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Context:

@ “Corrections to nuclear energies and radii in finite oscillator spaces,’
rif, G. Hagen, T. Papenbrock, arXiv:1207.6100 plus S. More at OSU

@ Nuclear wave functions at large momenta from low-momentum
(e.g., SRG) point of view (fate of SRCs, factorization scales, ...)
[E. Anderson, S. Bogner, K. Hebeler, S. More, R. Perry, K. Wendt, .. .]



_ Extrapolate IR UV Combined Summary |
Outline

Motivation: Extrapolations in finite bases
Nature and implications of infrared cutoffs
High-momentum behavior of wave functions
Combined IR and UV extrapolations

Summary and open questions
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Outline

Motivation: Extrapolations in finite bases
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How do we correct for finite harmonic oscillator spaces?
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@ NCSM m-scheme results

from Bogner et al. (2008)
[NN-only N3LO (500 MeV) np
softened via SRG]

Typical variational pattern:
large K2 cuts off wf and
small 72 cuts off potential
— minimum: IR and UV
corrections both needed

Empirical extrapolation:
E(Nmax) = Eoo + Age™A1Nowx
(with uninterpreted Ao, Ay)
at fixed A2 (near minimum)

One suggested justification:
inverse power law in no. of
states
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Extrapolate

Successes of “conventional” extrapolation

— 28

W [F e @ ’Li extrapolation at fixed AQ
Vo] N, =246 | from Bogner et al. (2008)

—— FittoN,, =2468
b E(Nmax) = Eoo + AgeA1Nmax

@ Consistent results from
different N, truncations
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o0 i 0z @ Maris et al. developed Ny
3 ~ G antreshoid| | extrapolation schemes
T , *:”g A [PRC 79, 014308 (2009)]
S @ ®He: Difficult test nucleus
v | anrmpotaions] v using JISP16 interaction

)
@

@ Successes but many open
questions (e.g., Ao, A1?)

Ground State Energy (MeV)
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@ Other extrapolations on the

¥ +« - ) market (e.g., No.. powers)

Oscillator Energy (MeV)
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Extrapolate

Effective (field) theory treatments

@ Harmonic Oscillator Basis Effective Theory (HOBET)
e W. Haxton [PRC 77,034005 (2008)], C.-L. Song, T. Luu, and ...
@ Use Bloch-Horowitz to factorize Q-space UV and IR
@ Re-sum Q-space IR (so no IR extrapolation)
e HO-based contact-gradient expansion for Q-space UV
@ Effective field theory (EFT) for no-core shell model (NCSM)
o |. Stetcu, B. Barrett, U. van Kolck [PLB 653 (2007) 358] et al.
@ Apply EFT directly within NCSM model space
e UV from fit contact interactions within NCSM truncation
e On-going debate about need for IR limit 722 — 0
@ Convergence properties of ab initio calculations in a HO basis
@ Coon, Avetian, Kruse, van Kolck, Maris, Vary [arXiv:1205.3230]
e Extrapolate in HO IR (A, As) and UV (Ayy) cutoffs (cf. Ninax, AS)
@ EFT for bound-state reflection (cf. Lischer method for PBC’s)
e M. Pine, D. Lee [arXiv:1008.5187, 1206.6280]. More later!
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Extrapolate

Switching to IR and UV cutoffs as variables [s. Coon et al.]

@ For many N and i ] ‘ . o=
combinations, calculate 1 ot
|AE/E]| for the triton °'3 messasana s b .

: ] K . 3

@ Plot as function of ] . Idaho N°LO
Asc = /mhS2/(N +3/2) for a lA%{cﬂ-: . ° .t A (MeV/c)
range of A = \/m(N + 3/2)hQ 3 Toeete g -

4 2 500

@ Universal dependence on Ag¢ 1 - . o
over wide range of AE/E 00075 . .

. L ] " 41200

@ Fit shows exponential in 1/Ag: 1 -

@ Plateaus to the left from UV 0-00010....1|0....2|0....3,0....4,0....5|0....6|0....7|0....8|0....90
corrections Ase (MeV /)

rif, Hagen, Papenbrock: identify nature and form of IR, UV corrections
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_ Extrapolate IR UV Combined Summary |
Outline

Nature and implications of infrared cutoffs
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Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

— Aw = V2(N+3/2)h/b and Lo=+/2(N+3/2)b
with b = \/h/mQ (note v/2’s)

@ Improved estimate for L from intercept of tangent at r = Ly:

Lyio ~ Lo +0.54437 b(Ly/b)~1/3

wi
15 @ Square-well wave functions with
mass m = 1, radius R =1, and
10¢ depth Vo =4
05l @ Exact (red) is compared to HO with
' hQ =10 and N = 8 (blue) and to
boundary condition at r = L (green)
1 05 10 15 50" and to n = 4 wf squared (purple)

Eexaer = —1.51, Eyo = —1.23, E, = —0.72 [L « V'N]
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Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

— Aw = V2(N+3/2)h/b and Lo=+/2(N+3/2)b
with b = \/h/mQ (note v/2’s)

@ Improved estimate for L from intercept of tangent at r = Ly:

Lyio ~ Lo +0.54437 b(Ly/b)~1/3

wi
15 @ Square-well wave functions with
mass m = 1, radius R =1, and
10¢ depth Vo =4
05l @ Exact (red) is compared to HO with
' hQ =10 and N = 8 (blue) and to
boundary condition at r = L (green)
1 05 10 15 50" and to n = 4 wf squared (purple)

Eexacl - _1-511 EHO = _1'235 EL =-1.02 [L X 4/ N+3/2]
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_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

= Ayv =+v2(N+3/2)h/b and Ly=+/2(N+3/2)b
with b = \/A/mQ (note v/2s)
@ Improved estimate for L from intercept of tangent at r = Ly:

Lyio ~ Lo +0.54437 b(Ly/b)~1/3

@ Square-well wave functions with
mass m= 1, radius R =1, and
depth Vo =4

@ Exact (red) is compared to HO with
hQ) =10 and N = 8 (blue) and to
boundary condition at r = L (green)

05 10 1 50" and to n = 4 wf squared (purple)

Ecxact = —1.51, Eyo = —1.23, E;, = —1.14 [L improved]
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_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

— Aw = V2(N+3/2)h/b and Lo=+/2(N+3/2)b
with b = \/h/mQ (note v/2’s)

@ Improved estimate for L from intercept of tangent at r = Ly:

Lyio ~ Lo +0.54437 b(Ly/b)~1/3

@ Square-well wave functions with
mass m= 1, radius R =1, and
depth Vo =4

@ Exact (red) is compared to HO with
hQ) =10 and N = 8 (blue) and to
boundary condition at r = L (green)

05 10 1 50" and to n = 4 wf squared (purple)

Eexace = —1.51, Ego = —123, E, = —1.23 [Lx /N + 3/2 + 2]




_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

— Aw = V2(N+3/2)h/b and Lo=+/2(N+3/2)b
with b = \/h/mQ (note v/2’s)

@ Improved estimate for L from intercept of tangent at r = Ly:

Lyio ~ Lo +0.54437 b(Ly/b)~1/3

@ Square-well wave functions with
mass m = 1, radius R =1, and
Lop depth Vo =4

@ Exact (red) is compared to HO with
hQ) =10 and N = 8 (blue) and to
boundary condition at r = L (green)

05 10 5 20" and to n = 4 wf squared (purple)

Eexaee = —1.51, Ego = —123, E, = —1.29 [L x /N + 3/2 + 3]

0.5+




Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

— Aw = V2(N+3/2)h/b and Lo=+/2(N+3/2)b
with b = \/h/mQ (note v/2’s)

@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

wi
15 @ Square-well wave functions with
mass m = 1, radius R =1, and
10¢ depth Vo =4
05l @ Exact (red) is compared to HO with
' hQ) =6 and N = 8 (blue) and to
boundary condition at r = L (green)
1 05 0 15 50" and to n = 4 wf squared (purple)

Eexacr = —1.51, Eyo = —1.45, E, = —1.32 [L < V/N]
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Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

— Aw = V2(N+3/2)h/b and Lo=+/2(N+3/2)b
with b = \/h/mQ (note v/2’s)

@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

wi
15 @ Square-well wave functions with
mass m = 1, radius R =1, and
10¢ depth Vo =4
05l @ Exact (red) is compared to HO with
' hQ) =6 and N = 8 (blue) and to
boundary condition at r = L (green)
1 05 0 15 50" and to n = 4 wf squared (purple)

Eexace = —1.51, Egjo = —1.45, E, = —1.41 [Lx /N + 3/2]



_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

= Ayv =+v2(N+3/2)h/b and Ly=+/2(N+3/2)b
with b = \/A/mQ (note v/2s)
@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

@ Square-well wave functions with
mass m= 1, radius R =1, and
depth Vo =4

@ Exact (red) is compared to HO with
hQ) =6 and N = 8 (blue) and to
boundary condition at r = L (green)

05 10 15 o and to n = 4 wf squared (purple)

Ecxacr = —1.51, Eyo = —1.45, E; = —1.45 [L improved]

Dick Furnstahl Asymptotic WFs

1.0+

0.5+




_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

= Ayv =+v2(N+3/2)h/b and Ly=+/2(N+3/2)b
with b = \/A/mQ (note v/2s)
@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

@ Square-well wave functions with
mass m = 1, radius R =1, and
Lop depth Vo =4

@ Exact (red) is compared to HO with
hQ) =6 and N = 8 (blue) and to
boundary condition at r = L (green)

05 10 15 50" and to n = 4 wf squared (purple)

Eoxact = —1.51, Eyo = —1.45, E, = —1.46 [Lx \/N+3/2+ 2]

0.5+




_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

= Ayv =+v2(N+3/2)h/b and Ly=+/2(N+3/2)b
with b = \/A/mQ (note v/2s)
@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

@ Square-well wave functions with
mass m = 1, radius R =1, and
Lop depth Vo =4

@ Exact (red) is compared to HO with
hQ) =6 and N = 8 (blue) and to
boundary condition at r = L (green)

05 10 15 20" and to n = 4 wf squared (purple)

Eoxact = —1.51, Eyo = —1.45, E, = —1.47 [Lx \/N+3/2+ 3]

0.5+




_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

= Ayv =+v2(N+3/2)h/b and Ly=+/2(N+3/2)b
with b = \/A/mQ (note v/2s)
@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

@ Square-well wave functions with
mass m= 1, radius R =1, and
depth Vo =4

@ Exact (red) is compared to HO with
hQ) =6 and N = 4 (blue) and to
boundary condition at r = L (green)

{ 05 10V 15 50" and to n = 4 wf squared (purple)

Eexaer = —1.51, Eyo = —1.33, E, = —0.24 [L < V/N]
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_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

= Ayv =+v2(N+3/2)h/b and Ly=+/2(N+3/2)b
with b = \/A/mQ (note v/2s)
@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

@ Square-well wave functions with
mass m = 1, radius R =1, and
Lop depth Vo =4

@ Exact (red) is compared to HO with
hQ) =6 and N = 4 (blue) and to
boundary condition at r = L (green)

05 10 <15 50" and to n = 4 wf squared (purple)

Eexaet = —1.51, Eyo = —1.33, E, = —0.97 [L /N + 3/2]
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_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

= Ayv =+v2(N+3/2)h/b and Ly=+/2(N+3/2)b
with b = \/A/mQ (note v/2s)
@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

@ Square-well wave functions with
mass m = 1, radius R =1, and
Lop depth Vo =4

@ Exact (red) is compared to HO with
hQ) =6 and N = 4 (blue) and to
boundary condition at r = L (green)

05 10 15 50" and to n = 4 wf squared (purple)

Ecxact = —1.51, Eyo = —1.33, E, = —1.21 [L improved]
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_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

= Ayv =+v2(N+3/2)h/b and Ly=+/2(N+3/2)b
with b = \/A/mQ (note v/2s)
@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

@ Square-well wave functions with
mass m = 1, radius R =1, and
Lop depth Vo =4

@ Exact (red) is compared to HO with
hQ) =6 and N = 4 (blue) and to
boundary condition at r = L (green)

05 10 15 50" and to n = 4 wf squared (purple)

Eexace = —1.51, Egjo = —1.33, E, = —1.29 [Lx /N + 3/2 + 2]

0.5+




_______ Extrapolate IR _UV_Combined _Summary |
Truncated basis cuts off s.p. wave functions
@ First estimate of cutoffs: %szr2 = %pﬁlax = (N+3/2)h

max

= Ayv =+v2(N+3/2)h/b and Ly=+/2(N+3/2)b
with b = \/A/mQ (note v/2s)
@ Improved estimate from intercept of tangent at r = Ly:

L~ Ly+0.54437b(Lo/b) /3

@ Square-well wave functions with
mass m = 1, radius R =1, and
Lop depth Vo =4

@ Exact (red) is compared to HO with
hQ) =6 and N = 4 (blue) and to
boundary condition at r = L (green)

05 10 15 o 20" and to n = 4 wf squared (purple)

Eexace = —1.51, Egjo = —1.33, E, = —1.36 [L x /N +3/2 + 3]

0.5+




What is the range of momenta in a model space?
@ Claim in NCSM EFT papers:

minimal accessible non-zero wf
momentum in oscillator basis 10
with fixed iQ2 is A = h/b 0.8}

o b= /RZ/mhQ 06}

o Implication is that one needs 04;

to take 72 — oo limit 0.2
@ Counterclaim: minimum 0.0 5 5 < o
momentum as in box of size L
@ Pmin = 7/L and r-space N=0,Q=1 = Lyo=219

eigenfunction o sin(Pmin’)
o For oscillator, L ~ v/2Nb
(extent of phase space) 7/Lno = 1.44 (box estimate)

@ Test by calculating eigenvalues,
eigenfunctions of P? in HO basis

Dick Furnstahl Asymptotic WFs

Prmin = 1.23 (minimum eigenvalue)



What is the range of momenta in a model space?
@ Claim in NCSM EFT papers:

minimal accessible non-zero wf
momentum in oscillator basis 10
with fixed iQ2 is A = h/b 0.8}

o b= /RZ/mhQ 06}

o Implication is that one needs 04;

to take Q2 — oo limit 02k
@ Counterclaim: minimum 0.0 5 "> 5 4"
momentum as in box of size L
® Pmin = 7/L and r-space N=2nm=1 = Lyo=3.04

eigenfunction o sin(Pmin’)
o For oscillator, L ~ v/2Nb
(extent of phase space) 7/Lno = 1.03 (box estimate)

@ Test by calculating eigenvalues,
eigenfunctions of P? in HO basis

Dick Furnstahl Asymptotic WFs

Prmin = 0.96 (minimum eigenvalue)



What is the range of momenta in a model space?
@ Claim in NCSM EFT papers:

minimal accessible non-zero wf
momentum in oscillator basis 10
with fixed iQ2 is A = h/b 0.8}

o b= /RZ/mhQ 06}

o Implication is that one needs 04;

to take Q2 — oo limit 02k
@ Counterclaim: minimum 0.0 5 \ < i
momentum as in box of size L
® Pmin = 7/L and r-space N=4,m=1 = Lyo=368

eigenfunction o sin(Pmin’)
o For oscillator, L ~ v/2Nb
(extent of phase space) 7/Lno = 0.85 (box estimate)

@ Test by calculating eigenvalues,
eigenfunctions of P? in HO basis

Dick Furnstahl Asymptotic WFs

Prmin = 0.82 (minimum eigenvalue)



What is the range of momenta in a model space?
@ Claim in NCSM EFT papers:

minimal accessible non-zero wf
momentum in oscillator basis 10
with fixed iQ2 is A = h/b 0.8}

o b= /RZ/mhQ 06}

o Implication is that one needs 04;

to take ) — oo limit 0.2l
@ Counterclaim: minimum 0.0 5 P LT
momentum as in box of size L
® Pmin = 7/L and r-space N=8 =1 = Lyo=469

eigenfunction o sin(Pmin’)
o For oscillator, L ~ v/2Nb
(extent of phase space) 7/Lno = 0.67 (box estimate)

@ Test by calculating eigenvalues,
eigenfunctions of P? in HO basis

Dick Furnstahl Asymptotic WFs

Prmin = 0.66 (minimum eigenvalue)



What is the range of momenta in a model space?
@ Claim in NCSM EFT papers:

minimal accessible non-zero wf
momentum in oscillator basis 10
with fixed iQ2 is A = h/b 0.8}

o b= /RZ/mhQ 06}

o Implication is that one needs 04;

to take A2 — oo limit 021
@ Counterclaim: minimum 0.0 5 i N o
momentum as in box of size L
@ Puin = 7T/L and r-space N = 16, =1 = LNLO =6.22

eigenfunction o sin(Pmin’)
o For oscillator, L ~ v/2Nb
(extent of phase space) 7/Lno = 0.50 (box estimate)

@ Test by calculating eigenvalues,
eigenfunctions of P? in HO basis

Dick Furnstahl Asymptotic WFs

Prmin = 0.50 (minimum eigenvalue)



_______ Extrapolate IR _UV_Combined _Summary |
Completeness considerations [T. Papenbrock]

@ Space of N oscillator wave functions ¢;(x), i =0,...,N—1in1D
@ Usual completeness relation is replaced by

N—-1

Y dTx)eiy) = pn(x,y) -

i=0

@ For N — oo one finds poo (X, y) = 6(x — y) = completeness

e For finite N, pn(x, y) equals density matrix of the ground-state
wf of N spin-polarized fermions in 1D HO

@ For large N > 1, the density pn(x, x) — Wigner semicircle:
(X, X) = %\/2Nb2 —Xx2.
™

@ Valid in the semiclassical limit. We see that there is
“no completeness” beyond |x| > vV2Nb =~ Lo

o Note that squared wf is relevant to determine extent in x

Dick Furnstahl Asymptotic WFs



_______ Extrapolate IR _UV_Combined _Summary |
Wave functions in a spherical box

@ Forget about harmonic oscillator except to use 2Q and N
to determine size L of box

@ Start with wave function without a box — E

@ Increase the energy = node moves infromr=octor =1L

wf

12}

1.0} @ Square-well wave functions with

0.8f mass m =1, radius R =1, and

0.66 depth Vp =4

0.4 @ Wave function for E., (red) is

02 compared to wf for £ > E.. (blue)
05 10 15 20 25

E.=-151,E=-150=L=24

@ Find E(L), then the desired IR correction comes from E(Lyo)

Dick Furnstahl Asymptotic WFs



_______ Extrapolate IR _UV_Combined _Summary |
Wave functions in a spherical box

@ Forget about harmonic oscillator except to use 2Q and N
to determine size L of box

@ Start with wave function without a box — E

@ Increase the energy = node moves infromr=octor =1L

wf

12}

1.0} @ Square-well wave functions with

0.8f mass m =1, radius R =1, and

0.66 depth Vp =4

0.4 @ Wave function for E., (red) is

02 compared to wf for £ > E.. (blue)
05 10 15 2%~ 25"

E.— 151,E= -146— L =20

@ Find E(L), then the desired IR correction comes from E(Lyo)

Dick Furnstahl Asymptotic WFs



_______ Extrapolate IR _UV_Combined _Summary |
Wave functions in a spherical box

@ Forget about harmonic oscillator except to use 2Q and N
to determine size L of box

@ Start with wave function without a box — E

@ Increase the energy = node moves infromr=octor =1L

wf

12}

1.0} @ Square-well wave functions with

0.8f mass m =1, radius R =1, and

0.66 depth Vp =4

0.4 @ Wave function for E., (red) is

02 compared to wf for £ > E.. (blue)
05 10 185 20 25"

E.=-151,E=-121=L=15

@ Find E(L), then the desired IR correction comes from E(Lyo)

Dick Furnstahl Asymptotic WFs



Linear energy method to estimate corrections [Djajaputra]
@ Let ug(r) be the radial solution regular at r = 0 with energy E, then

dug(r)
dE

where E;, = E.,+AE;

—1
Eoo>
r>R

@ Now ug(r) =5 Ac(e*er + apether) with us(r) =5 A e k=
: h2K2,
and k., from nucleon separation energy S = =2
@ Take the derivative and evaluate at E = E..:
dug(r) _ doe koo T —keor
JE Eoo_+AOO oE Eme +(’)(e )

Substituting at r = L, we obtain our correction formula to fit:
—1

ui(r) = ug,(r) = U (r)+AE;

Ew

Sou(l)y=0 = AE ~—uy(L) <dUE(L)

dE

dog
dE

—2keolL

AE ~ — e #=lio(eH=l) = E =E.+ae

Ew

Dick Furnstahl Asymptotic WFs



Comparison to Liuscher formula for bound states
@ Lischer: energy shifts to bound states from the finite size of a box
with periodic boundary conditions
o Here: size of box is spatial extent of the oscillator basis
o We effectively have Dirichlet boundary conditions on sphere
@ Usual Lischer formula (x = /mE, is binding momentum):

eliL

AE, = E, — E.. = +247|A2S — + O(e V2
mL
e Independent of form of potential V (pole properties only)
e See S. Koenig et al. [arXiv:1109.4577] for a simple derivation

o cf. other formulas derived more recently for lattice applications

@ PBCs: S-wave energy lowered by periodic images of the potential

e Here: energy is always increased by the shift of a node from
r=oo0tor=_L (cf. p-wave [H.-W. Hammer talk])

e Consistent with variational nature of truncated expansion

Dick Furnstahl Asymptotic WFs



EFT for Bound-State Reflection X
[M. Pine, D. Lee, arXiv:1008.5187, 1206.6280]

v

@ See Michelle Pine’s INT talk [Sept. 28]

@ Motivated by lattice EFT for nuclei

@ Hard-wall cube in d-dimensions

o Shallow bound states: x5 = 1/ag 20 +VX)

KZB]sz ﬁ—ngz_(X) e B z_(X)]

@ Apply adiabatic expansion in soft =
scattering limit

mimsa mi me

HVett

o Use method of images for BC’s e
o Systematic effective potential
[1st-order d = 1 correction]

@ Adapt to spherical hard wall

o Effectively one dimensional Zarst Ol
@ Depends on k., A in general!

-1.0!
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EFT for Bound-State Reflection sy egon
[M. Pine, D. Lee, arXiv:1008.5187, 1206.6280] k k k
@ See Michelle Pine’s INT talk [Sept. 28] AN A AN
@ Motivated by lattice EFT for nuclei \( w Y \
o Hard-wall cube in d-dimensions L

o Shallow bound states: x5 = 1/ag 20 +VX)

_ KZB]sz {ﬁ—ngz_(k’) e B ‘7:_(X)|:|

@ Apply adiabatic expansion in soft =
scattering limit

mims

mi me

o Use method of images for BC’s e
o Systematic effective potential
[1st-order d = 1 correction]

@ Adapt to spherical hard wall

o Effectively one dimensional Zarst Ol
@ Depends on k., A in general!

-1.0!
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Correction for radius (or other long-distance operators)
@ Use uy(r) = U (r) + AE, %0

. to evaluate

fOL lug(r)|? r? dr B Jo~ luss(r)[2 r2 dr
Jyju(nzdr  Jo luss(r)l2dr

@ For leading L dependence, use U (r) — Ay e =" and

ue(r)|  Ax okl grhor

~ 2 2y (2K, L)3e 2kl
dE |, AELe =  A{rf); < (r-)(2kxL)’e

@ The NLO correction scales as (2k.,L) exp (—2k-, L), so
(r?) = (rP)oo[1 — (Co3® + c18)e™7]  with B = 2k L
e (r?)., cy, and ¢y are fit parameters while k., from energy fit
e Valid in the asymptotic regime where g = 2k, ,L 2 3

@ Both E and r corrections apply to A-body system in lab coordinates
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Test case: Toy model calculation: H = p?/2 — v,e* in 1D

0
10 s ey T T T T T
=,
*»*N
10-2— "‘& T
.
*\.,
10°F S, -
o~ s,
o %
-~ 6L % i
A_.10 " . . . . . ‘k.,*
oL 10°F 1 ™
Q 198k 10°% 1 ™~ i
10° "f 1 t’*&
0l 100 " 1 Y i
10 10l < K i -
0 " oY
ol 10°C lL/t.) - **’H |
10 0 10 20 1 A
0 10 20 30
L/b

@ Theory and numerical data agree over 10 orders of magnitude
@ Other model calculations also validate fit function
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Infrared (L — oc) energy extrapolation of CCSD(T) results

-90 —T - 1T )
16O
g N3LO (500 Mev)
-100F O CC(A,, > 1100 MeV)
[ A CC (A, > 1200 MeV)
’% v CC(A,, >1300 MeV)
s b — Theory (A, > 1100 MeV)
E—llOZ- --- Theory (A, > 1200 MeV)
I .—.- Theory (/\UV>1300 MeV)
[ extrapolations
-120F ¢ \I/ Xl
- . vy
4 4.5 5 6
L (fm)

Frequencies:
42MeV < hQ) < 76 MeV

o N=1214
@ E; = E + ape 2=t

@ Use large Ayy for UV

convergence

Weak dependence on
choices of UV cutoff

@ Fits yield E., ~ —122.6 MeV (+0.2MeV) and k., ~ 0.95 fm™"
@ K., agrees with decay of the p; » orbital = the tail of the density
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Infrared (L — oo) radius extrapolation of CCSD(T) results

[ " Textrapolations T
(oY PN N NS
160 .
—~ I NLO (500 Mev 1 @ Frequencies:
< sp MO GOME) 1 42MeV < hQ < 76 MeV
N 2 e N=12,14
v O CC(A,, >1100 MeV) ]
I A CC (A, > 1200 MeV) 1 o (PP, ~ (r?)
4.5 v CC(A,, > 1300 MeV) . 3 5
- — NLOtheory (A, > 1100Mev)| 1 X [1—(cf®+cip)e”]
--- NLOtheory (A, > 1200 MeV) 1 with 8 = 2k L
---- NLO'theory (A, > 1300 MeV)
PR ST IS S S S I S S S RS ST R —
4 25 5 55 6
L (fm)

@ Fits yield r ~ 2.34fm using k. ~ 0.95 fm~" from energy fit
@ Extrapolation works well with just the Ayy > 1300 MeV points
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Infrared (L — oo) extrapolations of NCSM results for He

—20‘\\\‘\\\\‘\\\\\\\\\\\\

Ground-State Energy [MeV]

—30 IR better UV better
UV worse IR worse -
_32 ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il
10 15 20 25 30
hQ [MeV]

[ON]
W

@ NCSM results from Bogner et
al. (2008)

@ Use data from right of minima
to ensure small UV corrections

@ N = N, + 1 for 6 He
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Infrared (L — oo) extrapolations of NCSM results for He

-13r I ]

L 6 .

0k He ]

r N’LO (500 MeV) ]

b SRGA=2fm ' ]
S 24 L o NCFC energies|
§ i — Theory ]
@ 26} .
:
1] e lebubelnt oot Drvtietniiieiet E

_2y [ | [ [ ]

324 5 6 7
L (fm)

NCSM results from Bogner et
al. (2008)

Use data from right of minima
to ensure small UV corrections

@ N = N, + 1 for ®He
@ Fit: E,, =~ —29.87 MeV
@ But fit hk,o =~ 93 MeV

— interpretation?
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Infrared (L — oo) extrapolations of NCSM results for He

G L LS AR
| S extrapolated radit _ ~| @ NCSM results from Bogner et
E ................................... - a2 al. (2008)
23 6 E : -
- He 1 @ Use data from right of minima
25 C N’LO (500 MeV) B to ensure small UV corrections
2F o ]
= [ SRGA=2fm 1 @ N = Ny + 1for He
£ 21F -
=T 1 @ Fit: E,, =~ —29.87 MeV
F 1 @ Butfit k., ~ 93MeV
19F © NCFC neutron radii | - = interpretation?
g — LOfi ] .
18i __ NLOltﬁt 10 Radius at LO: 2.37 fm
: 1 @ Radius at NLO: 2.40fm
el b b b by o]
N A T R

L (fm)
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Infrared (L — oo) extrapolations of NCSM results for He

2.8 prerr e
C extrapolated radii b
24:_. ____________________________________ —
238 O §> ]
o ]
22F NLO(SOOMe_\:) P \rﬁ E
2 r SRGA=2fm not included in fit J
= 2.1F -
&-4= : :
21 =
19F © NCFC neutron radii | -
- — LO theory ]
18F - - NLO theory ]
;\ ]
SNy A B A AT I

1'73 4 5 6 7 8 9

L (fm)

_.
S
®

NCSM results from Bogner et
al. (2008)

Use data from right of minima
to ensure small UV corrections

@ N= N, +1for®He
@ Fit: E,, ~ —29.87 MeV
@ But fit k., ~ 93 MeV

= interpretation?
Radius at LO: 2.37 fm
Radius at NLO: 2.40 fm
Note the Ny.x = 10 points!
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Application of IR correction formula to S. Coon et al. results

14 \\
) 0.1
@ Plotted against Ayy but UV E H
3
converged appl ldaho N°LO
@ Lines at fixed AQ (or \) IV
— plotting against v/N 1ot
= equivalent to varying L 100 =
0'001'5 * 65 247
@ Replot against L Jop
1 150 375
2200 433
0.0001 ~———————r——— T
0 500 1000 1500 2000 2500 30C

A (MeV/c)
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Application of IR correction formula to S. Coon et al. results

I I I

0 = L3 —
UE T, H ]
@ Plotted against Ayy but UV - & 3 .
conver e% v I %"x N'LO(G00MeV) 1
? 0’ £
@ Lines at fixed 79 (or \) - "1“3 ]
— plotting against v'N o | by ]
= equivalent to varying L D10 = o ® E
c * 0% ° E
@ Replot against L P8 he o ]
— exponential over wide ST oo Mev ? o i
range of AE/E 107 - 10 R
@ All other figUreS consistent with i Calculations from S. Coon et al., Figure 1 o

IR dependence AE/Eocce =t ol L v i 0w

3 4 5 6 7 8 9 10

L, [fm]
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Testing with models [sushant More (OsU)]
Optimal definition of L? Look at scatter vs. L «x vN + AN

E E
-06| - —0.6
—os| - —0.8
~1.0 = ~1.0 3
12 i 12 i,
- -"‘E""\-..-—._........ .. L i "‘""--—-.._..... T
1.0 15 2.0 25 3.0 0 1.0 15 2.0 25 3.0 1
E E
-0.6 - -0.6
-0.8 -0.8
~1.0 Ay ~1.0
\, ,
- T,
-12 \"‘——_----—---—- .o L -l2 .\"hn-..n.-_...... - L
1.0 15 2.0 25 3.0 2 1.0 15 2.0 25 3.0 3

Winner: L, oc /N + 3/2 + 2 (slightly larger than Ly o) = better results!
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Testing with models [sushant More (OsU)]
Fit to exponential with Ly o on left and L, o< /N + 3/2 4+ 2 on right:

E

-0.6
-0.8
-1.0

-1.2

1.0

1.5

2.0

2.5

3.0

sl )

E

—0.6
-0.8
-1.0

-12

1.0

Compare to gaussian extrapolations:

E

-0.6
-0.8
-1.0

-12

1.0

L5

2.0

25

E

—0.6
—0.8

-1.0

-1.2

Ly

1.0

15 2.0 25 3.0 Ly
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Testing with models [sushant More (OsU)]

Are we sure that AE is an exponential in L?

log(AE)

. . 20 23 3.0 Ly

@ Test for exponential on right \_‘r
@ Test gaussian below left -2
@ Test power law below right B
@ Seems to be an exponential! -

-6

IOg(AE) 5 log(AE)
] L =1 log(Ly)
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Testing with models [sushant More (OsU)]

What about excited states?

@ Derivations unchanged — expect exponential corrections again

@ Compare ground state (left) to excited state (right)

E
E -02
—0.6 04
—os —0.6
-0.8

-1.0
-1.0

-12

1.0 15 2.0 25 3.0 Ly 16 18 20 22 24 26 28

L

Looks like the exponential fit works for both (different k.., of course)!
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Test on excited state [preliminary!]

-20

-22

24

-26

Energy [MeV]

-28

-30

-32

34

5Li N°LO SRG NN-only A=2.0 fm™" [arXiv:0708.3754]

5Li N®LO SRG NN-only 1=2.0 fm™" [arXiv:0708.3754]

20
' ' ' " NCFC energies  + i i j " NCFC energies  +
fit to Ejps + A0*exp(-2 ki L) it to Ejpg + A0%exp(-2 kips L)
Einf -+ Einf -
J 2 J
fit Ejyg = -32.52 +/- 0.15 MeV fit Ejpy = -29.64 +/- 0.13 MeV
fit Kipg = 109.12 +/- 5.59 MeV 24 fit king = 108.04 +/- 5.62 MeV 7
fit AQ = 1404.68 +/- 363.80 MeV fit AO = 1133.96 +/- 294.51 MeV
- . 3 26
UVynin = 700 MeV, hw,i, = 28 MeV 2 UVpin = 700 MeV, hw;, = 28 MeV
>
I
J % 28 J
J 30 ]
J 32 J
. . . . . . 34 . . . . . .

L fm]

@ NCSM NN-only calculations for 6Li

@ Ground state on left, first excited on right

@ Exponential fits (seem to) work for excited states!
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NCSM radii revisited [preliminary!!
@ “Pivot point” phenomena for radii vs. /{2 at different Ny,:

gz.ﬁHH_M_M_HWm: gz.é ]
£24p SRGA=3.0fm " J £24 E
c‘“ C ] § ]
%,22: %Jzz;; .
,:4 C . C .
20F6, . ] 20F 64 . 3
g - L1 i § 2 Bt ’
S gbo i NN B ghi Y 1]
A0 15 20 25 30 35 A&7 10 15 20 25 30
_ hQ [MeV] _ hQ [MeV]
gz.e,‘HH_WWH_M‘_ £ 2.6 v
- C 1 : C -1 1
Epyls SRG A =2.0fm | 3 Eaafb SRGA=1.0fm 3
E C ] E C ]
222 - %zz;;;;;;;;;;;;:--;:.--r..rr':;r;;;;e;
E2.0?6 4 ®o0f 6, . ;
(=1 . =1
S o 1 8 r ]
§18:H\]T“1Hmum e élgimlﬁl‘ummuu L
AT 10 15 20 25 30 AT 100 15 20 25 30
hQ [MeV] hQ [MeV]
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NCSM radii revisited [preliminary!!
@ “Pivot point” phenomena for radii vs. /{2 at different Ny,:

gz,am‘_m_m‘m‘_m: gz,e

£24p SRGA=3.0fm " J £24

£ .k 1 &

n 2.2F n 22

2 50 1 2,0k ~

20F 6, . - 20F 65 . 3

§7F Li 187t Li . °

9187““““““‘ ' T 8187“““““““‘ [

A0 15 20 25 30 35 A&7 10 15 20 25 30

_ hQ [MeV] _ hQ [MeV]

gz.ei‘HH‘HHWHWH_: gz.eH_M‘HH_MWH

Zoal SRGA=20fm" 3 2

DY YT PP IUIIb § S

%2.0?6. : =l

8 C Ll 1 8 ’

8187“““““““ | L AN 818“““““““““

AT 10 15 20 25 30 AT 100 15 20 25 30
hQ [MeV] hQ [MeV]

@ IR extrapolations give gray bands (error from fit — reliable?)
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New application: Resonances (from this week!)

@ Extract resonance parameters from a nucleus in a box

@ Familiar from other contexts, e.g., J. Carlson et al., Nucl. Phys.
A424 (1984) 47 or Y. Alhassid and S.E. Koonin, Ann. Phys. 155
(1984) 108

@ The asymptotic wave function jj(kr) — tan(o,;)n(kr) satisfies the
Dirichlet boundary condition at r = L through § = kL — =//2 for
angular momentum / at an energy eigenvalue

@ If one knows the threshold energy S, the excitation energy E is
related to k via

(E — S) = h?k?/2m
@ Different model spaces (N, i) = different L's = E’'s = §/’s

@ Plotting phase shift vs k yields the resonance at 90 degrees and
the slope at 90 degrees is related to the inverse width
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New application: Resonances (from this week!)

Test case: Extract phase shift for / = 1 (left) and / = 2 (right) resonances

in Woods-Saxon potentials, with fits to Breit-Wigner (BW) shape.

@ Compare BW fits to Gamow shell BW GSM
model (GSM) results — I'| Eo r Eo r
. - 11053 0.33]048 0.46
@ Fits do well on resonance position 21174 035|173 050

but not so accurate on widths
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_____ Extrapolete IR _UV_Combined Summary |
Unsettled questions for IR extrapolation

What is the optimal definition of L? (Use the scatter?)
How to weight the contributions according to L (or Niax, Q)7
How to make credible error estimates?

Interpretation of k..? Can we extract A, ?

Does the interaction matter?

e The IR corrections are independent of the potential

e Softer interactions mean more complete UV convergence for
given iQ, N, so larger region with IR corrections only

@ Anything else?
@ How well does extrapolation work for other operators?
@ Can we systematically improve the extrapolation a la Pine/Lee?

@ How can we incorporate explicitly the harmonic oscillator part?
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_______ Extrapolate IR _UV_Combined _Summary |
Harmonic Oscillator Basis Effective Theory (HOBET)

[W. Haxton and collaborators]

@ General problem: including effects of excluded space Q in model
space P (with P+ Q= 1)

@ For HO basis, Q = Zaﬂo>Nm |ano) {(anol, excludes both IR and UV
@ Use Bloch-Horowitz framework to factorize IR and UV:

Q 1 E

eff __ —

H H+HO Q QH = E— TQ[T TET+V+VE_QHQV]E_TQ
IR uv IR

e Resummed Q-space kinetic energy puts correct tail on wf’s
@ Can this justify combined UV and IR extrapolations?

@ Bloch-Horowitz energy dependence of H.; = out of mainstream

e Energy dependence claimed to be a feature, not bug; true?
e |s technology adaptable for improved extrapolations?
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Outline

High-momentum behavior of wave functions
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What parts of wif’s can be extracted from experiment?

@ Measurable: asymptotic (IR) properties like phase shifts, ANC’s

@ Not observables, but well-defined theoretically given a Hamiltonian:
interior quantities like spectroscopic factors

e These depend on the scale and the scheme

e Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (e.g., cross sections) [What if weakly dependent?]
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What parts of wif’s can be extracted from experiment?

@ Measurable: asymptotic (IR) properties like phase shifts, ANC’s

@ Not observables, but well-defined theoretically given a Hamiltonian:
interior quantities like spectroscopic factors

e These depend on the scale and the scheme

e Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (e.g., cross sections) [What if weakly dependent?]

@ What about the high-momentum tails of momentum distributions?

e Consider cold atoms in the unitary regime
e Compare to nuclear case
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Unitary cold atoms: Is n(k) observable?
@ Tail of momentum distribution + contact [Tan; Braaten/Platter]

k—o0 C
n(k) — )
Theory (lattice) Experiment
J. E. Drut, T. A. Lahde, T. Ten J. T. Stewart et al
1, Phys. Rev. Lett. 106, 205302 (2011) PRL 104, 235301 (2010)
Jep=0.186 o' 1 8 ' '
N n(k) ’T, ) 0(],:?‘ — a
10 A . E o®
O SO 3 6- o o
: -_ [ ] ..
—~8f F q A X
: < 4
v’il i 1 : ] b [
x 6 B <+ Y
2 ‘ M-
o 12 845 =< ) S S .9 %,%¢ %
ol Wk ] 1 o ¢ e e
s )
0 @
2L S ] : : - :
i N, =10, T/EF=g.;§? —. 0 05 10 15 20 25
0321 ——
%0 05 1 15 2z 25 5 s 4 as k
K/ke
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Is the tail of n(k) for nuclei measurable? (cf. SRC’s)

10 3
: — AVIS8 ]
F V. athe2 fm ! 1 @ E.g., extract from
10'E —==- Vg atA=21fm . o
: L electron scattering?
S PR Vgath=15fm
10°E —.—— CD-Bomn 4 @ Scale- and scheme-
— BN\ N'LO(00Mev) | dependent
E 10k - high-momentum tail!
2 of 1 @ n(k) from Vsgg has
= 10°E no high-momentum
- . ; |
10k N ? components!
: Vo > ;
e Y >~.] @ No region where
N L 1/as< k< 1/R
= - \ . E .
-5l \ SIS VI 1 cf. large k limit for
» unitary gas)
k [fm ]
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Is the tail of n(k) for nuclei measurable? (cf. SRC’s)

4 L. .
k™ * Deuteron Momentum Distribution

\_ T \_\ ‘ T _\ T T ‘ T T T T ‘ T T T T ‘ T T T T
0'3___ : : -| @ E.g., extract from
I \n it electron scattering?
AN : d
A U 1 @ Scale- and scheme-
RPN I B — AVI8 I dependent
E o2 % -V [2fm ] - - -
= e : st ] high-momentum tail!
=z -—-- CD-Bonn
= ] i\ o NLO 1 @ n(k) from Vsrg has
e [ ¢\ i no high-momentum
< - : \4 _
. [
v o1k ‘c\,‘\ ] components!
- N g .
fo AN | @ No region where
R | 1jas<k<1/R
o s N [Salpeter] s (cf. large k limit for
I N R R R T B T AT T A MR A o | lT.\\J'- H
0, 1 5 3 4 5 unitary gas)
-1
k[fm ]
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What parts of wif’s can be extracted from experiment?

@ Measurable: asymptotic (IR) properties like phase shifts, ANC’s

@ Not observables, but well-defined theoretically given a Hamiltonian:
interior quantities like spectroscopic factors

e These depend on the scale and the scheme

e Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (e.g., cross sections) [What if weakly dependent?]

@ What about the high-momentum tails of momentum distributions?

o Consider cold atoms in the unitary regime
e Compare to nuclear case

@ Short-range correlations (SRCs) depend on the Hamiltonian and
the resolution scale (cf. parton distribution functions)
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uv

Looking for missing strength at large Q?

What is this vertex?

o
qg=k—Fk
v = Ek — Ekr
N
Q= —¢
N Q?
rp =
2myv
. E , A-2
Subedi et al., Science 320, 1476 (2008) Higinbotham, arXiv:1010.4433

3Fa /

fos| R + SRC interpretation:
E 2 . e®sPooe . .
I NN interaction can scatter

10 Ll L L L L .

s . states with p1,pe < kp
Tt [ . . .
S0 eseenest f to intermediate states with
L Py, ps > kr which are
s 17 . knocked out by the photon
Es LR
3 e e N ) °
i ,t oot . . .

TRt How to explain cross sections in terms of

L L L L L L L
1 125 15 175 2 225 25 275

14<Q®<26GeV?] ™

Egiyan et al. PRL 96, 1082501 (2006)

low-momentum interactions?
Vertex depends on the resolution!
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uv

Parton vs. nuclear momentum distributions

24
zq(z, Q%) 20
X

1,6 31
1,24

R
N - R
083 e Y ] N

N
\\\ NS
\’s‘ N

@ The quark distribution g(x, Q?) is
scheme and scale dependent @ Deuteron momentum distribution

@ x g(x, Q%) measures the share of is scheme and scale dependent

momentum carried by the quarks @ Initial AV18 potential evolved with
in a particular x-interval SRG from A =ocoto A = 1.5fm™"
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Deuteron-like scaling at high momenta
C. Ciofi and S. Simula, Phys.Rev C53, 1689(1996)

Momentum Distributions n(k) Ratio to the Deuteron

2 b ' 6 A R
10% ¢ 3 ™ SRApRaE I
) 3He,*He,'¢0, 5 F /i\ | /,{/‘\:.:___, ;
Eo... . S6Fe and N.M. = . /{\ | / /:/ : ____________ 1
& S g 4r i\ T 1
< St el 10
< ScoF R A .
T = N I
- g 2 [’ 7 (O B |
< HE N V2 T L
/..5 l. N L7
1 /I,{‘IY/‘ - -
0 a . .
0 1 2 3 4
. . »
n(k) at high Momentum regions are k (fm™)
similar to it of the Deuteron Almost Flat!

High resolution: Dominance of Vyy and SRCs (Frankfurt et al.)
Lower resolution = lower separation scale — fall-off depends on V),
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uv

A dependence of the EMC effect is long-distance physics!
@ EFT treatment by Chen and Detmold [Phys. Lett. B 625, 165 (2005)]

=Y &xgf(x) = Ral)=Fx)/AR(x)

I
“The x dependence of Ra(x) is governed by short-distance
physics, while the overall magnitude (the A dependence) of the
EMC effect is governed by long distance matrix elements
calculable using traditional nuclear physics.”

@ Match matrix elements: leading-order nucleon operators to
isoscalar twist-two quark operators

><
— <X2> VHO VMnNTN[-I + OénNTN] + st

Ra(x) = F2N() =1+0r(X)G(A) where G(A) = (A[(N'N)?|A)/ANo

= the slope %% scales with G(A) [Why is this not cited more?]
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What parts of wif’s can be extracted from experiment?

@ Measurable: asymptotic (IR) properties like phase shifts, ANC’s

@ Not observables, but well-defined theoretically given a Hamiltonian:
interior quantities like spectroscopic factors

e These depend on the scale and the scheme

e Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (e.g., cross sections) [What if weakly dependent?]

@ What about the high-momentum tails of momentum distributions?

o Consider cold atoms in the unitary regime
e Compare to nuclear case

@ Short-range correlations (SRCs) depend on the Hamiltonian and
the resolution scale (cf. parton distribution functions)

@ So might expect Hamiltonian- and resolution-dependent but
A-independent high-momentum tails of wave functions [T. Neff]

o Universal extrapolation for different A, but Asgg dependent
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Ultraviolet (A, — oo) extrapolations of NCSM results for °He

6He

Ground-State Energy [MeV]

oo N =10

—30 IR better UV better
UV worse IR worse -
_32 ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il
10 15 20 25 30 35
hQ [MeV]

@ NCSM results from Bogner et
al. (2008)

@ Use data from left of minima
to ensure small IR corrections

@ N = Ny + 1 for 6 He
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What form do we expect for UV extrapolations?
-10
() 1 ' I ' I

@ Consider NCSM as an EFT  __ 12
[I. Stetcu et al. PLB 653, 358 Z -14
(2007); I. Stetcu and J. Rotureau, E 16
arXiv:1206.0234] %

@ Choice of extrapolation guided
by LO running of bound-state

energy in the continuum: ———
o1
E = Eo(hQ2) + A(hQQ)/Auv g %
A
@ Extrapolate Ey(hQ2) to Ey(0) v g
* 6

@ Study of SRG decoupling by
Jurgenson et al. (2008) found | B ——
power-law dependence on @ | ! T T3
imposed UV cutoff of potential 100 200 300 400
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What do we expect for UV from models? [s. More]
log(AE)
@ Points lie on curve vs. Ayy e

@ Test for exponential on right
@ Test gaussian below left
@ Test power law below right -

@ AE x e~ v favored!
log(AE)

5 10 15 20 25 A22 log(AE)

0.4 "B

8 10 12 14 16 LOg(AZ)

-1 .
-2
-3
-4
_5 _5

@ Gaussian in A%, o« Ny, also found empirically by Haxton and Song
(HOBET study) and by Coon et al., but not explained
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Ultraviolet (Ayy) extrapolations of NCSM results [Empirical!]

Energy [MeV]

2H N3LO SRG NN-only A=2.0 fm™"

I NCF&) energiesI +
fit to Ejn + A0*exp(-2 (x/A1))
Einf

fit Eqpg = -2.19 +/- 0.01 MeV
fit A1 = 1.94 +/- 0.02 fm
fit AQ = 5.41 +/- 0.20 MeV

200

400 500

Ay [MeV]

600 700

NCSM results from
Bogner et al. (2008)

Points lie on curve for
AEy,, x e—2/\%v/A?, o)
Ayy is correct variable

Nov = /2N 372)1/b

is used here

Fits do not work with
otheg curves: power laws,
e N for n#£ 2

Fitted Ay = >\SRG!

Dick Furnstahl Asymptotic WFs



Ultraviolet (Ayy) extrapolations of NCSM results [Empirical!]

3H N3LO SRG NN-only 4=2.0 fm™"

5
' ' NCF&) energiesI +
fit to Ejn + A0*exp(-2 (x/A1))
55k Einf - i
@ NCSM results from
6 fit Ejpf = -8.53 +/- 0.03 MeV Bogner et al. (2008)
fit A1 = 1.94 +/- 0.03 fm
s fit AO = 14.26 +/- 0.53 MeV @ Points lie on curve for

AEyp,, x e~ 2\w/A 50
Ayy is correct variable

Nov = /2N 372)1/b

is used here

Energy [MeV]

Fits do not work with
otheg curves: power laws,
e N for n#£ 2

! ! ! ! ! @ Fitted A1 ~ )\SRG!

-9
200 300 400 500 600 700 800
Ayy [MeV]
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Ultraviolet (Ayy) extrapolations of NCSM results [Empirical!]

“He N®LO SRG NN-only A=2.0 fm’

22 +

-24

Energy [MeV]

-26

-28

fit to By + A0*exp(-2 (x/A1)?)
Einf - i

T T
NCFC energies  +

fit Ejny = -29.04 +/- 0.17 MeV
fit A1 = 2.00 +/- 0.05 fm
fit AQ = 42.23 +/- 2.54 MeV

Linin = 8 fm

-30
200

500 600 700
Ayy [MeV]

800

NCSM results from
Bogner et al. (2008)

Points lie on curve for
AEy,, x e 2Nv/# 5o
Ayy is correct variable

Auv = /2(N+3/2)h/b

is used here

Fits do not work with
other curves: power laws,
e~ Nov for n #£ 2

Fitted A1 ~ )\SRG!
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Ultraviolet (Ayy) extrapolations of NCSM results [Empirical!]

5Li N®LO SRG NN-only =2.0 fm!

22 +

24

Energy [MeV]

26

-28

-30 }

-32

L

fit to By + A0*exp(-2 (x/A1)?)

L

NCF(I.‘; energiesI +
Einf --------
fit Ejp = -32.95 +/- 0.46 MeV

fit A1 = 2.20 +/- 0.07 fm
fit AO = 56.68 +/- 3.13 MeV

Linin = 8 fm

200

300

400

1 1 1
500 600 700
Ayy [MeV]

800

NCSM results from
Bogner et al. (2008)

Points lie on curve for
AEy,, x e 2Nv/# 5o
Ayy is correct variable

Auv = /2(N+3/2)h/b

is used here

Fits do not work with
other curves: power laws,
e~ Nov for n #£ 2

Fitted Ay =~ Asrg!
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Ultraviolet (Ayy) extrapolations of NCSM results [Empirical!]

7Li N®LO SRG NN-only =2.0 fm’!
-20 T T

NCF(I.‘; energiesI +
fit to By + A0*exp(-2 (x/A1)?)
Einf -------

@ NCSM results from

25 L fit Ejpg = -38.66 +/- 0.28 MeV - Bogner et al. (2008)
fit A1 = 1.92 +/- 0.06 fm . _
fit AO = 97.01 +/- 11.52 MeV @ Points lie on curve for

3 AE/\UV x eszva/Af, SO

= ¢ .

g -30 F Liin = 6.4 fm (to get 4 points) - Ayvy is correct variable

I}

& @ Ayy = \/2(N+3/2)h/b
is used here

-35 @ Fits do not work with

other curves: power laws,
e~ Nov for n #£ 2

-40 . . . . . @ Fitted Ay ~ Asrg!
200 300 400 500 600 700 800

Ayy [MeV]
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Ultraviolet (Ayy) extrapolations of NCSM results [Empirical!]

-16 T

“He N®LO SRG NN-only A=2.5 fm’

20

Energy [MeV]

-30 L

I I\IICFC energiles +
fit to By + A0*exp(-2 (x/A1)?)

Einf i

fit Eqpy = -28.33 +/- 0.06 MeV
fit A1 = 2.56 +/- 0.06 fm
fit AO = 36.39 +/- 3.67 MeV

Lynin = 5 fm

400 500 600 700 800

Ayy [MeV]

900

NCSM results from
Bogner et al. (2008)

Points lie on curve for
AEy,, x e 2Nv/# 5o
Ayy is correct variable

Auv = /2(N+3/2)h/b

is used here

Fits do not work with
other curves: power laws,
e~ Nov for n #£ 2

Fitted A1 ~ )\SRG!
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Ultraviolet (Ayy) extrapolations of NCSM results [Empirical!]

“He N®LO SRG NN-only A=2.0 fm’

22 +

-24

Energy [MeV]

-26

-28

fit to By + A0*exp(-2 (x/A1)?)
Einf - i

T T
NCFC energies  +

fit Ejny = -29.04 +/- 0.17 MeV
fit A1 = 2.00 +/- 0.05 fm
fit AQ = 42.23 +/- 2.54 MeV

Linin = 8 fm

-30
200

500 600 700
Ayy [MeV]

800

NCSM results from
Bogner et al. (2008)

Points lie on curve for
AEy,, x e 2Nv/# 5o
Ayy is correct variable

Auv = /2(N+3/2)h/b

is used here

Fits do not work with
other curves: power laws,
e~ Nov for n #£ 2

Fitted A1 ~ )\SRG!
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Ultraviolet (Ayy) extrapolations of NCSM results [Empirical!]

“He N®LO SRG NN-only A=1.5 fm™

-16 T T T T
NCFC energies  +
fit to By + A0*exp(-2 (x/A1)?)
18l Einf ------- |
@ NCSM results from
fit Ejpg = -28.93 +/- 0.06 MeV Bogner et al. (2008)
20 - fit A1 = 1.50 +/- 0.04 fm 7
fit AO = 68.05 +/- 10.03 MeV @ Points lie on curve for
— 2 2
é 22 b i AE/\UV x eszuv/Au SO
= Lynin =8 fm Ayy is correct variable
(=2}
Q
& (*] /\UV:\/Z(N—FS/Z)FL/b
is used here

@ Fits do not work with
other curves: power laws,
e~ Nov for n #£ 2

-30 L L L L 1 @ Fitted A1 = )\SRG!
200 300 400 500 600 700 800

Ayy [MeV]

Dick Furnstahl Asymptotic WFs




Ultraviolet (Ayy) extrapolations of NCSM results [Empirical!]

Energy [MeV]

-30

“He N®LO SRG NN-only A=1.0 fm™

I NCF(I.‘; energiesI +
fit to By + A0*exp(-2 (x/A1)?)

Einf i

fit Ejny = -24.80 +/- 0.00 MeV
fit A1 = 1.05 +/- 0.02 fm
fit AQ = 73.37 +/- 8.48 MeV

Lynin = 6 fm

200

300

400 500 600 700
Ayy [MeV]

800

NCSM results from
Bogner et al. (2008)

Points lie on curve for
AEy,, x e 2Nv/# 5o
Ayy is correct variable

Auv = /2(N+3/2)h/b

is used here

Fits do not work with
other curves: power laws,
e~ Nov for n #£ 2

Fitted A1 ~ )\SRG!

Dick Furnstahl Asymptotic WFs



Outline

Combined IR and UV extrapolations
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Combined IR and UV energy fit of NCSM results

T o1 @ Assume that IR and UV
6 corrections near minimum
He are additive (factorized):
E(L7 Auv) =E +AE + AEyy
@ AE /(L) = Aje k=L
with fit k., to optimize

,Q(M)Z
() AEUV(AUV) = Ape A
with fit A to optimize

Ground-State Energy [MeV]

|
(O8]
o

10 15 20 25 30

|98
W
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Combined IR and UV energy fit of NCSM results

20— 71> ] @ Assume that IR and UV
] corrections near minimum
2 g are additive (factorized):

E(L7 Auv) =E +AE + AEyy

@ AE(L) = Aje2k=t
with fit k.. to optimize

>
111

,Q(M)Z
() AEUV(AUV) = Ape A
with fit A to optimize

Ground-State Energy [MeV]
b
A
IIIIIIIIIIIIIIIIIIIIIIIIIIIII

-28
1 @ Fitall N,,x = 6—10 points
-30F - -3
fitwithallN__ =6-10 ]
_ | IR BT BT R ETE BT EErE BN
32 10 15 20 25 30 35
hQ [MeV]
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Combined IR and UV energy fit of NCSM results

=20

Ground-State Energy [MeV]

—a—=a N_ =10
-30 Fbmrmgm m = & = i it e — o g g e R

fitwithallN =6-10 ]
max

_ I SR SRR RN R
3210 15 20 25 30 35

hQ [MeV]

@ Assume that IR and UV
corrections near minimum
are additive (factorized):

E(L7 Auv) =E +AE + AEyy

@ AE /(L) = Aje k=L
with fit k., to optimize

,Q(AUV )2
() AEUV(AUV) = Ape A
with fit A to optimize

@ Fit all Ny,.x = 6—10 points

1 @ E ~—29.84MeV

' )\ﬁt ~ 2.2 fm_1

Dick Furnstahl Asymptotic WFs



Combined IR and UV energy fit of NCSM results

294 11— ——7—— @ Assume that IR and UV
L 6 ] corrections near minimum
- He 1  are additive (factorized):
= 296 A=2.0fm 4 E(L,Ayv) = Esc + AEL + AEyy
(5] r i
= i »] @ AE/(L) = Aje k=L
> A, o . . .
2 2081 LpaelA N 28 & 4] with fit k., to optimize
= —+7. N el max ST
5 i it e Sty ,g(Auv)z
s [ ” A B _.lom ~,A'. CIRRR 4 A 1 e AEUV(AUV) =Aoe X
3 o0k " *uN -6 ] with fit X to optimize
gt 1 . .
3 L {1 @ Fit all Ny.x = 6—10 points
i ted energies from |
3021 fit with all Nmizé-lo ] @ Ex = —29.84MeV
: [ T T B B : ' )\ﬁt ~ 2.2 fm_1
10 15 20 25 30 35
hQ [MeV]
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Combined IR and UV energy fit of NCSM results

20y 11171 @ Assume that IR and UV
corrections near minimum
are additive (factorized):

E(L7 Auv) =E +AE + AEyy

@ AE /(L) = Aje k=L
with fit k., to optimize

,Q(M)Z
() AEUV(AUV) = Ape A
with fit A to optimize

@ Fit all Ny,.x = 6—10 points

ot tele chel 2 $nmnEn T 57551 @ E, ~ —29.84MeV

| | | ﬁtw1th‘alleaX‘=6-10 10 M\ ~22 fm_1
~32 e b b by by

10 15 20 25 30 35 _ ,
hQ [MeV] @ Corrected N,,.x = 4 energies

(not fit) slightly overbound

Ground-State Energy [MeV]




Combined IR and UV energy fit of NCSM results

[Preliminary from Jurgenson, Maris et al.]

A L B L LI VLRI I

—30F =
o E
s 320 1 @ 7Li NN only
> r i
5 34 1 @ Combine UV and IR
% r ] corrections and fit all
S 36 d Numax = 4-10 points
ERN ] @ E. ~39.47MeV
8_385 ] 1
O C — o 1@ Aie ~ 2.1 fm™

—40p T TR o ' 1 @ ko ~ 102MeV

N fitwithallN - =4-10 1
_42’\””\””\HH\HH\HH\HH’

10 15 20 25 30 35
hQ [MeV]
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Combined IR and UV energy fit of NCSM results

[Preliminary from Jurgenson, Maris et al.]

A L B L LI VLRI I
—30F =
5 ;
s 320 1 @ 7Li NN only
> r i
5 34 1 @ Combine UV and IR
% r ] corrections and fit all
s 36 ] Nipax = 6—10 points
wn r i
T O 1 @ E.. ~—39.75MeV
e 38 . |
5 . 1° A~ 2.2 fm™
S CHE - N N —— S _g_ S—
—op T R RTROR TR T @ ko ~ 103MeV
C v Tit 'Wlt-h.alL,N_max #6210+
_427\ v v b by v b Ly 1]

10 15 20 25 30 35
hQ [MeV]
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Combined IR and UV energy fit of NCSM results

[Preliminary from Jurgenson, Maris et al.]

B
—30F =
% _32i =6 7: .
2 r 1 @ 7LiNN only
> r i
5 -34f 1 @ Combine UV and IR
% r =8 1 corrections and fit all
S 36 3 Niax = 8-10 points
T L 1 @ E. ~—39.76MeV
e 38 . |
& f 1@ \yp~21fm™
b i it o e B g
—40F° prpereangngne b T ] @ ke ~ 109MeV
T el NG g0 ] T
/T, ) I R \ Ll \ NI I STV AR B
2015 20 2530 35 40

hQ [MeV]
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Combined IR and UV energy fit of NCSM results

[Preliminary from Jurgenson, Maris et al.]

B e e e e I B e ]
300 g E
. _F A=25fm ' ]
20 N 3
2:—40; 7@ "B NN+NNN
5 E 3@ Combine UV and IR
5 _sof 4 corrections and fit all
g 1 Niax = 6-8 points
708 Now=8 3
2 ok 10 E, ~ —65.6MeV
=} E ] o
P N e d® A 28401 1fm !
oA AR A b a0 3@ Koo ~ 108 £ 5MeV
- Fitwithall N_ = 6-8 g
_75: O AU AN AT AU AU AU R MR

18 20 22 24 26 28 30 32 34 36
hQ [MeV]
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Combined IR and UV energy fit of NCSM results

[Preliminary from Jurgenson, Maris et al.]

45 \ \ \ \ \ \ ]
— —50F ]
> C ]
QL - i
2‘;_55 - @ °B NN+NNN
5 I 1@ Combine UV and IR
S —60f N,.=6_, -| corrections and fit all
g r 1 Nnax = 6-8 points
@ B N..=8 ]
o 65 4@ E, ~ —66.5MeV
g Fm ot s e o e e 2 2 1
e N Y REREEY A INEEEE A A 19 it ~1.9+0.1 fm~
®oofp J
S 10 ko ~
: FitwihallN_ =68 10 Ko~ 119214 MeV
75 I T T N PR IR IR BT S

—_
(o]

|
20 22 24 26 28 30
hQ [MeV]
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Combined IR and UV energy fit of NCSM results

[Preliminary from Jurgenson, Maris et al.]

-63[ -
— 64 .
> C ]
o - .
E i ]
>, 05 7
o0 - J
St
g T ]
S —66F ]
8 I ]
s L ]
({J L 4
5 —67F .
5 I oy ]
gﬁ :———'-'———-v-n—..—.;.—..—..—.ﬁn.—:!‘lr:e-::—i;-:l_'_ __E

68~ FitwithallN_ =68 .

z b ]

— \ : L 4]

69 18 0 2 24
hQ [MeV]

@ OB NN+NNN
@ Combine UV and IR

corrections and fit all
Nin.x = 6-8 points

@ £~ —65.6MeV
@ \y~1.1+14fm™!
® k. ~ 150 + 33MeV
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Combined IR and UV energy fit of NCSM results

[Preliminary from Jurgenson, Maris et al.]

-82F .
-84F =
86 =
> E ]
—-88F 3
% o 3@ 2C NN+NNN
> —90F 3
5 _oof 1@ Combine UV and IR
= -92F = . .
o 2 7 corrections and fit all
§ “HE 3 Npa = 6-8 points
wn r ]
T 7% o E.~ 98.1MeV
e B -a———e & e e e —— 1
3 g 10 \i~21+0.1fm
_100? e T =
g T vy 1@ ko~ 136+ 8MeV
Bl fitwithall N =6-8 E
10451 | | L L

[
oo}

20 22 24 26 28
hQ [MeV]
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Comparison to standard extrapolation [P. Maris “B”]

[Preliminary from Jurgenson, Maris et al

y|

82 ]
> E ]
o —88F =
E E 3
> —90F —
80 E ]
g -92F Now=6
m o ]
] r IR+UV 3
"g -96 E extr:polution N =8 E
R E e S o 3

oo !
-102 Extrap. B
o \ ()2(,42,{2) ]
_104E—L \ \ L 1]
18 20 22 24 26 28
hQ [MeV]

@ 2C NN+NNN
@ Combine UV and IR

corrections and fit all
N = 6-8 points
— E ~ —98.1 MeV

Extrapolation B
= E =-99.1£1MeV

Similar systematic difference
with JISP16 comparisons
(preliminary!)
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Outline

Summary and open questions
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Summary: Exploiting finite oscillator spaces
@ A truncated oscillator basis essentially puts the nucleus in a box in
both space and momentum = Turn a bug into a feature!
@ Only IR corrections for sufficiently large Ayy ~ /2(N + 3/2)hQ2
o To the right of the E vs. AQ minimum
e “Sufficiently large” depends on the interaction (soft is better)

e Treat as nucleons in box = energy and radius corrections,
phase shifts, ...

e Fit parameters independent of interaction (Ko, Ax)
@ Only UV corrections for sufficiently large L ~ v/2(N + 3/2)/hQ

o To the left of the E vs. Q2 minimum

o Fit parameters pick up scale(s) from interactions

e Form of fit function not yet derived ...
@ Combined UV and IR corrections seem to work (so far!)

o Consistent extrapolated energies compared to UV or IR alone
@ Many more things to try, test, and refine!
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Open questions

What range of Q2 should you use?

@ What are the optimal definitions of L and Ayy? (Use the scatter?)

How to weight the contributions according to L (or Niax, 71€2)?
How to make credible error estimates?

How to explain the form of UV scaling?

Is a combined IR/UV extrapolation justified (e.g., by HOBET)?
Interpretation of k.,? Can we extract A,.?

How well does extrapolation work for other operators?

Does it work with other basis expansions (e.g., hyperspherical
harmonics)?

Can we systematically improve the IR and UV extrapolations?

@ How can we incorporate explicitly the harmonic oscillator part?

Dick Furnstahl Asymptotic WFs



	Motivation: Extrapolations in finite bases
	Nature and implications of infrared cutoffs
	High-momentum behavior of wave functions
	Combined IR and UV extrapolations
	Summary and open questions

