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Context:

“Corrections to nuclear energies and radii in finite oscillator spaces,”
rjf, G. Hagen, T. Papenbrock, arXiv:1207.6100 plus S. More at OSU

Nuclear wave functions at large momenta from low-momentum
(e.g., SRG) point of view (fate of SRCs, factorization scales, . . . )
[E. Anderson, S. Bogner, K. Hebeler, S. More, R. Perry, K. Wendt, . . . ]
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Extrapolate IR UV Combined Summary

How do we correct for finite harmonic oscillator spaces?
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NCSM m-scheme results
from Bogner et al. (2008)
[NN-only N3LO (500 MeV) np
softened via SRG]

Typical variational pattern:
large ~Ω cuts off wf and
small ~Ω cuts off potential
=⇒ minimum: IR and UV
corrections both needed

Empirical extrapolation:
E(Nmax) = E∞ + A0e−A1Nmax

(with uninterpreted A0,A1)
at fixed ~Ω (near minimum)

One suggested justification:
inverse power law in no. of
states
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Successes of “conventional” extrapolation
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8
He

7Li extrapolation at fixed ~Ω
from Bogner et al. (2008)

E(Nmax) = E∞ + A0e−A1Nmax

Consistent results from
different Nmax truncations

Maris et al. developed Nmax
extrapolation schemes
[PRC 79, 014308 (2009)]

8He: Difficult test nucleus
using JISP16 interaction

Successes but many open
questions (e.g., A0,A1?)

Other extrapolations on the
market (e.g., N−1

max powers)
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Effective (field) theory treatments
Harmonic Oscillator Basis Effective Theory (HOBET)

W. Haxton [PRC 77,034005 (2008)], C.-L. Song, T. Luu, and . . .
Use Bloch-Horowitz to factorize Q-space UV and IR
Re-sum Q-space IR (so no IR extrapolation)
HO-based contact-gradient expansion for Q-space UV

Effective field theory (EFT) for no-core shell model (NCSM)
I. Stetcu, B. Barrett, U. van Kolck [PLB 653 (2007) 358] et al.
Apply EFT directly within NCSM model space
UV from fit contact interactions within NCSM truncation
On-going debate about need for IR limit ~Ω→ 0

Convergence properties of ab initio calculations in a HO basis
Coon, Avetian, Kruse, van Kolck, Maris, Vary [arXiv:1205.3230]

Extrapolate in HO IR (λ,λsc) and UV (ΛUV ) cutoffs (cf. Nmax, ~Ω)

EFT for bound-state reflection (cf. Lüscher method for PBC’s)
M. Pine, D. Lee [arXiv:1008.5187, 1206.6280]. More later!
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Switching to IR and UV cutoffs as variables [S. Coon et al.]

For many N and ~Ω
combinations, calculate
|∆E/E | for the triton

Plot as function of
λsc =

p
m~Ω/(N + 3/2) for a

range of Λ =
p

m(N + 3/2)~Ω

Universal dependence on λsc
over wide range of ∆E/E

Fit shows exponential in 1/λsc

Plateaus to the left from UV
corrections
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rjf, Hagen, Papenbrock: identify nature and form of IR, UV corrections
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Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate for L from intercept of tangent at r = L0:

LNLO ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 10 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.23, EL = −0.72 [L ∝
√

N]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate for L from intercept of tangent at r = L0:

LNLO ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r
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1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 10 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.23, EL = −1.02 [L ∝
√

N + 3/2]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate for L from intercept of tangent at r = L0:

LNLO ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 10 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.23, EL = −1.14 [L improved]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate for L from intercept of tangent at r = L0:

LNLO ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r
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1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 10 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.23, EL = −1.23 [L ∝
√

N + 3/2 + 2]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate for L from intercept of tangent at r = L0:

LNLO ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 10 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.23, EL = −1.29 [L ∝
√

N + 3/2 + 3]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3
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r
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1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.45, EL = −1.32 [L ∝
√

N]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3
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1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.45, EL = −1.41 [L ∝
√

N + 3/2]
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Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3
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Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.45, EL = −1.45 [L improved]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3
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1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.45, EL = −1.46 [L ∝
√

N + 3/2 + 2]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 8 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.45, EL = −1.47 [L ∝
√

N + 3/2 + 3]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 4 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.33, EL = −0.24 [L ∝
√

N]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 4 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.33, EL = −0.97 [L ∝
√

N + 3/2]
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Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 4 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.33, EL = −1.21 [L improved]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 4 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.33, EL = −1.29 [L ∝
√

N + 3/2 + 2]
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Extrapolate IR UV Combined Summary

Truncated basis cuts off s.p. wave functions
First estimate of cutoffs: 1

2mΩ2r2
max = 1

2m p2
max = (N + 3/2)~Ω

=⇒ ΛUV =
√

2(N + 3/2)~/b and L0 =
√

2(N + 3/2)b

with b =
√

~/mΩ (note
√

2’s)

Improved estimate from intercept of tangent at r = L0:

L ≈ L0 + 0.54437 b (L0/b)−1/3

0.5 1.0 1.5 2.0
r

0.5

1.0

1.5
wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Exact (red) is compared to HO with
~Ω = 6 and N = 4 (blue) and to
boundary condition at r = L (green)
and to n = 4 wf squared (purple)

Eexact = −1.51, EHO = −1.33, EL = −1.36 [L ∝
√

N + 3/2 + 3]
Dick Furnstahl Asymptotic WFs



Extrapolate IR UV Combined Summary

What is the range of momenta in a model space?

Claim in NCSM EFT papers:
minimal accessible non-zero
momentum in oscillator basis
with fixed ~Ω is λ = ~/b

b =
√

~2/m~Ω

Implication is that one needs
to take ~Ω→∞ limit

Counterclaim: minimum
momentum as in box of size L

pmin = π/L and r -space
eigenfunction ∝ sin(pminr)

For oscillator, L ∼
√

2Nb
(extent of phase space)

Test by calculating eigenvalues,
eigenfunctions of P̂2 in HO basis

2 4 6 8
r0.0

0.2

0.4

0.6

0.8

1.0
wf

N = 0, ~Ω = 1 =⇒ LNLO = 2.19

pmin = 1.23 (minimum eigenvalue)

π/LNLO = 1.44 (box estimate)
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Extrapolate IR UV Combined Summary

What is the range of momenta in a model space?

Claim in NCSM EFT papers:
minimal accessible non-zero
momentum in oscillator basis
with fixed ~Ω is λ = ~/b

b =
√

~2/m~Ω

Implication is that one needs
to take ~Ω→∞ limit

Counterclaim: minimum
momentum as in box of size L

pmin = π/L and r -space
eigenfunction ∝ sin(pminr)

For oscillator, L ∼
√

2Nb
(extent of phase space)

Test by calculating eigenvalues,
eigenfunctions of P̂2 in HO basis

2 4 6 8
r0.0

0.2

0.4

0.6

0.8

1.0
wf

N = 2, ~Ω = 1 =⇒ LNLO = 3.04

pmin = 0.96 (minimum eigenvalue)

π/LNLO = 1.03 (box estimate)
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Extrapolate IR UV Combined Summary

What is the range of momenta in a model space?

Claim in NCSM EFT papers:
minimal accessible non-zero
momentum in oscillator basis
with fixed ~Ω is λ = ~/b

b =
√

~2/m~Ω

Implication is that one needs
to take ~Ω→∞ limit

Counterclaim: minimum
momentum as in box of size L

pmin = π/L and r -space
eigenfunction ∝ sin(pminr)

For oscillator, L ∼
√

2Nb
(extent of phase space)

Test by calculating eigenvalues,
eigenfunctions of P̂2 in HO basis

2 4 6 8
r0.0

0.2

0.4

0.6

0.8

1.0
wf

N = 4, ~Ω = 1 =⇒ LNLO = 3.68

pmin = 0.82 (minimum eigenvalue)

π/LNLO = 0.85 (box estimate)
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Extrapolate IR UV Combined Summary

What is the range of momenta in a model space?

Claim in NCSM EFT papers:
minimal accessible non-zero
momentum in oscillator basis
with fixed ~Ω is λ = ~/b

b =
√

~2/m~Ω

Implication is that one needs
to take ~Ω→∞ limit

Counterclaim: minimum
momentum as in box of size L

pmin = π/L and r -space
eigenfunction ∝ sin(pminr)

For oscillator, L ∼
√

2Nb
(extent of phase space)

Test by calculating eigenvalues,
eigenfunctions of P̂2 in HO basis

2 4 6 8
r0.0

0.2

0.4

0.6

0.8

1.0
wf

N = 8, ~Ω = 1 =⇒ LNLO = 4.69

pmin = 0.66 (minimum eigenvalue)

π/LNLO = 0.67 (box estimate)
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Extrapolate IR UV Combined Summary

What is the range of momenta in a model space?

Claim in NCSM EFT papers:
minimal accessible non-zero
momentum in oscillator basis
with fixed ~Ω is λ = ~/b

b =
√

~2/m~Ω

Implication is that one needs
to take ~Ω→∞ limit

Counterclaim: minimum
momentum as in box of size L

pmin = π/L and r -space
eigenfunction ∝ sin(pminr)

For oscillator, L ∼
√

2Nb
(extent of phase space)

Test by calculating eigenvalues,
eigenfunctions of P̂2 in HO basis

2 4 6 8
r0.0

0.2

0.4

0.6

0.8

1.0
wf

N = 16, ~Ω = 1 =⇒ LNLO = 6.22

pmin = 0.50 (minimum eigenvalue)

π/LNLO = 0.50 (box estimate)

Dick Furnstahl Asymptotic WFs



Extrapolate IR UV Combined Summary

Completeness considerations [T. Papenbrock]

Space of N oscillator wave functions φi (x), i = 0, . . . ,N − 1 in 1D

Usual completeness relation is replaced by

N−1∑

i=0

φ∗i (x)φi (y) ≡ ρN(x , y) .

For N →∞ one finds ρ∞(x , y) = δ(x − y) =⇒ completeness
For finite N, ρN(x , y) equals density matrix of the ground-state
wf of N spin-polarized fermions in 1D HO

For large N � 1, the density ρN(x , x) −→Wigner semicircle:

ρN(x , x) ≈ 1
πb2

√
2Nb2 − x2 .

Valid in the semiclassical limit. We see that there is
“no completeness” beyond |x | >

√
2Nb ≈ L0

Note that squared wf is relevant to determine extent in x
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Wave functions in a spherical box
Forget about harmonic oscillator except to use ~Ω and N
to determine size L of box

Start with wave function without a box =⇒ E∞

Increase the energy =⇒ node moves in from r =∞ to r = L

0.5 1.0 1.5 2.0 2.5
r

0.2

0.4

0.6

0.8

1.0

1.2

wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Wave function for E∞ (red) is
compared to wf for E > E∞ (blue)

E∞ = −1.51, E = −1.50 =⇒ L = 2.4

Find E(L), then the desired IR correction comes from E(LHO)
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Wave functions in a spherical box
Forget about harmonic oscillator except to use ~Ω and N
to determine size L of box

Start with wave function without a box =⇒ E∞

Increase the energy =⇒ node moves in from r =∞ to r = L

0.5 1.0 1.5 2.0 2.5
r

0.2

0.4

0.6

0.8

1.0

1.2

wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Wave function for E∞ (red) is
compared to wf for E > E∞ (blue)

E∞ = −1.51, E = −1.46 =⇒ L = 2.0

Find E(L), then the desired IR correction comes from E(LHO)
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Wave functions in a spherical box
Forget about harmonic oscillator except to use ~Ω and N
to determine size L of box

Start with wave function without a box =⇒ E∞

Increase the energy =⇒ node moves in from r =∞ to r = L

0.5 1.0 1.5 2.0 2.5
r

0.2

0.4

0.6

0.8

1.0

1.2

wf

Square-well wave functions with
mass m = 1, radius R = 1, and
depth V0 = 4

Wave function for E∞ (red) is
compared to wf for E > E∞ (blue)

E∞ = −1.51, E = −1.21 =⇒ L = 1.5

Find E(L), then the desired IR correction comes from E(LHO)
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Linear energy method to estimate corrections [Djajaputra]

Let uE (r) be the radial solution regular at r = 0 with energy E , then

uL(r) ≡ uEL (r) ≈ u∞(r)+∆EL
duE (r)

dE

∣∣∣∣
E∞

where EL = E∞+∆EL

So uL(L) = 0 =⇒ ∆EL ≈ −u∞(L)

(
duE (L)

dE

∣∣∣∣
E∞

)−1

Now uE (r)
r�R−→ AE (e−kE r + αEe+kE r ) with u∞(r)

r�R−→ A∞e−k∞r

and k∞ from nucleon separation energy S =
~2k2
∞

2m

Take the derivative and evaluate at E = E∞:
duE (r)

dE

∣∣∣∣
E∞

= +A∞
dαE

dE

∣∣∣∣
E∞

e+k∞r +O
(

e−k∞r
)

Substituting at r = L, we obtain our correction formula to fit:

∆EL ≈ −
[

dαE

dE

∣∣∣∣
E∞

]−1

e−2k∞L+O(e−4k∞L) =⇒ EL = E∞ + a0e−2k∞L
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Comparison to Lüscher formula for bound states
Lüscher: energy shifts to bound states from the finite size of a box
with periodic boundary conditions

Here: size of box is spatial extent of the oscillator basis
We effectively have Dirichlet boundary conditions on sphere

Usual Lüscher formula (κ =
√

mE∞ is binding momentum):

∆EL = EL − E∞ = +24π|A|2 e−κL

mL
+O(e−

√
2κL)

Independent of form of potential V (pole properties only)
See S. Koenig et al. [arXiv:1109.4577] for a simple derivation
cf. other formulas derived more recently for lattice applications

PBCs: S-wave energy lowered by periodic images of the potential

Here: energy is always increased by the shift of a node from
r =∞ to r = L (cf. p-wave [H.-W. Hammer talk])
Consistent with variational nature of truncated expansion
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EFT for Bound-State Reflection
[M. Pine, D. Lee, arXiv:1008.5187, 1206.6280]

See Michelle Pine’s INT talk [Sept. 28]

Motivated by lattice EFT for nuclei

Hard-wall cube in d-dimensions
Shallow bound states: κB = 1/aB

Apply adiabatic expansion in soft
scattering limit

Use method of images for BC’s
Systematic effective potential
[1st-order d = 1 correction]

Adapt to spherical hard wall

Effectively one dimensional
Depends on k∞, A∞ in general!

!!"

reduced mass 

binding momentum 

energy due to binding 

total mass 

kinetic energy 

Shallow two-body bound state 

scattering length 

 

1D 

For one dimension the first-order correction to the effective potential is 

Plot showing the zeroth, first, and second order potentials in one dimension Dick Furnstahl Asymptotic WFs
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EFT for Bound-State Reflection
[M. Pine, D. Lee, arXiv:1008.5187, 1206.6280]

See Michelle Pine’s INT talk [Sept. 28]

Motivated by lattice EFT for nuclei

Hard-wall cube in d-dimensions
Shallow bound states: κB = 1/aB

Apply adiabatic expansion in soft
scattering limit

Use method of images for BC’s
Systematic effective potential
[1st-order d = 1 correction]

Adapt to spherical hard wall

Effectively one dimensional
Depends on k∞, A∞ in general!

0 x+−x−

x+x−

−x++x−

−x++2x−

−2x++2x−

2x+−x−
xd

physical region

1D 

For one dimension the first-order correction to the effective potential is 

Plot showing the zeroth, first, and second order potentials in one dimension Dick Furnstahl Asymptotic WFs
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Correction for radius (or other long-distance operators)
Use uL(r) ≈ u∞(r) + ∆EL

duE (r)
dE

∣∣∣
E∞

to evaluate

∆〈r2〉L = 〈r2〉L − 〈r2〉∞ =

∫ L
0 |uL(r)|2 r2 dr
∫ L

0 |uL(r)|2 dr
−
∫∞

0 |u∞(r)|2 r2 dr∫∞
0 |u∞(r)|2 dr

For leading L dependence, use u∞(r) −→ A∞e−k∞r and

duE (r)

dE

∣∣∣∣
E∞

≈ − A∞
∆EL

e−2k∞Le+k∞r =⇒ ∆〈r2〉L ∝ 〈r2〉∞(2k∞L)3e−2k∞L

The NLO correction scales as (2k∞L) exp (−2k∞L), so

〈r2〉L ≈ 〈r2〉∞[1− (c0β
3 + c1β)e−β] with β ≡ 2k∞L

〈r2〉∞, c0, and c1 are fit parameters while k∞ from energy fit
Valid in the asymptotic regime where β = 2k∞L & 3

Both E and r corrections apply to A-body system in lab coordinates
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Test case: Toy model calculation: H = p2/2− v0e−x2 in 1D

0 10 20 30
L / b

10-12

10-10

10-8

10-6

10-4

10-2

100
∆<

r2 > L / 
b2

0 10 20
L/b10-12

10-10
10-8
10-6
10-4
10-2

∆E
L/ b

-2

Theory and numerical data agree over 10 orders of magnitude

Other model calculations also validate fit function
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Infrared (L→∞) energy extrapolation of CCSD(T) results

4 4.5 5 5.5 6
L (fm)

−120

−110

−100

−90

E 
(M

eV
)

CC (ΛUV > 1100 MeV)
CC (ΛUV > 1200 MeV)
CC (ΛUV > 1300 MeV)
Theory (ΛUV > 1100 MeV)
Theory (ΛUV > 1200 MeV)
Theory (ΛUV > 1300 MeV)

N3LO (500 MeV)

16O

extrapolations

Frequencies:
42 MeV ≤ ~Ω ≤ 76 MeV

N = 12,14

EL = E∞ + a0e−2k∞L

Use large ΛUV for UV
convergence

Weak dependence on
choices of UV cutoff

Fits yield E∞ ≈ −122.6 MeV (±0.2 MeV) and k∞ ≈ 0.95 fm−1

k∞ agrees with decay of the p1/2 orbital =⇒ the tail of the density
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Infrared (L→∞) radius extrapolation of CCSD(T) results

4 4.5 5 5.5 6
L (fm)

4

4.5

5

5.5

<r
2 > 

(f
m

2 )

CC (ΛUV > 1100 MeV)
CC (ΛUV > 1200 MeV)
CC (ΛUV > 1300 MeV)
NLO theory (ΛUV > 1100 MeV)
NLO theory (ΛUV > 1200 MeV)
NLO theory (ΛUV > 1300 MeV)

16O
N3LO (500 MeV)

extrapolations

Frequencies:
42 MeV ≤ ~Ω ≤ 76 MeV

N = 12,14

〈r2〉L ≈ 〈r2〉∞
× [1− (c0β

3 + c1β)e−β]

with β ≡ 2k∞L

Fits yield r ≈ 2.34 fm using k∞ ≈ 0.95 fm−1 from energy fit

Extrapolation works well with just the ΛUV > 1300 MeV points
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Infrared (L→∞) extrapolations of NCSM results for 6He

10 15 20 25 30 35
hΩ [MeV]

−32

−30

−28

−26

−24

−22

−20

G
ro

u
n

d
-S

ta
te

 E
n

er
g

y
 [

M
eV

] λ = 2.0 fm
−1

6
He

N
max

 = 10

N
max

 = 8

N
max

 = 6

N
max

 = 4

IR better

UV worse

UV better

IR worse

NCSM results from Bogner et
al. (2008)

Use data from right of minima
to ensure small UV corrections

N = Nmax + 1 for 6He

Fit: E∞ ≈ −29.87 MeV

But fit ~k∞ ≈ 93 MeV
=⇒ interpretation?

Radius at LO: 2.37 fm

Radius at NLO: 2.40 fm

Note the Nmax = 10 points!
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Infrared (L→∞) extrapolations of NCSM results for 6He

4 5 6 7 8
L (fm)

−32

−30

−28

−26

−24

−22

−20

−18

E
 (

M
eV

) NCFC energies

Theory

6
He

N
3
LO (500 MeV)

SRG λ = 2 fm
−1

extrapolated energy

NCSM results from Bogner et
al. (2008)

Use data from right of minima
to ensure small UV corrections

N = Nmax + 1 for 6He

Fit: E∞ ≈ −29.87 MeV

But fit ~k∞ ≈ 93 MeV
=⇒ interpretation?

Radius at LO: 2.37 fm

Radius at NLO: 2.40 fm

Note the Nmax = 10 points!
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Infrared (L→∞) extrapolations of NCSM results for 6He

3 4 5 6 7 8 9 10
L (fm)

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

r n
 (

fm
)

NCFC neutron radii
LO fit
NLO fit

6
He

N
3
LO (500 MeV)

SRG λ = 2 fm
−1

extrapolated radii NCSM results from Bogner et
al. (2008)

Use data from right of minima
to ensure small UV corrections

N = Nmax + 1 for 6He

Fit: E∞ ≈ −29.87 MeV

But fit ~k∞ ≈ 93 MeV
=⇒ interpretation?

Radius at LO: 2.37 fm

Radius at NLO: 2.40 fm

Note the Nmax = 10 points!
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Infrared (L→∞) extrapolations of NCSM results for 6He

3 4 5 6 7 8 9 10
L (fm)

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

r n
 (

fm
)

NCFC neutron radii
LO theory

NLO theory

6
He

N
3
LO (500 MeV)

SRG λ = 2 fm
−1

extrapolated radii

not included in fit

NCSM results from Bogner et
al. (2008)

Use data from right of minima
to ensure small UV corrections

N = Nmax + 1 for 6He

Fit: E∞ ≈ −29.87 MeV

But fit ~k∞ ≈ 93 MeV
=⇒ interpretation?

Radius at LO: 2.37 fm

Radius at NLO: 2.40 fm

Note the Nmax = 10 points!
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Application of IR correction formula to S. Coon et al. results

Plotted against ΛUV but UV
converged

Lines at fixed ~Ω (or λ)
=⇒ plotting against

√
N

=⇒ equivalent to varying L

Replot against L
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Application of IR correction formula to S. Coon et al. results

Plotted against ΛUV but UV
converged

Lines at fixed ~Ω (or λ)
=⇒ plotting against

√
N

=⇒ equivalent to varying L

Replot against L
=⇒ exponential over wide
range of ∆E/E

All other figures consistent with
IR dependence ∆E/E ∝ e−k∞L
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Calculations from S. Coon et al., Figure 1

hΩ
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MeV
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Testing with models [Sushant More (OSU)]

Optimal definition of L? Look at scatter vs. L ∝
√

N + ∆N

Winner: L2 ∝
p

N + 3/2 + 2 (slightly larger than LNLO) =⇒ better results!
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Testing with models [Sushant More (OSU)]

Fit to exponential with LNLO on left and L2 ∝
√

N + 3/2 + 2 on right:

Compare to gaussian extrapolations:
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Testing with models [Sushant More (OSU)]

Are we sure that ∆E is an exponential in L?

Test for exponential on right

Test gaussian below left

Test power law below right

Seems to be an exponential!

s
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Testing with models [Sushant More (OSU)]

What about excited states?

Derivations unchanged =⇒ expect exponential corrections again

Compare ground state (left) to excited state (right)

Looks like the exponential fit works for both (different k∞, of course)!
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Test on excited state [preliminary!]

-34
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6Li N3LO SRG NN-only λ=2.0 fm-1  [arXiv:0708.3754] 

Wed Oct 10 01:03:47 2012

UVmin = 700 MeV, hwmin = 28 MeV

fit Einf = -32.52 +/- 0.15 MeV

fit kinf = 109.12 +/- 5.59 MeV

fit A0 = 1404.68 +/- 363.80 MeV

NCFC energies
fit to Einf + A0*exp(-2 kinf L)

Einf
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L [fm]

6Li N3LO SRG NN-only λ=2.0 fm-1  [arXiv:0708.3754] 

Wed Oct 10 01:04:09 2012

UVmin = 700 MeV, hwmin = 28 MeV

fit Einf = -29.64 +/- 0.13 MeV

fit kinf = 108.04 +/- 5.62 MeV

fit A0 = 1133.96 +/- 294.51 MeV

NCFC energies
fit to Einf + A0*exp(-2 kinf L)

Einf

NCSM NN-only calculations for 6Li

Ground state on left, first excited on right

Exponential fits (seem to) work for excited states!
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NCSM radii revisited [preliminary!!]
“Pivot point” phenomena for radii vs. ~Ω at different Nmax:
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IR extrapolations give gray bands (error from fit — reliable?)
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NCSM radii revisited [preliminary!!]
“Pivot point” phenomena for radii vs. ~Ω at different Nmax:
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New application: Resonances (from this week!)

Extract resonance parameters from a nucleus in a box

Familiar from other contexts, e.g., J. Carlson et al., Nucl. Phys.
A424 (1984) 47 or Y. Alhassid and S.E. Koonin, Ann. Phys. 155
(1984) 108

The asymptotic wave function jl (kr)− tan(δl )nl (kr) satisfies the
Dirichlet boundary condition at r = L through δ = kL− πl/2 for
angular momentum l at an energy eigenvalue

If one knows the threshold energy S, the excitation energy E is
related to k via

(E − S) = ~2k2/2m

Different model spaces (N, ~Ω) =⇒ different L’s =⇒ E ’s =⇒ δl ’s

Plotting phase shift vs k yields the resonance at 90 degrees and
the slope at 90 degrees is related to the inverse width
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New application: Resonances (from this week!)
Test case: Extract phase shift for l = 1 (left) and l = 2 (right) resonances

in Woods-Saxon potentials, with fits to Breit-Wigner (BW) shape.
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Compare BW fits to Gamow shell
model (GSM) results =⇒
Fits do well on resonance position
but not so accurate on widths

BW GSM
l E0 Γ E0 Γ
1 0.53 0.33 0.48 0.46
2 1.74 0.35 1.73 0.50
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Unsettled questions for IR extrapolation

What is the optimal definition of L? (Use the scatter?)

How to weight the contributions according to L (or Nmax, ~Ω)?

How to make credible error estimates?

Interpretation of k∞? Can we extract A∞?

Does the interaction matter?

The IR corrections are independent of the potential
Softer interactions mean more complete UV convergence for
given ~Ω,N, so larger region with IR corrections only
Anything else?

How well does extrapolation work for other operators?

Can we systematically improve the extrapolation à la Pine/Lee?

How can we incorporate explicitly the harmonic oscillator part?
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Harmonic Oscillator Basis Effective Theory (HOBET)
[W. Haxton and collaborators]

General problem: including effects of excluded space Q in model
space P (with P + Q = 1)

For HO basis, Q =
∑
αHO>Nmax

|αHO〉〈αHO|, excludes both IR and UV

Use Bloch-Horowitz framework to factorize IR and UV:

Heff = H+HQ
1

E −QH
QH =

E
E − TQ| {z }

IR

[T−T
Q
E

T +V +V
1

E −QH
QV| {z }

UV

]
E

E − TQ| {z }
IR

Resummed Q-space kinetic energy puts correct tail on wf’s
Can this justify combined UV and IR extrapolations?

Bloch-Horowitz energy dependence of Heff =⇒ out of mainstream

Energy dependence claimed to be a feature, not bug; true?
Is technology adaptable for improved extrapolations?
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Outline

Motivation: Extrapolations in finite bases

Nature and implications of infrared cutoffs

High-momentum behavior of wave functions

Combined IR and UV extrapolations

Summary and open questions

Dick Furnstahl Asymptotic WFs



Extrapolate IR UV Combined Summary

What parts of wf’s can be extracted from experiment?
Measurable: asymptotic (IR) properties like phase shifts, ANC’s

Not observables, but well-defined theoretically given a Hamiltonian:
interior quantities like spectroscopic factors

These depend on the scale and the scheme
Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (e.g., cross sections) [What if weakly dependent?]

What about the high-momentum tails of momentum distributions?

Consider cold atoms in the unitary regime
Compare to nuclear case

Short-range correlations (SRCs) depend on the Hamiltonian and
the resolution scale (cf. parton distribution functions)

So might expect Hamiltonian- and resolution-dependent but
A-independent high-momentum tails of wave functions

Universal extrapolation for different A, but λSRG dependent

Dick Furnstahl Asymptotic WFs



Extrapolate IR UV Combined Summary

What parts of wf’s can be extracted from experiment?
Measurable: asymptotic (IR) properties like phase shifts, ANC’s

Not observables, but well-defined theoretically given a Hamiltonian:
interior quantities like spectroscopic factors

These depend on the scale and the scheme
Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (e.g., cross sections) [What if weakly dependent?]

What about the high-momentum tails of momentum distributions?

Consider cold atoms in the unitary regime
Compare to nuclear case

Short-range correlations (SRCs) depend on the Hamiltonian and
the resolution scale (cf. parton distribution functions)

So might expect Hamiltonian- and resolution-dependent but
A-independent high-momentum tails of wave functions

Universal extrapolation for different A, but λSRG dependent

Dick Furnstahl Asymptotic WFs



Extrapolate IR UV Combined Summary

Unitary cold atoms: Is n(k) observable?
Tail of momentum distribution + contact [Tan; Braaten/Platter]

n(k)
k→∞−→ C

k4New results: Momentum distribution
Experiment

J. T. Stewart et al
PRL 104, 235301 (2010)

Plateau seen both in theory and experiment!
T/TF = 0 - 0.5
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Theory (lattice)
J. E. Drut, T. A. Lähde, T. Ten
Phys. Rev. Lett. 106, 205302 (2011)

When R/as � 1 and kR � 1 =⇒ tiny scheme dependenceDick Furnstahl Asymptotic WFs
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Is the tail of n(k) for nuclei measurable? (cf. SRC’s)
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E.g., extract from
electron scattering?

Scale- and scheme-
dependent
high-momentum tail!

n(k) from VSRG has
no high-momentum
components!

No region where
1/as � k � 1/R
(cf. large k limit for
unitary gas)
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Is the tail of n(k) for nuclei measurable? (cf. SRC’s)
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Looking for missing strength at large Q2
Correlations in nuclear systems

A!1A

q

A

q

e e

e’ e’

a) b)

A!2

N

N
N

FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,
final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.

NUCLEAR SCALING

With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus

could only be seen for Q2 > 1 [GeV/c]2 and xB > 1 kinematics [13] as predicted by Frankfurt and Strikman [14]. But

plateaus alone are not evidence for correlations, just evidence that the functional form of the cross section is the same

for the two nuclei; so data was taken the xB > 2 region. By logic, if 1< xB < 2 is a region of two-nucleon correlations,

then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data

have shown roughly the same magnitude for these plateaus as CLAS and shown that there is no Q2 dependence in the

2< Q2 < 4 [GeV/c]2 range [16, 17].

Subedi et al., Science 320, 1476 (2008)

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs

a)

r(
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3 H
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b)

r(
12

C
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.

PRL 96, 082501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006

082501-3

Higinbotham, arXiv:1010.4433

Egiyan et al. PRL 96, 1082501 (2006)

What is this vertex?

k k� q = k − k�

ν = Ek − Ek�

p1

p2

p�
1

SRC interpretation:

NN interaction can scatter 
states with
to intermediate states with  
                   which are 
knocked out by the photon

p1, p2 � kF

How to explain cross sections in terms of 
low-momentum interactions? 

Vertex depends on the resolution!

q

p�
1

p�
2

p�
1, p

�
2 � kF

p�
2

1.4 < Q2 < 2.6 GeV 2

Q2 = −q2

xB =
Q2

2mNν

SRC explanation relies on high-momentum nucleons in structure!Dick Furnstahl Asymptotic WFs
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Parton vs. nuclear momentum distributions

The quark distribution q(x ,Q2) is
scheme and scale dependent

x q(x ,Q2) measures the share of
momentum carried by the quarks
in a particular x-interval
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Deuteron momentum distribution
is scheme and scale dependent

Initial AV18 potential evolved with
SRG from λ =∞ to λ = 1.5 fm−1
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Deuteron-like scaling at high momenta

Deuteron vs Complex Nuclei         
at high momentum region 

C. Ciofi and S. Simula, Phys.Rev C53, 1689(1996) 

n(k) at high Momentum regions are 
similar to it of the Deuteron 

Momentum Distributions n(k) Ratio to the Deuteron 

2H 

3He,4He,16O, 
56Fe and N.M. 

Almost Flat! 
High resolution: Dominance of VNN and SRCs (Frankfurt et al.)

Lower resolution =⇒ lower separation scale =⇒ fall-off depends on Vλ
Dick Furnstahl Asymptotic WFs
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A dependence of the EMC effect is long-distance physics!
EFT treatment by Chen and Detmold [Phys. Lett. B 625, 165 (2005)]

F A
2 (x) =

∑

i

Q2
i xqA

i (x) =⇒ RA(x) = F A
2 (x)/AF N

2 (x)

“The x dependence of RA(x) is governed by short-distance
physics, while the overall magnitude (the A dependence) of the
EMC effect is governed by long distance matrix elements
calculable using traditional nuclear physics.”

Match matrix elements: leading-order nucleon operators to
isoscalar twist-two quark operators

J.-W. Chen, W. Detmold / Physics Letters B 625 (2005) 165–170 167

symmetries [14–17]. The leading one- and two-body
hadronic operators in the matching are

(4)
Oµ0···µn

q =
〈
xn

〉
q
vµ0 · · ·vµnN†N

[
1+ αnN

†N
]
+ · · · ,

where vµ = ṽµ + O(1/M) is the velocity of the
nucleus. Operators involving additional derivatives
are suppressed by powers of M in the EFT power-
counting. In Eq. (4) we have only kept the SU(4) (spin
and isospin) singlet two-body operator αnv

µ0 · · ·×
vµn(N†N)2. The other independent two-body oper-
ator βnv

µ0 · · ·vµn(N†τN)2, which is non-singlet in
SU(4) (τ is an isospin matrix), is neglected because
βn/αn = O(1/N2

c ) " 0.1 [21], where Nc is the num-
ber of colors. Furthermore, the matrix element of
(N†τN)2 for an isoscalar state with atomic num-
ber A is smaller than that of (N†N)2 by a factor A

[10]. Three- and higher-body operators also appear in
Eq. (4); numerical evidence from other EFT calcula-
tions indicates that these contributions are generally
much smaller than two-body ones [22].
Nuclear matrix elements of Oµ0···µn

q give the mo-
ments of the isoscalar nuclear parton distributions,
qA(x). The leading order (LO) and the next-to-leading
order (NLO) contributions to these matrix elements
are shown in Fig. 1(a) and (b), respectively. For an un-
polarised, isoscalar nucleus,

〈
xn

〉
q|A ≡ vµ0 · · ·vµn〈A|Oµ0···µn

q |A〉

(5)=
〈
xn

〉
q

[
A + 〈A|αn

(
N†N

)2|A〉
]
,

where we have used 〈A|N†N |A〉 = A. Notice that if
there were no EMC effect, the αn would vanish for
all n. Also α0 = 0 because of charge conservation. As-
ymptotic relations [23] and analysis of experimental
data [2,24] suggests that α1 " 0, implying that quarks
carry very similar fractions of a nucleon’ and a nucle-
us’ momentum though no symmetry guarantees this.
From Eq. (5) we see that the ratio

(6)
〈xn〉q|A
A〈xn〉q − 1
〈xm〉q|A
A〈xm〉q − 1

= αn

αm

is independent ofAwhich has powerful consequences.
In all generality, the isoscalar nuclear quark distribu-
tion can be written as

(7)qA(x) = A
[
q(x) + g̃(x,A)

]
.

Taking moments of Eq. (7), Eq. (6) then demands that
the x dependence and A dependence of g̃ factorise,

(8)g̃(x,A) = g(x)G(A),

with

(9)G(A) = 〈A|
(
N†N

)2|A〉/AΛ3
0,

and g(x) satisfying

(10)αn = 1
Λ3
0〈xn〉q

A∫

−A

dx xng(x).

Λ0 is an arbitrary dimensionful parameter and will be
chosen as Λ0 = 1 fm−1. Crossing symmetry dictates

Fig. 1. Contributions to nuclear matrix elements. The dark square represents the various operators in Eq. (4) and the light shaded ellipse
corresponds to the nucleus, A. The dots in the lower part of the diagram indicate the spectator nucleons.

=⇒ 〈x2〉qvµ0 · · · vµn N†N[1 + αnN†N] + · · ·

RA(x) =
F A

2 (x)

AF N
2 (x)

= 1+gF2 (x)G(A) where G(A) = 〈A|(N†N)2|A〉/AΛ0

=⇒ the slope dRA
dx scales with G(A) [Why is this not cited more?]
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What parts of wf’s can be extracted from experiment?
Measurable: asymptotic (IR) properties like phase shifts, ANC’s

Not observables, but well-defined theoretically given a Hamiltonian:
interior quantities like spectroscopic factors

These depend on the scale and the scheme
Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (e.g., cross sections) [What if weakly dependent?]

What about the high-momentum tails of momentum distributions?

Consider cold atoms in the unitary regime
Compare to nuclear case

Short-range correlations (SRCs) depend on the Hamiltonian and
the resolution scale (cf. parton distribution functions)

So might expect Hamiltonian- and resolution-dependent but
A-independent high-momentum tails of wave functions [T. Neff]

Universal extrapolation for different A, but λSRG dependent
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Ultraviolet (ΛUV →∞) extrapolations of NCSM results for 6He
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al. (2008)
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N = Nmax + 1 for 6He
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What form do we expect for UV extrapolations?

Consider NCSM as an EFT
[I. Stetcu et al. PLB 653, 358
(2007); I. Stetcu and J. Rotureau,
arXiv:1206.0234]

Choice of extrapolation guided
by LO running of bound-state
energy in the continuum:

E = E0(~Ω) + A(~Ω)/ΛUV

Extrapolate E0(~Ω) to E0(0)

Study of SRG decoupling by
Jurgenson et al. (2008) found
power-law dependence on
imposed UV cutoff of potential
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Figure 9: Running with the ultraviolet cutoff for two observables: the first (0+; 0) excited state in 4He
(lower panel) and the 6Li ground-state energy (upper panel). The discrete points represent calculations
for different frequencies, denoted in the legend in MeV, while the continuous lines represent a fit to a
linear dependence of 1/Λ for fixed ω. The dashed line represents the ω → 0 limit.

strength parameter D0:

Hint =
1

2MNA

∑

i,j

("pi − "pj)
2

+C0
0(ω, Nmax)

∑

[i<j]0

δ("ri − "rj) + C1
0(ω, Nmax)

∑

[i<j]1

δ("ri − "rj)

+D0(ω, Nmax)
∑

[i<j<k]

δ("ri − "rj)δ("rj − "rk), (51)

where [i < j]s denotes pairs of particles in the S-wave NN channel of spin s and [i < j < k] triplets
of particles in the spin-1/2 S-wave 3N channel. The LECs depend upon the truncation Nmax as well
as the HO frequency, and, in order to achieve RG they have to be adjusted in each model space so
that one preserves the physical observables. The form of the interaction us fixed (i.e., matrix elements
of the contact interactions in all model spaces), which represents a clear departure from the unitary
transformation approach, in which the structure of the interaction changes from one model space to the
other. In the continuum basis approach, the two-body parameters are fixed to two-body observables, like
the deuteron binding energy in the 3S1 channel, and two-body scattering phaseshifts. However, because
the NCSM basis states are built using bound states only, the direct connection with the continuum
observables is difficult. Only C1

0 (ω, Nmax) can be directly fixed in each model space to reproduces the
deuteron binding energy, so alternate few-body observables have to be considered in order to determine
C0

0(ω, Nmax) and D0(ω, Nmax). Hence, the 3H and 4He binding energies have been used to simultaneously
fix the remaining LECs in each model space.

With the coupling constants thus determined, one can solve the many-body problem, predict other
states, and compare against the experimental data. Thus, in Fig. 9, the energy of the first (Jπ; T ) =
(0+; 0) state in 4He (lower panel) and the ground-state energy of 6Li are plotted vs. the UV cutoff, for

25
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What do we expect for UV from models? [S. More]

Points lie on curve vs. ΛUV

Test for exponential on right

Test gaussian below left

Test power law below right

∆E ∝ e−aΛ2
UV favored!

Gaussian in Λ2
UV ∝ Nmax also found empirically by Haxton and Song

(HOBET study) and by Coon et al., but not explained
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Ultraviolet (ΛUV ) extrapolations of NCSM results [Empirical!]
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Lmin = 8 fm

fit Einf = -2.19 +/- 0.01 MeV

fit A1 = 1.94 +/- 0.02 fm

fit A0 =  5.41 +/- 0.20 MeV

NCFC energies
fit to Einf + A0*exp(-2 (x/A1)

2
)

Einf

NCSM results from
Bogner et al. (2008)

Points lie on curve for
∆EΛUV ∝ e−2Λ2

UV/A2
1 , so

ΛUV is correct variable

ΛUV =
√

2(N + 3/2)~/b
is used here

Fits do not work with
other curves: power laws,
e−cΛn

UV for n 6= 2

Fitted A1 ≈ λSRG!

Dick Furnstahl Asymptotic WFs



Extrapolate IR UV Combined Summary

Ultraviolet (ΛUV ) extrapolations of NCSM results [Empirical!]
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Ultraviolet (ΛUV ) extrapolations of NCSM results [Empirical!]
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Ultraviolet (ΛUV ) extrapolations of NCSM results [Empirical!]
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Ultraviolet (ΛUV ) extrapolations of NCSM results [Empirical!]
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Ultraviolet (ΛUV ) extrapolations of NCSM results [Empirical!]
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Ultraviolet (ΛUV ) extrapolations of NCSM results [Empirical!]
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Ultraviolet (ΛUV ) extrapolations of NCSM results [Empirical!]
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Ultraviolet (ΛUV ) extrapolations of NCSM results [Empirical!]
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Combined IR and UV energy fit of NCSM results
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Assume that IR and UV
corrections near minimum
are additive (factorized):

E(L,ΛUV ) = E∞ + ∆EL + ∆EUV

∆EL(L) = A1e−2k∞L

with fit k∞ to optimize

∆EUV(ΛUV ) = A0e−2
“

ΛUV
λ

”2

with fit λ to optimize

Fit all Nmax = 6–10 points

E∞ ≈ −29.84 MeV

λfit ≈ 2.2 fm−1

Corrected Nmax = 4 energies
(not fit) slightly overbound
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Combined IR and UV energy fit of NCSM results
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Combined IR and UV energy fit of NCSM results
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Combined IR and UV energy fit of NCSM results
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Combined IR and UV energy fit of NCSM results
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Combined IR and UV energy fit of NCSM results
[Preliminary from Jurgenson, Maris et al.]
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Combined IR and UV energy fit of NCSM results
[Preliminary from Jurgenson, Maris et al.]
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Combined IR and UV energy fit of NCSM results
[Preliminary from Jurgenson, Maris et al.]
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Combined IR and UV energy fit of NCSM results
[Preliminary from Jurgenson, Maris et al.]
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Combined IR and UV energy fit of NCSM results
[Preliminary from Jurgenson, Maris et al.]
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Combined IR and UV energy fit of NCSM results
[Preliminary from Jurgenson, Maris et al.]
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Combined IR and UV energy fit of NCSM results
[Preliminary from Jurgenson, Maris et al.]
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Comparison to standard extrapolation [P. Maris “B”]
[Preliminary from Jurgenson, Maris et al.]
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corrections and fit all
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=⇒ E∞ ≈ −98.1 MeV
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Similar systematic difference
with JISP16 comparisons
(preliminary!)
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Outline

Motivation: Extrapolations in finite bases

Nature and implications of infrared cutoffs

High-momentum behavior of wave functions

Combined IR and UV extrapolations

Summary and open questions

Dick Furnstahl Asymptotic WFs



Extrapolate IR UV Combined Summary

Summary: Exploiting finite oscillator spaces
A truncated oscillator basis essentially puts the nucleus in a box in
both space and momentum =⇒ Turn a bug into a feature!

Only IR corrections for sufficiently large ΛUV ∼
√

2(N + 3/2)~Ω

To the right of the E vs. ~Ω minimum
“Sufficiently large” depends on the interaction (soft is better)
Treat as nucleons in box =⇒ energy and radius corrections,
phase shifts, . . .
Fit parameters independent of interaction (k∞, A∞)

Only UV corrections for sufficiently large L ∼
√

2(N + 3/2)/~Ω

To the left of the E vs. ~Ω minimum
Fit parameters pick up scale(s) from interactions
Form of fit function not yet derived . . .

Combined UV and IR corrections seem to work (so far!)
Consistent extrapolated energies compared to UV or IR alone

Many more things to try, test, and refine!
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Open questions
What range of ~Ω should you use?

What are the optimal definitions of L and ΛUV ? (Use the scatter?)

How to weight the contributions according to L (or Nmax, ~Ω)?

How to make credible error estimates?

How to explain the form of UV scaling?

Is a combined IR/UV extrapolation justified (e.g., by HOBET)?

Interpretation of k∞? Can we extract A∞?

How well does extrapolation work for other operators?

Does it work with other basis expansions (e.g., hyperspherical
harmonics)?

Can we systematically improve the IR and UV extrapolations?

How can we incorporate explicitly the harmonic oscillator part?

. . .
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