R, t) = e”H=ENty(R, 0)

In the limit of t — oo it approaches to the lowest energy eigenstate (not
orthogonal to #(R,0)).

Propagation performed by

V(R 1) = (RIU(e) = [ dRG(R.R1)u(R,0)
G(R, R’,t) is an approximate propagator (small-time limit). We iterate
the above integral equation many times in the small time-step limit.

— parallel codes and supercomputers.

For a given microscopic Hamiltonian, this method solves the ground—state
within a systematic uncertainty of 1-2% in a non-perturbative way.



Quantum Monte Carlo
Recall: propagation in imaginary-time
e (THVIAT ) o o= TAT o= VAT,
Kinetic energy is sampled as a diffusion of particles:
e*VZAsz(R) _ ef(RfR’)2/2AT¢(R) _ w(R/)
The (scalar, local) potential gives the weight of the configuration:

e” "RIATY(R) = wi(R)

Algorithm for each time-step:
e do the diffusion: R" =R+ ¢
e compute the weight w

e compute observables using the configuration R’ weighted using w
over a trial wave function 7.

For spin-dependent potentials things are much worse!



GFMC and AFDMC

Because the Hamiltonian is state dependent, all spin/isospin states of
nucleons must be included in the wave-function.

Example: spin for 3 neutrons (radial parts also needed in real life):

GFMC wave-function:

arpt
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A correlation like
1+ f(r)ol - 09
can be used, and the variational wave

function can be very good. Any operator
accurately computed.

AFDMC wave-function:

o=ale(8)e(2)e(2)]

We must change the propagator by using
the Hubbard-Stratonovich transformation:

e%AtOZ _ 1 /dxeféﬂq/AtO
V2

Auxiliary fields x must also be sampled.
The wave-function is pretty bad, but we
can deal to large systems (up to A = 100).
Operators (except the energy) are very
hard to be computed, but in some case

there is some trick!



Neutron matter equation of state

Motivations:
e EQOS of neutron matter main ingredient to study neutron stars.

e EOS of neutron matter useful to study the symmetry energy and its
slope at saturation.

Assumptions/observations:

e The two-nucleon interaction reproduces well (elastic) pp, np and nn
scattering data up to high energies (Ejp ~ 600MeV).

e The three-neutron force (T = 3/2) very weak in light nuclei, while
T =1/2 is the dominant part (but zero in neutron matter).
No direct T = 3/2 experiments available!

e In neutron matter the short-range repulsive part of three-body force
is the dominant term.

Systematic uncertainties of 3-neutron forces must be understood!



Symmetry energy
Nuclear matter EOS:

E(p,x) = Esnm(p) + Es(f,)n(p)(l —2x)2 4.

where

pP=pntpp, X=—"

— symmetric nuclear matter
— pure neutron matter

Symmetry energy

E,=-16 MeV <——Nuclear saturation

|
0 p,=0.16 fm”



Neutron matter

We consider different forms of three-neutron interaction by only requiring
a particular value of E;,, at saturation.
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Neutron matter and symmetry energy

We then try to change the neutron matter energy at saturation:

10—,
— E,, =351 MeV (AV8'+UIX)
S [ - E, =337MeV
2 80 B =3Mev
\E_/ sym €
s |- E_, =30.5MeV (AVS)
% 60+
o |
o 401 .- g
o
- | |
o
o 20- B
c
TR |
0 | | | |
0 0.1 0.2 0.3 0.4 0.5

Neutron Density (fm'3)
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Neutron matter and symmetry energy

From the EOS, we can fit the symmetry energy around pg using
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Very weak dependence to the model of 3N force for a given Eyp,.



Neutron star structure

Given an EOS, we can study the neutron star structure by integrating the
Tolman-Oppenheimer-Volkoff (TOV) equations:

dpP G[m(r) + 4rr*P/c?][e + P/c?] dm(r) drer?
dr rlr —2Gm(r)/c?] ’ ar

where P = p?(0E/dp) and € = p(E + my).

What we get is the maximum mass M of a neutron star as a function of
its radius R.



Neutron star structure

EOS used to solve the TOV equations.
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Accurate measurement of E, would put a constraint to the radius of
neutron stars, OR observation of M and R would constrain Egyp,!

M = 1.97 Moo recently observed — Nature (2010).



Neutron stars

Observations of the mass-radius relation of neutron stars are becoming
available:
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Steiner, Lattimer, Brown, ApJ (2010)

— We can fit an EOS to observations.



Neutron star matter

We model neutron star matter as

a B
ENSM:3<p) +b<p) , p < pe
Po Po

(form suggested by QMC simulations),

and a high density model for p > p;
i) two polytropes
ii) polytrope+quark matter model, Alford et al., ApJ (2005).

By changing p;: and the high density model we can understand systematic
errors in Ensps parametrization.

From observations we can extract all the parameters a, a, ...



Observations

What can we learn by fitting our model to observations?

e Symmetry energy and its slope:

Eqm=a+b+16, L=3(aa+ bp)
e Strength of 3N:
3N force Esym L a o b B
(MeV)  (MeV) (MeV) (MeV)
none 30.5 313 12.7 0.49 1.78 2.26
Var + VR 50 320 406 128 0488 319 220
Vor + VI g0 320 41.3 128 0488 319 220
Vor + Vg 321 41.3 12.7 0.476 3.34 2.22
Vir + Vg 32.0 44.0 13.0 0.49 3.21 2.47
Vor + VR 33.7 52.9 13.3 0.512 4.38 2.39
Vir + Vg 33.8 56.2 13.0 0.50 4.71 2.49
UIX 35.1 63.6 13.4 0.514 5.62 2.436

Note: a and a don’t depend too much to the model of 3N!



Neutron star observations
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Can we use neutron star observations to constrain the model of 3N?
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Neutron drops

Now let's study inhomogeneous neutron matter.
We confine neutrons by adding an external potential:

ZV2+ZV’J Z Vyk"'zvext r/

i<j i<j<k

Vext is @ Wood-Saxon or Harmonic well:

Vo
1+ exp[(r — R)/a]

Vs = —

1
VHO = Emwzrz

= different geometries and densities.



Neutron drops, harmonic oscillator well

External well: harmonic oscillator with fw=5, 10 MeV.
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Skyrme systematically overbind neutron drops.



Neutron drops, harmonic oscillator well

Fixing Skyrme force:
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The correction is very similar in all the Skyrme forces we considered.



Neutron drops, adjusted Skyrme force

Note: bulk term of Skyrme fit neutron matter.

We add the missing repulsion by adjusting the gradient term G4[Vp,]?,
the pairing and spin-orbit terms.
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Neutron drops, adjusted Skyrme force

Neutrons in the Wood-Saxon well are also better reproduced by the
adjusted SLY4.
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Neutron drops: radii

Correction to radii using the adjusted-SLY4.
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Neutron drops: radial density

Neutron radial density:
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Gradient term

Where is the gradient term important?

Just few examples:
o Medium large neutron-rich nuclei
e Phases in the crust of neutron stars

o |sospin-asymmetry energy of nuclear matter



Conclusions

Effect of three—neutron forces to high-density neutron matter; the
systematic uncertainty due to 3N is relatively small.

Esym strongly constrain L. Weak dependence to the model of 3N.

Uncertainty of the radius of neutron stars mainly due Egp,, rather
than 3N.

Neutron star observations becoming competitive with terrestrial
experiments.

Skyrme can be better constrained by ab-initio calculations.

Thanks for the attention



