Asymptotic Wave Functions in Light Nuclei

Dick Furnstahl

Department of Physics Ohio State University

Workshop on "Structure of light nuclei" INT October, 2012

Context:

- "Corrections to nuclear energies and radii in finite oscillator spaces," rjf, G. Hagen, T. Papenbrock, arXiv:1207.6100 plus S. More at OSU
- Nuclear wave functions at large momenta from low-momentum (e.g., SRG) point of view (fate of SRCs, factorization scales, ...) [E. Anderson, S. Bogner, K. Hebeler, S. More, R. Perry, K. Wendt, ...]

Outline

Motivation: Extrapolations in finite bases

Nature and implications of infrared cutoffs

High-momentum behavior of wave functions

Combined IR and UV extrapolations

Summary and open questions

Outline

Motivation: Extrapolations in finite bases

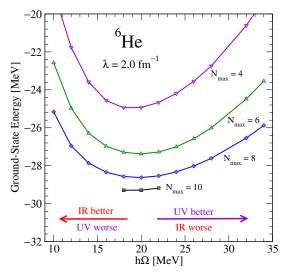
Nature and implications of infrared cutoffs

High-momentum behavior of wave functions

Combined IR and UV extrapolations

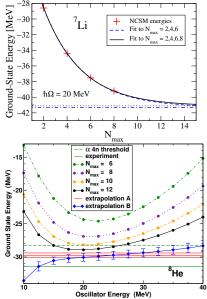
Summary and open questions

How do we correct for finite harmonic oscillator spaces?



- NCSM m-scheme results from Bogner et al. (2008) [NN-only N³LO (500 MeV) np softened via SRG]
- Typical variational pattern: large ħΩ cuts off wf and small ħΩ cuts off potential ⇒ minimum: IR and UV corrections both needed
- Empirical extrapolation: $E(N_{\text{max}}) = E_{\infty} + A_0 e^{-A_1 N_{\text{max}}}$ (with uninterpreted A_0, A_1) at fixed $\hbar\Omega$ (near minimum)
- One suggested justification: inverse power law in no. of states

Successes of "conventional" extrapolation



 ⁷Li extrapolation at fixed ħΩ from Bogner et al. (2008)

 $E(N_{\mathrm{max}}) = E_{\infty} + A_0 e^{-A_1 N_{\mathrm{max}}}$

- Consistent results from different N_{max} truncations
- Maris et al. developed N_{max} extrapolation schemes [PRC 79, 014308 (2009)]
- ⁸He: Difficult test nucleus using JISP16 interaction
- Successes but many open questions (e.g., *A*₀, *A*₁?)
- Other extrapolations on the market (e.g., N⁻¹_{max} powers)

Effective (field) theory treatments

- Harmonic Oscillator Basis Effective Theory (HOBET)
 - W. Haxton [PRC 77,034005 (2008)], C.-L. Song, T. Luu, and ...
 - Use Bloch-Horowitz to factorize Q-space UV and IR
 - Re-sum Q-space IR (so no IR extrapolation)
 - HO-based contact-gradient expansion for Q-space UV
- Effective field theory (EFT) for no-core shell model (NCSM)
 - I. Stetcu, B. Barrett, U. van Kolck [PLB 653 (2007) 358] et al.
 - Apply EFT directly within NCSM model space
 - UV from fit contact interactions within NCSM truncation
 - On-going debate about need for IR limit $\hbar\Omega \to 0$
- Convergence properties of *ab initio* calculations in a HO basis
 - Coon, Avetian, Kruse, van Kolck, Maris, Vary [arXiv:1205.3230]
 - Extrapolate in HO IR (λ , λ _{sc}) and UV (Λ _{UV}) cutoffs (cf. N_{max}, \hbar Ω)
- EFT for bound-state reflection (cf. Lüscher method for PBC's)
 - M. Pine, D. Lee [arXiv:1008.5187, 1206.6280]. More later!

Switching to IR and UV cutoffs as variables [S. Coon et al.]

• For many N and $\hbar\Omega$ combinations, calculate 0.1- $|\Delta E/E|$ for the triton ^{3}H Idaho N³LO Plot as function of $|\Delta E/E|$ $\lambda_{sc} = \sqrt{m\hbar\Omega/(N+3/2)}$ for a $\Lambda (MeV/c)$ 0.01 range of $\Lambda = \sqrt{m(N+3/2)\hbar\Omega}$ 400 500600 Universal dependence on λ_{sc} 700 0.001 over wide range of $\Delta E/E$ 800 1000 1200 Fit shows exponential in $1/\lambda_{sc}$ 0.0001 Plateaus to the left from UV 10 30 60 20 corrections λ_{sc} (MeV/c)

rjf, Hagen, Papenbrock: identify nature and form of IR, UV corrections

Outline

Motivation: Extrapolations in finite bases

Nature and implications of infrared cutoffs

High-momentum behavior of wave functions

Combined IR and UV extrapolations

Summary and open questions

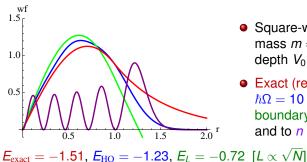
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate for *L* from intercept of tangent at $r = L_0$:

 $L_{NLO} pprox L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 10$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

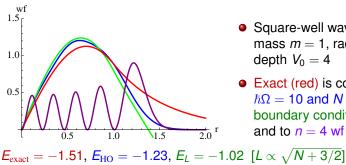
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b = \sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate for L from intercept of tangent at $r = L_0$:

 $L_{NLO} \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth $V_0 = 4$
- Exact (red) is compared to HO with $\hbar\Omega = 10$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

Dick Eurnstahl Asymptotic WFs

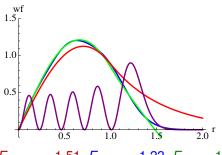
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate for *L* from intercept of tangent at $r = L_0$:

 $L_{NLO} \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 10$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.23, E_L = -1.14$ [L improved]

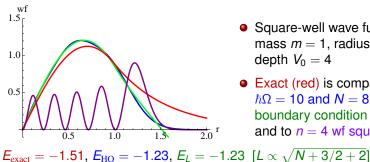
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b = \sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate for L from intercept of tangent at $r = L_0$:

 $L_{NLO} \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth $V_0 = 4$
- Exact (red) is compared to HO with $\hbar\Omega = 10$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

Dick Eurnstahl Asymptotic WFs

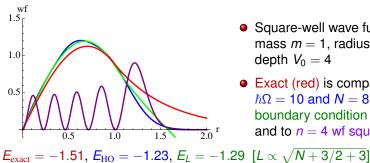
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b = \sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate for *L* from intercept of tangent at $r = L_0$:

 $L_{NLO} \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth $V_0 = 4$
- Exact (red) is compared to HO with $\hbar\Omega = 10$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

Dick Eurnstahl Asymptotic WFs

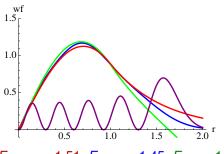
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.45, E_L = -1.32 \ [L \propto \sqrt{N}]$

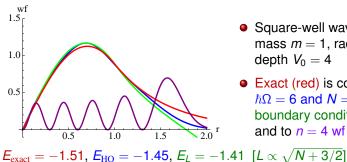
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b = \sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth $V_0 = 4$
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

Dick Eurnstahl Asymptotic WFs

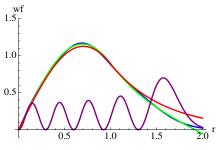
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.45, E_L = -1.45$ [L improved]

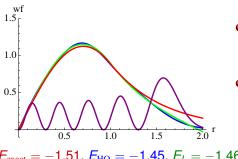
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.45, E_L = -1.46 \ [L \propto \sqrt{N + 3/2 + 2}]$

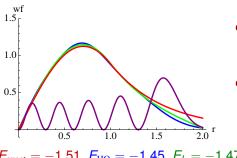
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 8 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.45, E_L = -1.47 \ [L \propto \sqrt{N + 3/2 + 3}]$

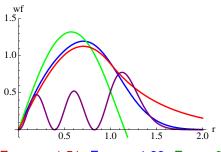
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 4 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.33, E_L = -0.24 \ [L \propto \sqrt{N}]$

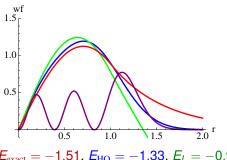
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 4 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.33, E_L = -0.97 \ [L \propto \sqrt{N + 3/2}]$

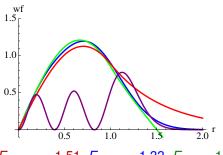
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 4 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.33, E_L = -1.21$ [L improved]

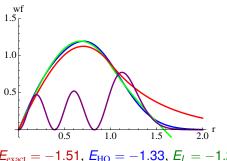
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 4 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.33, E_L = -1.29 \ [L \propto \sqrt{N + 3/2 + 2}]$

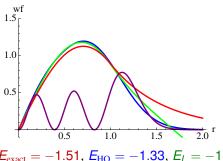
• First estimate of cutoffs: $\frac{1}{2}m\Omega^2 r_{\text{max}}^2 = \frac{1}{2m}p_{\text{max}}^2 = (N+3/2)\hbar\Omega$

 $\implies \Lambda_{UV} = \sqrt{2(N+3/2)}\hbar/b$ and $L_0 = \sqrt{2(N+3/2)}b$

with $b=\sqrt{\hbar/m\Omega}$ (note $\sqrt{2}$'s)

• Improved estimate from intercept of tangent at $r = L_0$:

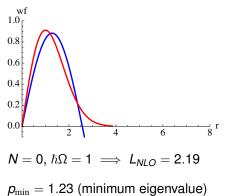
 $L \approx L_0 + 0.54437 \, b \, (L_0/b)^{-1/3}$



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Exact (red) is compared to HO with $\hbar\Omega = 6$ and N = 4 (blue) and to boundary condition at r = L (green) and to n = 4 wf squared (purple)

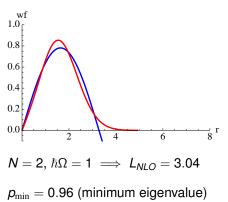
 $E_{\text{exact}} = -1.51, E_{\text{HO}} = -1.33, E_L = -1.36 \ [L \propto \sqrt{N + 3/2 + 3}]$

- Claim in NCSM EFT papers: minimal accessible non-zero momentum in oscillator basis with fixed $\hbar\Omega$ is $\lambda = \hbar/b$
 - $b = \sqrt{\hbar^2/m\hbar\Omega}$
 - Implication is that one needs to take $\hbar\Omega \to \infty$ limit
- Counterclaim: minimum momentum as in box of size *L*
 - *p*_{min} = π/L and *r*-space eigenfunction ∝ sin(*p*_{min}*r*)
 - For oscillator, L ~ \sqrt{2Nb} (extent of phase space)
- Test by calculating eigenvalues, eigenfunctions of P² in HO basis



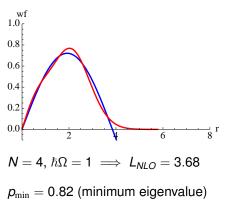
$$\pi/L_{NLO} = 1.44$$
 (box estimate)

- Claim in NCSM EFT papers: minimal accessible non-zero momentum in oscillator basis with fixed $\hbar\Omega$ is $\lambda = \hbar/b$
 - $b = \sqrt{\hbar^2/m\hbar\Omega}$
 - Implication is that one needs to take $\hbar\Omega \to \infty$ limit
- Counterclaim: minimum momentum as in box of size *L*
 - *p*_{min} = π/L and *r*-space eigenfunction ∝ sin(*p*_{min}*r*)
 - For oscillator, L ~ \sqrt{2Nb} (extent of phase space)
- Test by calculating eigenvalues, eigenfunctions of P² in HO basis



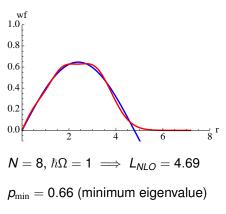
$$\pi/L_{NLO} = 1.03$$
 (box estimate)

- Claim in NCSM EFT papers: minimal accessible non-zero momentum in oscillator basis with fixed $\hbar\Omega$ is $\lambda = \hbar/b$
 - $b = \sqrt{\hbar^2/m\hbar\Omega}$
 - Implication is that one needs to take $\hbar\Omega \to \infty$ limit
- Counterclaim: minimum momentum as in box of size *L*
 - *p*_{min} = π/L and *r*-space eigenfunction ∝ sin(*p*_{min}*r*)
 - For oscillator, L ~ \sqrt{2Nb} (extent of phase space)
- Test by calculating eigenvalues, eigenfunctions of P² in HO basis



$$\pi/L_{NLO} = 0.85$$
 (box estimate)

- Claim in NCSM EFT papers: minimal accessible non-zero momentum in oscillator basis with fixed $\hbar\Omega$ is $\lambda = \hbar/b$
 - $b = \sqrt{\hbar^2/m\hbar\Omega}$
 - Implication is that one needs to take $\hbar\Omega \to \infty$ limit
- Counterclaim: minimum momentum as in box of size *L*
 - *p*_{min} = π/L and *r*-space eigenfunction ∝ sin(*p*_{min}*r*)
 - For oscillator, L ~ \sqrt{2Nb} (extent of phase space)
- Test by calculating eigenvalues, eigenfunctions of P² in HO basis

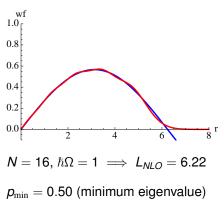


$$\pi/L_{NLO} = 0.67$$
 (box estimate)

• Claim in NCSM EFT papers: minimal accessible non-zero momentum in oscillator basis with fixed $\hbar\Omega$ is $\lambda = \hbar/b$

•
$$b = \sqrt{\hbar^2/m\hbar\Omega}$$

- Implication is that one needs to take $\hbar\Omega \to \infty$ limit
- Counterclaim: minimum momentum as in box of size *L*
 - *p*_{min} = π/L and *r*-space eigenfunction ∝ sin(*p*_{min}*r*)
 - For oscillator, L ~ \sqrt{2Nb} (extent of phase space)
- Test by calculating eigenvalues, eigenfunctions of P² in HO basis



$$\pi/L_{NLO} = 0.50$$
 (box estimate)

Completeness considerations [T. Papenbrock]

- Space of *N* oscillator wave functions $\phi_i(x)$, i = 0, ..., N 1 in 1D
- Usual completeness relation is replaced by

$$\sum_{i=0}^{N-1}\phi_i^*(\boldsymbol{x})\phi_i(\boldsymbol{y})\equiv\rho_N(\boldsymbol{x},\boldsymbol{y})\;.$$

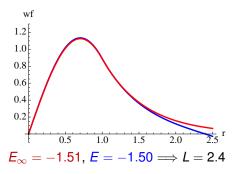
- For $N \to \infty$ one finds $\rho_{\infty}(x, y) = \delta(x y) \Longrightarrow$ completeness
- For finite N, ρ_N(x, y) equals density matrix of the ground-state wf of N spin-polarized fermions in 1D HO
- For large $N \gg 1$, the density $\rho_N(x, x) \longrightarrow$ Wigner semicircle:

$$ho_N(x,x) pprox rac{1}{\pi b^2} \sqrt{2Nb^2 - x^2}$$
 .

- Valid in the semiclassical limit. We see that there is "no completeness" beyond $|x| > \sqrt{2Nb} \approx L_0$
- Note that squared wf is relevant to determine extent in x

Wave functions in a spherical box

- Forget about harmonic oscillator except to use ħΩ and N to determine size L of box
- Start with wave function without a box \Longrightarrow E_{∞}
- Increase the energy \implies node moves in from $r = \infty$ to r = L

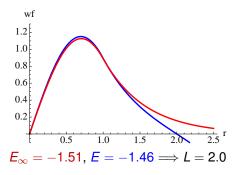


- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Wave function for *E*_∞ (red) is compared to wf for *E* > *E*_∞ (blue)

• Find E(L), then the desired IR correction comes from $E(L_{HO})$

Wave functions in a spherical box

- Forget about harmonic oscillator except to use ħΩ and N to determine size L of box
- Start with wave function without a box \Longrightarrow E_{∞}
- Increase the energy \implies node moves in from $r = \infty$ to r = L

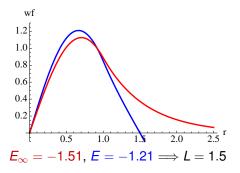


- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Wave function for *E*_∞ (red) is compared to wf for *E* > *E*_∞ (blue)

• Find E(L), then the desired IR correction comes from $E(L_{HO})$

Wave functions in a spherical box

- Forget about harmonic oscillator except to use ħΩ and N to determine size L of box
- Start with wave function without a box \Longrightarrow E_{∞}
- Increase the energy \implies node moves in from $r = \infty$ to r = L



- Square-well wave functions with mass m = 1, radius R = 1, and depth V₀ = 4
- Wave function for *E*_∞ (red) is compared to wf for *E* > *E*_∞ (blue)

• Find E(L), then the desired IR correction comes from $E(L_{HO})$

Linear energy method to estimate corrections [Djajaputra]

• Let $u_E(r)$ be the radial solution regular at r = 0 with energy E, then

$$u_{L}(r) \equiv u_{E_{L}}(r) \approx u_{\infty}(r) + \Delta E_{L} \left. \frac{du_{E}(r)}{dE} \right|_{E_{\infty}} \text{ where } E_{L} = E_{\infty} + \Delta E_{L}$$
So $u_{L}(L) = 0 \implies \Delta E_{L} \approx -u_{\infty}(L) \left(\left. \frac{du_{E}(L)}{dE} \right|_{E_{\infty}} \right)^{-1}$
Now $u_{E}(r) \xrightarrow{r \gg R} A_{E}(e^{-k_{E}r} + \alpha_{E}e^{+k_{E}r}) \text{ with } u_{\infty}(r) \xrightarrow{r \gg R} A_{\infty}e^{-k_{\infty}r}$
and k_{∞} from nucleon separation energy $S = \frac{\hbar^{2}k_{\infty}^{2}}{2m}$
Take the derivative and evaluate at $E = E_{\infty}$:

$$\frac{du_{E}(r)}{dE}\Big|_{E_{\infty}} = +A_{\infty} \left.\frac{d\alpha_{E}}{dE}\right|_{E_{\infty}} e^{+k_{\infty}r} + \mathcal{O}\left(e^{-k_{\infty}r}\right)$$

Substituting at r = L, we obtain our correction formula to fit:

$$\Delta E_L \approx -\left[\left.\frac{d\alpha_E}{dE}\right|_{E_{\infty}}\right]^{-1} e^{-2k_{\infty}L} + \mathcal{O}(e^{-4k_{\infty}L}) \implies E_L = E_{\infty} + a_0 e^{-2k_{\infty}L}$$

Comparison to Lüscher formula for bound states

- Lüscher: energy shifts to bound states from the finite size of a box with periodic boundary conditions
 - Here: size of box is spatial extent of the oscillator basis
 - We effectively have Dirichlet boundary conditions on sphere
- Usual Lüscher formula ($\kappa = \sqrt{mE_{\infty}}$ is binding momentum):

$$\Delta E_L = E_L - E_{\infty} = +24\pi |A|^2 \frac{e^{-\kappa L}}{mL} + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$

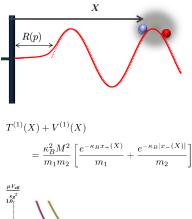
- Independent of form of potential V (pole properties only)
- See S. Koenig et al. [arXiv:1109.4577] for a simple derivation
- cf. other formulas derived more recently for lattice applications
- PBCs: S-wave energy lowered by periodic images of the potential
 - Here: energy is always *increased* by the shift of a node from $r = \infty$ to r = L (cf. p-wave [H.-W. Hammer talk])
 - Consistent with variational nature of truncated expansion

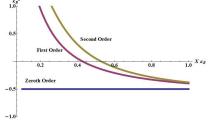
Extrapolate IR UV Combined Summary

EFT for Bound-State Reflection

[M. Pine, D. Lee, arXiv:1008.5187, 1206.6280]

- See Michelle Pine's INT talk [Sept. 28]
- Motivated by lattice EFT for nuclei
 - Hard-wall cube in *d*-dimensions
 - Shallow bound states: $\kappa_B = 1/a_B$
- Apply adiabatic expansion in soft scattering limit
 - Use method of images for BC's
 - Systematic effective potential [1st-order *d* = 1 correction]
- Adapt to spherical hard wall
 - Effectively one dimensional
 - Depends on k_{∞} , A_{∞} in general!

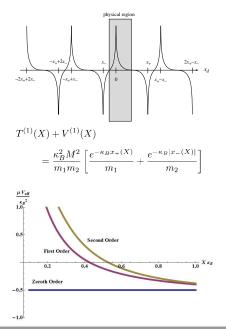




EFT for Bound-State Reflection

[M. Pine, D. Lee, arXiv:1008.5187, 1206.6280]

- See Michelle Pine's INT talk [Sept. 28]
- Motivated by lattice EFT for nuclei
 - Hard-wall cube in *d*-dimensions
 - Shallow bound states: $\kappa_B = 1/a_B$
- Apply adiabatic expansion in soft scattering limit
 - Use method of images for BC's
 - Systematic effective potential [1st-order *d* = 1 correction]
- Adapt to spherical hard wall
 - Effectively one dimensional
 - Depends on k_{∞} , A_{∞} in general!



Correction for radius (or other long-distance operators)

• Use $u_L(r) \approx u_{\infty}(r) + \Delta E_L \left. \frac{du_E(r)}{dE} \right|_{E_{\infty}}$ to evaluate

$$\Delta \langle r^2 \rangle_L = \langle r^2 \rangle_L - \langle r^2 \rangle_{\infty} = \frac{\int_0^L |u_L(r)|^2 r^2 dr}{\int_0^L |u_L(r)|^2 dr} - \frac{\int_0^\infty |u_\infty(r)|^2 r^2 dr}{\int_0^\infty |u_\infty(r)|^2 dr}$$

• For leading *L* dependence, use $u_{\infty}(r) \longrightarrow A_{\infty}e^{-k_{\infty}r}$ and

$$\frac{du_{E}(r)}{dE}\Big|_{E_{\infty}}\approx -\frac{A_{\infty}}{\Delta E_{L}}e^{-2k_{\infty}L}e^{+k_{\infty}r} \implies \Delta \langle r^{2} \rangle_{L} \propto \langle r^{2} \rangle_{\infty} (2k_{\infty}L)^{3}e^{-2k_{\infty}L}$$

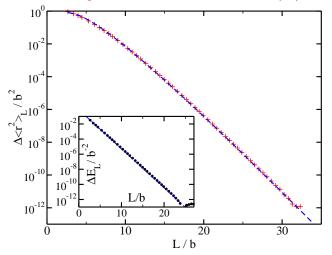
• The NLO correction scales as $(2k_{\infty}L) \exp(-2k_{\infty}L)$, so

 $\langle r^2 \rangle_L \approx \langle r^2 \rangle_\infty [1 - (c_0 \beta^3 + c_1 \beta) e^{-\beta}]$ with $\beta \equiv 2k_\infty L$

- $\langle r^2 \rangle_{\infty}$, c_0 , and c_1 are fit parameters while k_{∞} from energy fit
- Valid in the asymptotic regime where $\beta = 2k_{\infty}L \gtrsim 3$

• Both *E* and *r* corrections apply to *A*-body system in lab coordinates

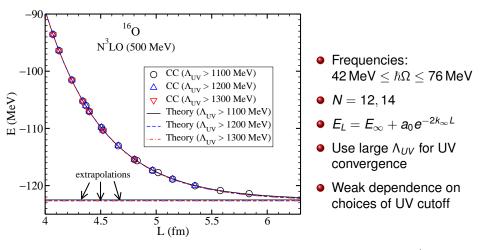
Test case: Toy model calculation: $H = p^2/2 - v_0 e^{-x^2}$ in 1D



• Theory and numerical data agree over 10 orders of magnitude

Other model calculations also validate fit function

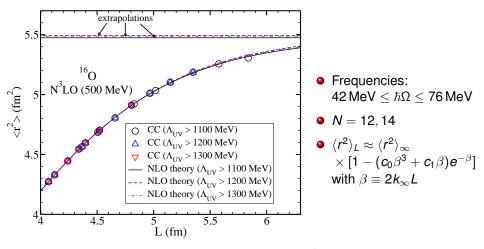
Infrared ($L \rightarrow \infty$) energy extrapolation of CCSD(T) results



• Fits yield $E_{\infty} \approx -122.6 \, {
m MeV}$ ($\pm 0.2 \, {
m MeV}$) and $k_{\infty} \approx 0.95 \, {
m fm}^{-1}$

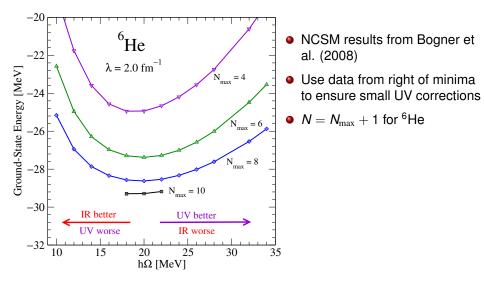
• k_{∞} agrees with decay of the $p_{1/2}$ orbital \implies the tail of the density

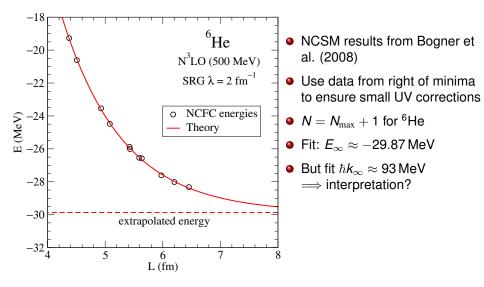
Infrared ($L \rightarrow \infty$) radius extrapolation of CCSD(T) results

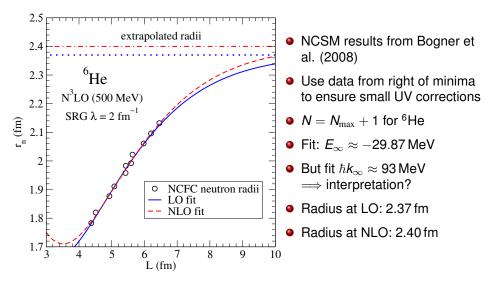


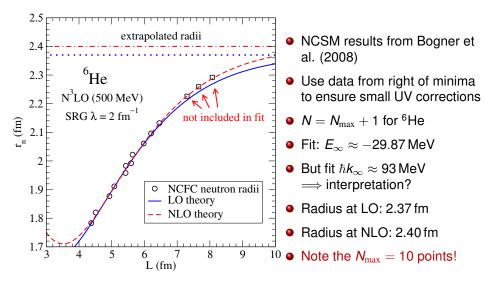
• Fits yield $r \approx 2.34$ fm using $k_{\infty} \approx 0.95$ fm⁻¹ from energy fit

• Extrapolation works well with just the $\Lambda_{UV} > 1300 \text{ MeV}$ points



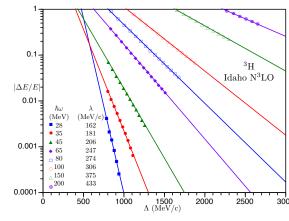






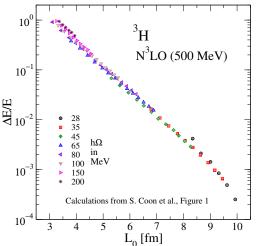
Application of IR correction formula to S. Coon et al. results

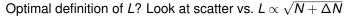
- Plotted against Λ_{UV} but UV converged
- Lines at fixed ħΩ (or λ)
 ⇒ plotting against √N
 ⇒ equivalent to varying L
- Replot against L

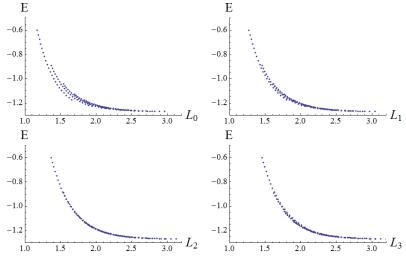


Application of IR correction formula to S. Coon et al. results

- Plotted against A_{UV} but UV converged
- Lines at fixed ħΩ (or λ)
 ⇒ plotting against √N
 ⇒ equivalent to varying L
- Replot against L
 ⇒ exponential over wide
 range of ΔE/E
- All other figures consistent with IR dependence $\Delta E/E \propto e^{-k_{\infty}L}$

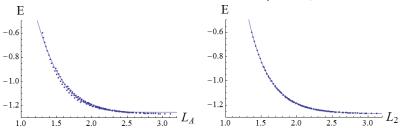




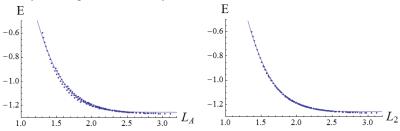


Winner: $L_2 \propto \sqrt{N + 3/2 + 2}$ (slightly larger than $L_{\rm NLO}$) \Longrightarrow better results!

Fit to exponential with $L_{\rm NLO}$ on left and $L_2 \propto \sqrt{N + 3/2 + 2}$ on right:



Compare to gaussian extrapolations:

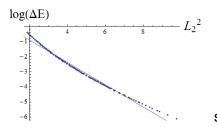


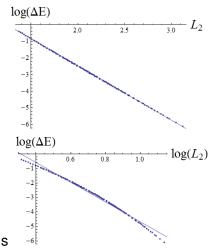
Dick Furnstahl

Asymptotic WFs

Are we sure that ΔE is an exponential in L?

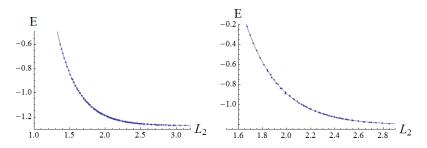
- Test for exponential on right
- Test gaussian below left
- Test power law below right
- Seems to be an exponential!





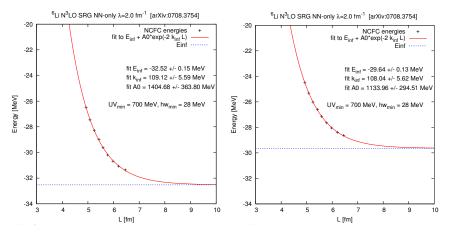
What about excited states?

- Derivations unchanged \implies expect exponential corrections again
- Compare ground state (left) to excited state (right)



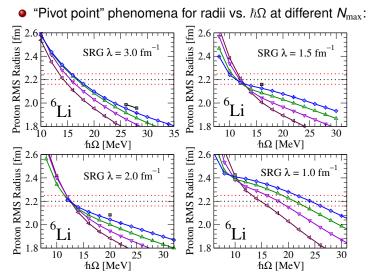
Looks like the exponential fit works for both (different k_{∞} , of course)!

Test on excited state [preliminary!]



- NCSM NN-only calculations for ⁶Li
- Ground state on left, first excited on right
- Exponential fits (seem to) work for excited states!

NCSM radii revisited [preliminary!!]



NCSM radii revisited [preliminary!!]

• "Pivot point" phenomena for radii vs. $\hbar\Omega$ at different N_{max} : Proton RMS Radius [fm] 2.6 Proton RMS Radius [fm] 2.6 SRG $\lambda = 3.0 \text{ fm}^{-1}$ SRG $\lambda = 1.5 \text{ fm}^{-1}$ 2.4 2.4 2.2 2.2 2.0 2.0 ι.8 10 1.8 15 20 25 30 35 10 15 20 25 30 hΩ [MeV] hΩ [MeV] Proton RMS Radius [fm] 2.6 Proton RMS Radius [fm] 2.6 SRG λ = SRG $\lambda = 2.0 \text{ fm}^{-1}$ 2.4 2.4 2.2 2.2 2.0 2.0 1.8 .8 30 20 25 10 20 25 30 15 15 hΩ [MeV] $h\Omega$ [MeV]

• IR extrapolations give gray bands (error from fit - reliable?)

New application: Resonances (from this week!)

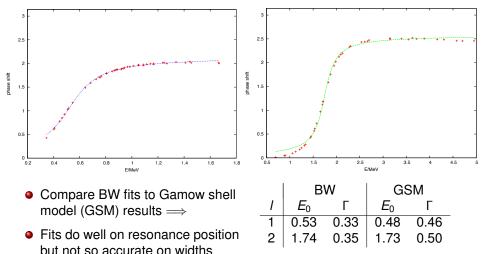
- Extract resonance parameters from a nucleus in a box
- Familiar from other contexts, e.g., J. Carlson et al., Nucl. Phys. A424 (1984) 47 or Y. Alhassid and S.E. Koonin, Ann. Phys. 155 (1984) 108
- The asymptotic wave function j_l(kr) tan(δ_l)n_l(kr) satisfies the Dirichlet boundary condition at r = L through δ = kL – πI/2 for angular momentum l at an energy eigenvalue
- If one knows the threshold energy *S*, the excitation energy *E* is related to k via

$$(E-S)=\hbar^2k^2/2m$$

- Different model spaces $(N, \hbar \Omega) \Longrightarrow$ different L's \Longrightarrow E's $\Longrightarrow \delta_l$'s
- Plotting phase shift vs k yields the resonance at 90 degrees and the slope at 90 degrees is related to the inverse width

New application: Resonances (from this week!)

Test case: Extract phase shift for l = 1 (left) and l = 2 (right) resonances in Woods-Saxon potentials, with fits to Breit-Wigner (BW) shape.



Unsettled questions for IR extrapolation

- What is the optimal definition of *L*? (Use the scatter?)
- How to weight the contributions according to *L* (or N_{max} , $\hbar\Omega$)?
- How to make credible error estimates?
- Interpretation of k_{∞} ? Can we extract A_{∞} ?
- Does the interaction matter?
 - The IR corrections are independent of the potential
 - Softer interactions mean more complete UV convergence for given ħΩ, N, so larger region with IR corrections only
 - Anything else?
- How well does extrapolation work for other operators?
- Can we systematically improve the extrapolation à la Pine/Lee?
- How can we incorporate *explicitly* the harmonic oscillator part?

Harmonic Oscillator Basis Effective Theory (HOBET) [W. Haxton and collaborators]

- General problem: including effects of excluded space Q in model space P (with P + Q = 1)
- For HO basis, $Q = \sum_{\alpha_{\rm HO} > N_{\rm max}} |\alpha_{\rm HO}\rangle \langle \alpha_{\rm HO}|$, excludes both IR and UV
- Use Bloch-Horowitz framework to factorize IR and UV:

$$H^{\text{eff}} = H + HQ \frac{1}{E - QH}QH = \underbrace{\frac{E}{E - TQ}}_{IR} [T - T\frac{Q}{E}T + V + \underbrace{V\frac{1}{E - QH}QV}_{UV}] \underbrace{\frac{E}{E - TQ}}_{IR}$$

- Resummed Q-space kinetic energy puts correct tail on wf's
- Can this justify combined UV and IR extrapolations?
- Bloch-Horowitz energy dependence of $H_{\rm eff} \Longrightarrow$ out of mainstream
 - Energy dependence claimed to be a feature, not bug; true?
 - Is technology adaptable for improved extrapolations?

Outline

Motivation: Extrapolations in finite bases

Nature and implications of infrared cutoffs

High-momentum behavior of wave functions

Combined IR and UV extrapolations

Summary and open questions

What parts of wf's can be extracted from experiment?

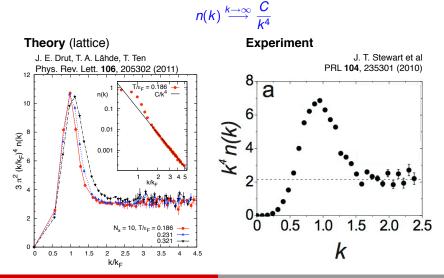
- Measurable: asymptotic (IR) properties like phase shifts, ANC's
- Not observables, but well-defined theoretically given a Hamiltonian: interior quantities like spectroscopic factors
 - These depend on the scale and the scheme
 - Extraction from experiment requires robust factorization of structure and reaction; only the combination is scale/scheme independent (e.g., cross sections) [What if weakly dependent?]

What parts of wf's can be extracted from experiment?

- Measurable: asymptotic (IR) properties like phase shifts, ANC's
- Not observables, but well-defined theoretically given a Hamiltonian: interior quantities like spectroscopic factors
 - These depend on the scale and the scheme
 - Extraction from experiment requires robust factorization of structure and reaction; only the combination is scale/scheme independent (e.g., cross sections) [What if weakly dependent?]
- What about the high-momentum tails of momentum distributions?
 - Consider cold atoms in the unitary regime
 - Compare to nuclear case

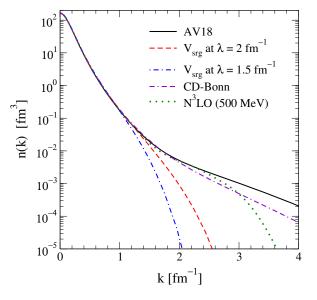
Unitary cold atoms: Is n(k) observable?

• Tail of momentum distribution + contact [Tan; Braaten/Platter]



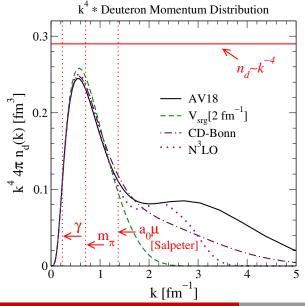
Dick Furnstahl Asymptotic WFs

Is the tail of n(k) for nuclei measurable? (cf. SRC's)



- E.g., extract from electron scattering?
- Scale- and schemedependent high-momentum tail!
- n(k) from V_{SRG} has no high-momentum components!
- No region where 1/a_s « k « 1/R (cf. large k limit for unitary gas)

Is the tail of n(k) for nuclei measurable? (cf. SRC's)



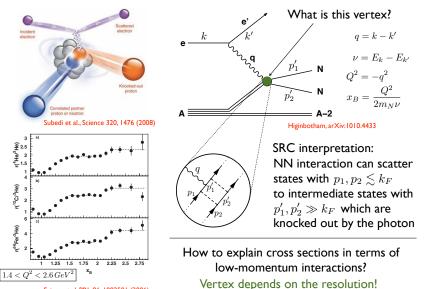
- E.g., extract from electron scattering?
- Scale- and schemedependent high-momentum tail!
- n(k) from V_{SRG} has no high-momentum components!
- No region where 1/a_s ≪ k ≪ 1/R (cf. large k limit for unitary gas)

What parts of wf's can be extracted from experiment?

- Measurable: asymptotic (IR) properties like phase shifts, ANC's
- Not observables, but well-defined theoretically given a Hamiltonian: interior quantities like spectroscopic factors
 - These depend on the scale and the scheme
 - Extraction from experiment requires robust factorization of structure and reaction; only the combination is scale/scheme independent (e.g., cross sections) [What if weakly dependent?]
- What about the high-momentum tails of momentum distributions?
 - Consider cold atoms in the unitary regime
 - Compare to nuclear case
- Short-range correlations (SRCs) depend on the Hamiltonian *and* the resolution scale (cf. parton distribution functions)

Looking for missing strength at large Q^2

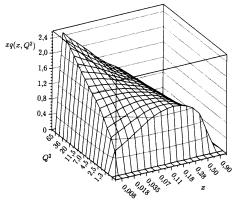
Dick Furnstahl



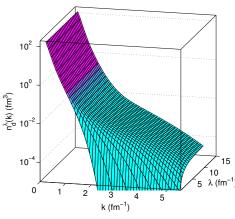
Egiyan et al. PRL 96, 1082501 (2006)

Asymptotic WFs

Parton vs. nuclear momentum distributions



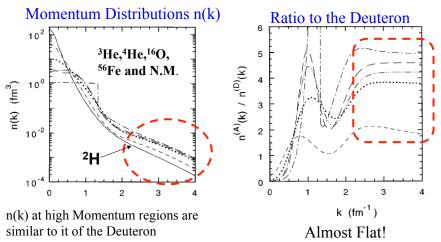
- The quark distribution $q(x, Q^2)$ is scheme *and* scale dependent
- x q(x, Q²) measures the share of momentum carried by the quarks in a particular x-interval



- Deuteron momentum distribution is scheme *and* scale dependent
- Initial AV18 potential evolved with SRG from $\lambda = \infty$ to $\lambda = 1.5 \text{ fm}^{-1}$

Deuteron-like scaling at high momenta

C. Ciofi and S. Simula, Phys. Rev C53, 1689(1996)



High resolution: Dominance of V_{NN} and SRCs (Frankfurt et al.) Lower resolution \implies lower separation scale \implies fall-off depends on V_{λ}

A dependence of the EMC effect is long-distance physics!

• EFT treatment by Chen and Detmold [Phys. Lett. B 625, 165 (2005)]

$$F_2^A(x) = \sum_i Q_i^2 x q_i^A(x) \implies R_A(x) = F_2^A(x) / A F_2^N(x)$$

"The x dependence of $R_A(x)$ is governed by short-distance physics, while the overall magnitude (the A dependence) of the EMC effect is governed by long distance matrix elements calculable using traditional nuclear physics."

 Match matrix elements: leading-order nucleon operators to isoscalar twist-two quark operators

$$= \langle x^2 \rangle_q v^{\mu_0} \cdots v^{\mu_n} N^{\dagger} N[1 + \alpha_n N^{\dagger} N] + \cdots$$

$$= F_2^A(x) \qquad 1 + \alpha_n (w) \mathcal{L}(A) \qquad \text{where} \quad \mathcal{L}(A) = \langle A | (A^{\dagger} A) \rangle^2 | A \rangle / AA$$

$$R_A(x) = \frac{F_2^{(x)}}{AF_2^N(x)} = 1 + g_{F_2}(x)\mathcal{G}(A) \quad \text{where} \quad \mathcal{G}(A) = \langle A | (N^{\dagger}N)^2 | A \rangle / A \Lambda_0$$

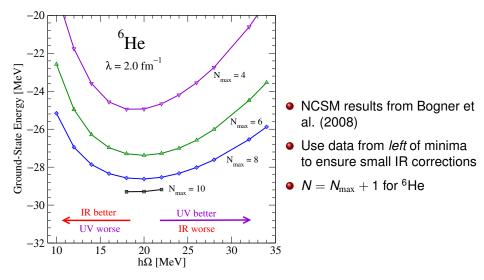
 \implies the slope $\frac{\partial R_A}{\partial x}$ scales with $\mathcal{G}(A)$

[Why is this not cited more?]

What parts of wf's can be extracted from experiment?

- Measurable: asymptotic (IR) properties like phase shifts, ANC's
- Not observables, but well-defined theoretically given a Hamiltonian: interior quantities like spectroscopic factors
 - These depend on the scale and the scheme
 - Extraction from experiment requires robust factorization of structure and reaction; only the combination is scale/scheme independent (e.g., cross sections) [What if weakly dependent?]
- What about the high-momentum tails of momentum distributions?
 - Consider cold atoms in the unitary regime
 - Compare to nuclear case
- Short-range correlations (SRCs) depend on the Hamiltonian *and* the resolution scale (cf. parton distribution functions)
- So might expect Hamiltonian- and resolution-dependent but A-independent high-momentum tails of wave functions [T. Neff]
 - Universal extrapolation for different A, but λ_{SRG} dependent

Ultraviolet ($\Lambda_{UV} \rightarrow \infty$) extrapolations of NCSM results for ⁶He



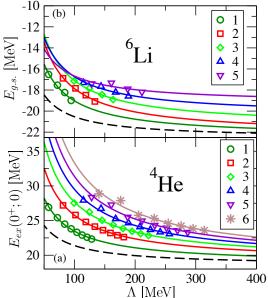
What form do we expect for UV extrapolations?

- Consider NCSM as an EFT

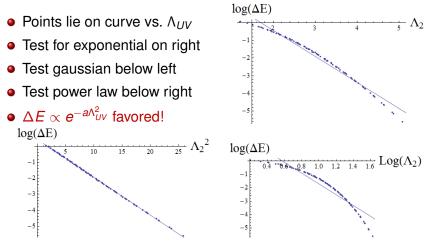
 [I. Stetcu et al. PLB 653, 358
 (2007); I. Stetcu and J. Rotureau, arXiv:1206.0234]
- Choice of extrapolation guided by LO running of bound-state energy in the continuum:

 $E = E_0(\hbar\Omega) + A(\hbar\Omega)/\Lambda_{UV}$

- Extrapolate $E_0(\hbar\Omega)$ to $E_0(0)$
- Study of SRG decoupling by Jurgenson et al. (2008) found power-law dependence on imposed UV cutoff of potential

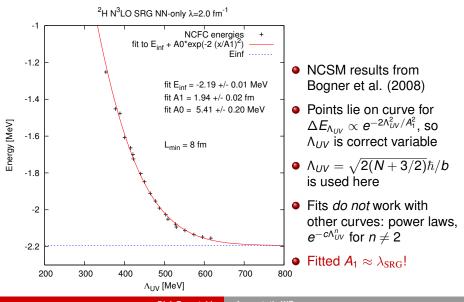


What do we expect for UV from models? [S. More]



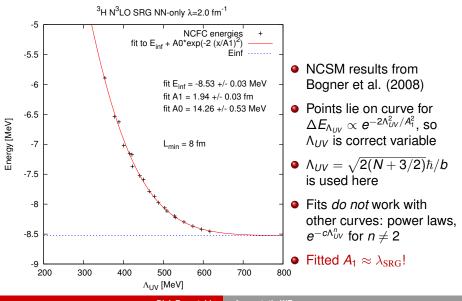
• Gaussian in $\Lambda_{UV}^2 \propto N_{max}$ also found empirically by Haxton and Song (HOBET study) and by Coon et al., but not explained

Ultraviolet (Λ_{UV}) extrapolations of NCSM results [Empirical]



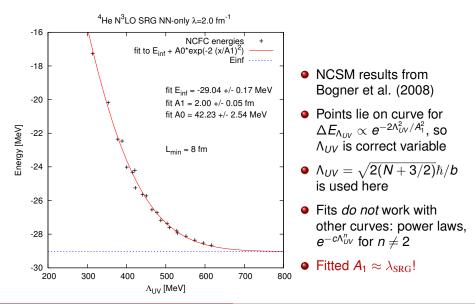
Dick Furnstahl Asymptotic WFs

Ultraviolet (A_{UV}) extrapolations of NCSM results [Empirical!]

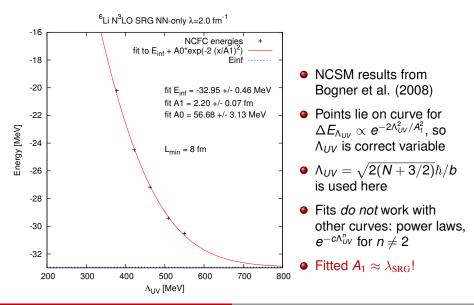


Dick Furnstahl Asymptotic WFs

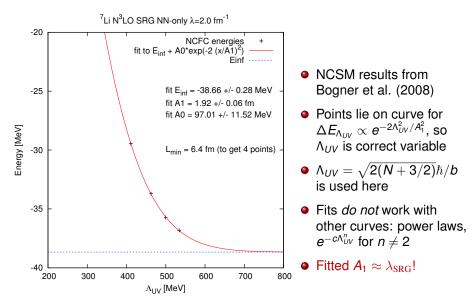
Ultraviolet (Λ_{UV}) extrapolations of NCSM results [Empirical!]



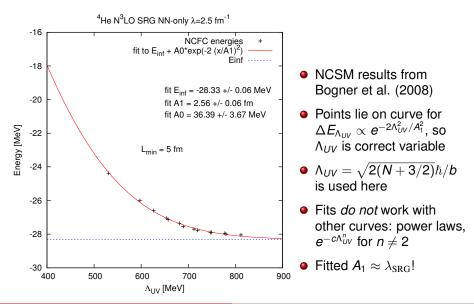
Ultraviolet (Λ_{UV}) extrapolations of NCSM results [Empirical]



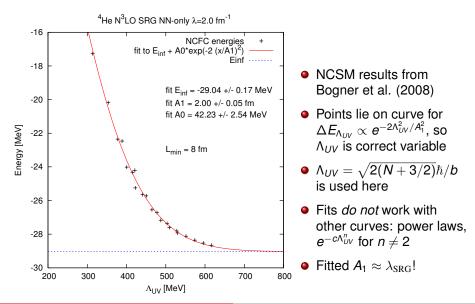
Ultraviolet (Λ_{UV}) extrapolations of NCSM results [Empirical]



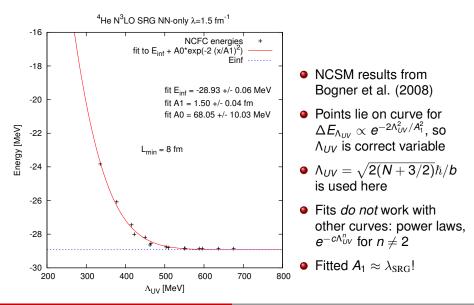
Ultraviolet (Λ_{UV}) extrapolations of NCSM results [Empirical!]



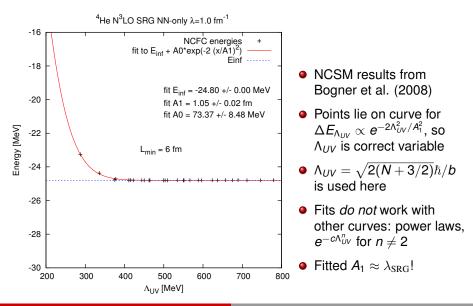
Ultraviolet (Λ_{UV}) extrapolations of NCSM results [Empirical!]



Ultraviolet (Λ_{UV}) extrapolations of NCSM results [Empirical]



Ultraviolet (Λ_{UV}) extrapolations of NCSM results [Empirical!]



Outline

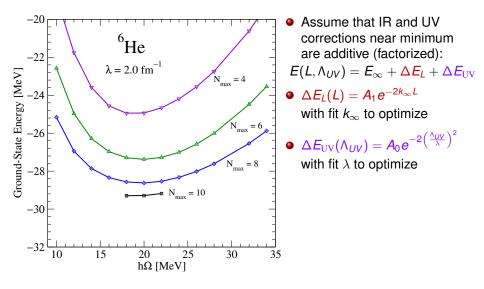
Motivation: Extrapolations in finite bases

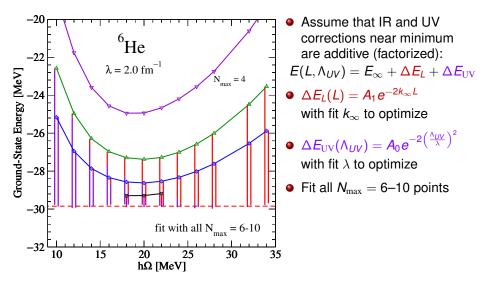
Nature and implications of infrared cutoffs

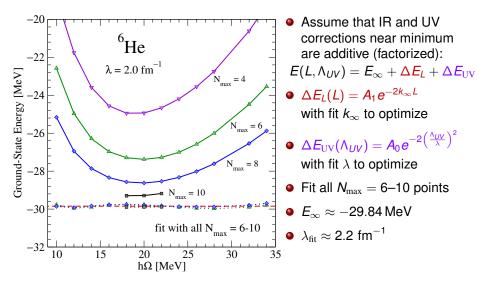
High-momentum behavior of wave functions

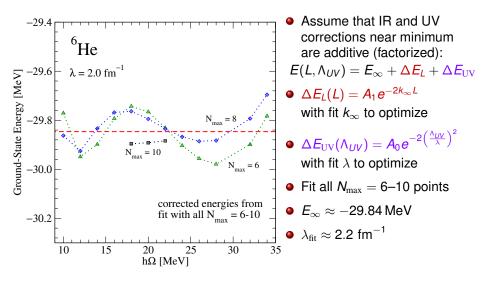
Combined IR and UV extrapolations

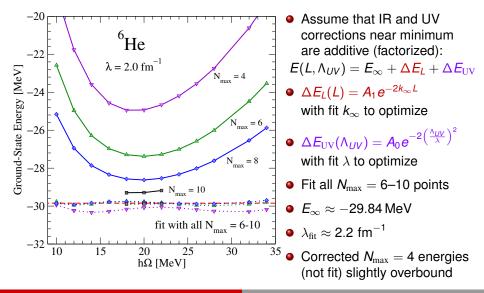
Summary and open questions

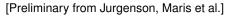


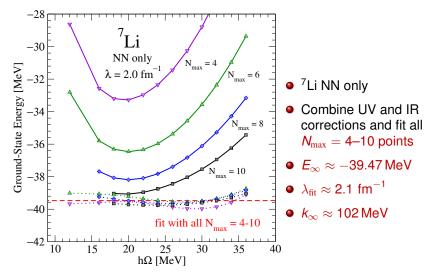


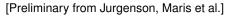


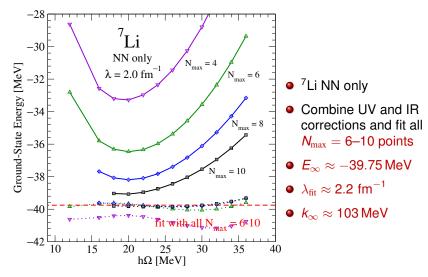


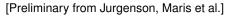


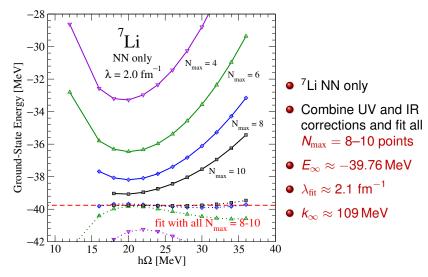


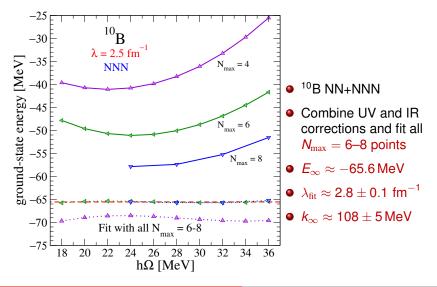


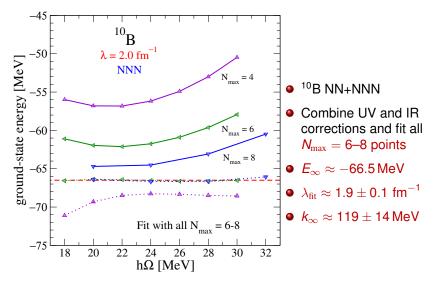


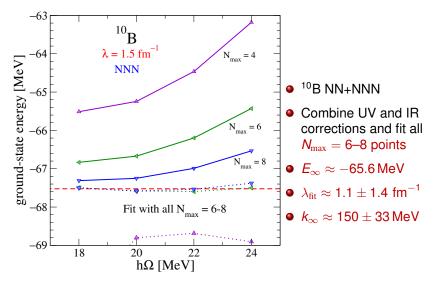


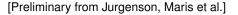


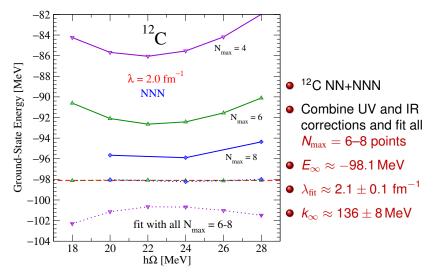




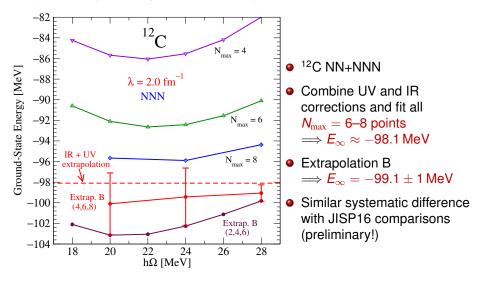








Comparison to standard extrapolation [P. Maris "B"]



Outline

Motivation: Extrapolations in finite bases

Nature and implications of infrared cutoffs

High-momentum behavior of wave functions

Combined IR and UV extrapolations

Summary and open questions

Summary: Exploiting finite oscillator spaces

- A truncated oscillator basis essentially puts the nucleus in a box in both space and momentum ⇒ Turn a bug into a feature!
- Only IR corrections for sufficiently large $\Lambda_{UV} \sim \sqrt{2(N+3/2)\hbar\Omega}$
 - To the right of the *E* vs. $\hbar\Omega$ minimum
 - "Sufficiently large" depends on the interaction (soft is better)
 - Treat as nucleons in box \Longrightarrow energy and radius corrections, phase shifts, \ldots
 - Fit parameters independent of interaction (k_{∞}, A_{∞})
- Only UV corrections for sufficiently large $L \sim \sqrt{2(N+3/2)/\hbar\Omega}$
 - To the left of the *E* vs. $\hbar\Omega$ minimum
 - Fit parameters pick up scale(s) from interactions
 - Form of fit function not yet derived ...
- Combined UV and IR corrections seem to work (so far!)
 - Consistent extrapolated energies compared to UV or IR alone
- Many more things to try, test, and refine!

Open questions

- What range of ħΩ should you use?
- What are the optimal definitions of *L* and Λ_{UV} ? (Use the scatter?)
- How to weight the contributions according to L (or N_{max} , $\hbar\Omega$)?
- How to make credible error estimates?
- How to explain the form of UV scaling?
- Is a combined IR/UV extrapolation justified (e.g., by HOBET)?
- Interpretation of k_{∞} ? Can we extract A_{∞} ?
- How well does extrapolation work for other operators?
- Does it work with other basis expansions (e.g., hyperspherical harmonics)?
- Can we systematically improve the IR and UV extrapolations?
- How can we incorporate explicitly the harmonic oscillator part?
- Ο...