Compton Scattering at HIGS: from Giant Resonances to Spin Polarizabilities

Compton@HIGS Collaboration

- George Washington University
 - Jerry Feldman
 - Mark Sikora
- Duke University/TUNL
 - Luke Myers
 - Henry Weller
 - Mohammad Ahmed
 - Jonathan Mueller
 - Seth Henshaw
- University of Kentucky
 - Mike Kovash

Outline

What (and where) is HIGS?

What have we done so far at HIGS?

- polarized Compton scattering study of IVGQR
- elastic Compton scattering on ⁶Li

□ What are we planning to do at HIGS?

- elastic Compton scattering on deuterium
 - ✓ neutron polarizability
- polarized Compton scattering on proton
 - ✓ proton electric polarizability
- double-polarized Compton scattering on proton
 - ✓ proton spin polarizability
- double-polarized Compton scattering on ³He
 - neutron spin polarizability

Background

<mark>lníornation</mark>

on HIGS

United States

North Carolina

Duke University

TUNL

Triangle Universities Nuclear Laboratory

Duke Free-Electron Laser Lab

Storage Ring and Booster

Circularly and linearly polarized γ rays, nearly monoenergetic ($E_{\gamma} = 2-90$ MeV) Utilizes Compton backscattering to generate γ rays

HIGS Photon Beam

HIGS Photon Beam

- monoenergetic photons up to ~90 MeV
 - energy will reach ~160 MeV by 2015
- 100% linear or circular polarization
- high photon beam intensity
 - ➤ ~10⁷ Hz at 20-60 MeV
 - ➤ ~10⁸ Hz below 15 MeV
- Iow beam-related background
 - no bremsstrahlung typical of tagged photons

Polarized Compton Scattering

for JVGOR Systematics

Giant Resonances

- collective nuclear excitations
- GDR and ISGQR well known
- > IVGQR poorly known
- photon as isovector probe
- use pol. photons for IVGQR
- map systematics vs. A
- nuclear symmetry energy
 neutron star eqn. of state

- ratio of H/V scattered photons is sensitive to E1/E2 interference
- sign difference in interference term at forward/backward angles

Photon Asymmetry in IVGQR

Phenomenological Formalism

$$R(E,\theta) = R^{GR}(E,\theta) + R^{QD}(E,\theta) + R_1^{SG}(E,\theta) + R_2^{SG}(E,\theta)$$

$$\begin{cases} R^{GR}(E,\theta) = f_{E1}(E)g_{E1}(\theta) + f_{E2}(E)g_{E2}(\theta) + \frac{NZ}{A}r_0[1+\kappa_{GR}]g_{E1}(\theta) \\ R^{QD}(E,\theta) = \left[f_{QD}(E) + \frac{NZ}{A}r_0\kappa_{QD}\right]F_2(q)g_{E1}(\theta) \end{cases}$$

$$\begin{cases} R_1^{SG}(E,\theta) = -F_1(q) \left\{ \left[Zr_0 - \left(\frac{E}{\hbar c}\right)^2 A\overline{\alpha} \right] g_{E1}(\theta) - \left[\left(\frac{E}{\hbar c}\right)^2 A\overline{\beta} \right] g_{M1}(\theta) + O(E^4) \right\} \\ R_2^{SG}(E,\theta) = -F_2(q) \frac{NZ}{A} r_0 \left(\kappa_{GR} + \kappa_{QD} \right) \end{cases}$$

HIGS Nal Detector Array

Results for ²⁰⁹Bi

PRL 107, 222501 (2011)

New Method for Precise Determination of the Isovector Giant Quadrupole Resonances in Nuclei

S. S. Henshaw,¹ M. W. Ahmed,^{1,2} G. Feldman,³ A. M. Nathan,⁴ and H. R. Weller¹

 ¹Department of Physics and Triangle Universities Nuclear Laboratory, Duke University, TUNL Box 90308, Durham, North Carolina 27708-0308, USA
 ²Department of Physics, North Carolina Central University, Durham, North Carolina 27707, USA
 ³Department of Physics, George Washington University, Washington, D.C. 20052, USA
 ⁴Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA (Received 29 July 2011; published 23 November 2011)

Synopsis: Ringing Nuclear Resonances

Courtesy Seth Henshaw, Duke University

Results for ⁸⁹Y

extend measurements to ⁸⁹Y

- measure ¹²⁴Sn early next year
- Iease ¹⁴²Nd target from ORNL for \$15k
- \succ other tgts include A = 51, 181, 238

IVGQR Systematics

Compton Scattering

on ⁶Lj

Summary of Neutron Results

- Neutron scattering
 - Schmiedmayer (91)

 $\alpha_n = 12.6 \pm 1.5(\text{stat}) \pm 2.0(\text{syst})$

- Quasi-free Compton scattering
 - Kossert (03)

$$\alpha_n = 12.5 \pm 1.8(\text{stat}) \stackrel{+1.1}{_{-0.6}}(\text{syst}) \pm 1.1(\text{model})$$

 $\beta_n = 2.7 \mp 1.8(\text{stat}) \stackrel{+0.6}{_{-1.1}}(\text{syst}) \mp 1.1(\text{model})$

- Elastic Compton scattering
 - data from Lucas (94), Hornidge (00), Lundin (03)

 $\alpha_n = 11.1 \pm 1.8 \text{ (stat)} \pm 0.4 \text{ (Baldin)} \pm 0.8 \text{ (theory)}$

 $\beta_n = 4.1 \mp 1.8 \text{ (stat)} \pm 0.4 \text{ (Baldin)} \pm (0.8 \text{ (theory)})$

$$\alpha_n = 11.6 \pm 1.5 \text{ (stat)} \pm 0.6 \text{ (Baldin)}$$

$$\beta_n = 3.6 \mp 1.5 \text{ (stat)} \pm 0.6 \text{ (Baldin)}$$

Hildebrandt 05

Griesshammer 12

Nucleus	Energy (MeV)	Angles	Reference
D	49, 69	50°-140°	Lucas 1994
D	85-105	35°-150°	Hornidge 2000
D	55, 66	45°, 135°	Lundin 2003
D	60-115	60°, 90°, 120°, 150°	Myers, Shonyozov 2012
⁴ He	23-70	45°, 135°	Wells 1990
⁴ He	61	45°-150°	Proff 1999
¹² C	19-52	45°, 90°, 135°	Wright 1985
¹² C	58, 75	45°-135°	Hager 1995
¹² C	85-105	35°-150°	Warkentin 2001
¹⁶ O	58, 75	45°-150°	Hager 1995
¹⁶ O	61	50°, 135°	Proff 1999
¹⁶ O	27-108	45°, 90°, 135°	Feldman 1996
⁴⁰ Ca	19-52	45°, 90°, 135°	Wright 1985
⁴⁰ Ca	58, 74	45°-150°	Proff 1999

Experiment on ⁶Li at HIGS

- experiment motivation
 - > exploit higher nuclear cross section to measure α and β
 - \checkmark cross section scales as Z², so factor of 9x higher than ²H
 - solid ⁶Li target is simple
 - provided by Univ. of Saskatchewan
 - no previous Compton data on ⁶Li exists (except Pugh 1957)
- \Box energies: **E**_y = 60, 80 MeV
- □ angles: $\theta_y = 40^\circ 160^\circ$ ($\Delta \theta = 17^\circ$)
- □ target: solid **12.7 cm long** ⁶Li cylinder (plus empty)
- detectors: eight 10"×12" Nal's (HINDA array)
 - > good photon energy resolution ($\Delta E_{\gamma}/E_{\gamma} < 5\%$)

HINDA Array

HINDA Array

Experimental Setup

Sample Spectra

⁶Li(γ,γ)⁶Li

 $E_{\gamma} = 60 \text{ MeV}$

Cross Section for ${}^{16}O(\gamma,\gamma){}^{16}O$

Cross Section for {}^{6}Li(\gamma,\gamma){}^{6}Li

LIT Method for Compton Scattering

Bampa 2011

Compton Scattering on the

Proton and Deuteron

Cross-Section Ratios for Deuterium

proposal by Henry Weller

- unpolarized photon beam and unpolarized deuterium tgt
 - scintillating active target (detect recoils in coincidence)
- **G** scattering angles 45° , 80° , 115° , 150° ($E_{\gamma} = 65$, 100 MeV)
- requires 300 hrs (65 MeV) + 100 hrs (100 MeV)
- detectors: eight 10"×12" Nal's
 - arranged symmetrically left/right

Cross-Section Ratios for Deuterium

Compton Scattering with scintillating target

simulations: R. Miskimen

Sum-Rule-Independent Measurement of α_p

proposal by Mohammad Ahmed

- Inearly polarized photon beam (unpolarized target)
 - scintillating active target (detect recoils in coincidence)
- \Box measure scattered photons at 90° (E_y = 82 MeV)
 - > scattering cross section is independent of β_{p}
 - \succ extraction of α_{p} is independent of the Baldin sum rule
 - \succ extraction of α_{p} is model-independent
- \square requires 300 hrs for 5% uncertainty in α_p
- detectors: four 10"×12" Nal's (HINDA array)
 - located left, right, up, down

Sum-Rule-Independent Measurement of α_p

$$\frac{d\sigma_{\perp}}{d\Omega} = \frac{d\sigma_{\perp}}{d\Omega}(point) - \underbrace{\left[\frac{e^2}{Mc^2}\right] \left[\frac{\omega'}{\omega}\right]^2 \omega \omega'(2\bar{\alpha} + 2\bar{\beta}\cos\theta)}_{d\sigma_{\perp}^{dipole}}$$
$$\frac{d\sigma_{\parallel}}{d\Omega} = \frac{d\sigma_{\parallel}}{d\Omega}(point) - \underbrace{\left[\frac{e^2}{Mc^2}\right] \left[\frac{\omega'}{\omega}\right]^2 \omega \omega'(2\bar{\alpha}\cos^2\theta + 2\bar{\beta}\cos\theta)}_{d\sigma_{\parallel}^{dipole}}$$

• The 90° parallel cross section is independent of $\bar{\alpha}$ and $\bar{\beta}$:

$$\frac{d\sigma_{\parallel}}{d\Omega}(90^{\circ}) = \left(\frac{d\sigma_{\parallel}}{d\Omega}(90^{\circ})\right)_{point}$$

• The cross section asymmetry $A(\omega, \theta) = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}}$

$$A(\omega, 90^{\circ}) = \frac{C_1(\omega) - C_2(\omega)\bar{\alpha}}{C_3(\omega) + C_2(\omega)\bar{\alpha}}$$

Nucleon Spin Polarizability

$$\mathcal{L}_{\text{pol}} = 2\pi N^{\dagger} (\alpha_{E1}(\omega)) \vec{E}^{2} + \beta_{M1}(\omega) \vec{B}^{2} +$$
$$+ (\gamma_{E1E1}(\omega)) \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + (\gamma_{M1M1}(\omega)) \vec{\sigma} \cdot (\vec{B} \times \dot{\vec{B}})$$
$$- (\gamma_{M1E2}(\omega)) \sigma_{i} B_{j} E_{ij} + (\gamma_{E1M2}(\omega)) \sigma_{i} E_{j} B_{ij} + \dots] N$$

$$\gamma_0(\omega) = -\gamma_{E1E1}(\omega) - \gamma_{M1M1}(\omega) - \gamma_{E1M2}(\omega) - \gamma_{M1E2}(\omega)$$

$$\gamma_{\pi}(\omega) = -\gamma_{E1E1}(\omega) + \gamma_{M1M1}(\omega) - \gamma_{E1M2}(\omega) + \gamma_{M1E2}(\omega)$$

forward and backward spin polarizabilities

Nucleon Spin Polarizability

classical analogy: Faraday rotation of linearly polarized light in a spin-polarized medium

- **G** four spin polarizabilities: $\gamma_1, \dots, \gamma_4$
 - > forward spin polarizability: $\gamma_0 = \gamma_1 \gamma_2 2\gamma_4$
 - > backward spin polarizability: $\gamma_{\pi} = \gamma_1 + \gamma_2 + 2\gamma_4$
- expt. asymmetries with circularly polarized photons
 - > Σ_x : target spin \perp photon helicity (in reaction plane)
 - > Σ_z : target spin parallel to photon helicity

Double Polarization Observables

 $\Box_{h=\pm 1}$

Spin Polarizabilities of the Proton

proposal by Rory Miskimen

- \Box first measurement of proton γ_{E1E1}
- circularly polarized photon beam
 - scintillating active transverse polarized target (P ~ 80%)
- \Box scattering angles 65°, 90°, 115° (E_y = 100 MeV)
- **u** requires 800 hrs for $\Delta \gamma_{E1E1} = \pm 1$
- □ detectors: eight 10"×12" Nal's
 - > 4 in plane, 4 out of plane

Polarized Compton Scattering from ³He

proposal by Haiyan Gao

- first measurement of neutron spin polarizabilities
- circularly polarized photon beam
 - Iongitudinally polarized high-pressure ³He target (P ~ 50%)
- \Box scattering angles 40°, 60°, 140° (E_y = 125 MeV)
- **a** requires 1200 hrs for ~20% uncertainty in γ_1 , γ_2 , γ_4
- detectors: eight 10"×12" Nal's
 - > 4 in plane, 4 out of plane

Polarized Compton Scattering from ³He

Polarized Compton Scattering from ³He

HIGS Performance

9 HIGS Capabilities for User Programs in 2012

Pagameter	v	alue	Comments
E-beam Configuration E-beam current [mA]	Symmetric two-bunch beam 50 - 120		High flux configuration
Gamma-ray Energy [MeV]	1 – 100		with mirrors 1064 to 190 nm Available with existing hardware Extending wiggler current to 3.5 kA
(a) No-loss mode 1 – 3 MeV ^(a) 3 – 5 MeV 5 – 13 MeV 13 – 20 MeV	Total flux $[\gamma/s]$ 1 x 10 ⁸ - 1 x 10 ⁹ 6 x 10 ⁸ - 2 x 10 ⁹ 4 x 10 ⁸ - 4 x 10 ⁹ 1 x 10 ⁹ - 2 x 10 ⁹	Collimated flux ($\Delta E/E \sim 5\%$) [γ/s] 6 x 10 ⁶ - 6 x 10 ⁷ 3.6 x 10 ⁷ - 1.2 x 10 ⁸ 2.4 x 10 ⁷ - 2.4 x 10 ⁸ 6 x 10 ⁷ - 1.2 x 10 ⁸	Both Horizontal and Circular Polarizations
(b) Loss mode 21 – 54 MeV 55 – 65 MeV 66 – 100 MeV	Total flux [γ/s] > 2 x 10 ^{8 (b)} ~ 2 x 10 ^{8 (b)} 1x 10 ^{8 (b) (c)}	Collimated flux (ΔΕ/Ε~5%) [γ/s] > 1 x 10 ⁷ ~ 1 x 10 ⁷ ~ 5 x 10 ⁶	To extend mirror lifetime, circular polarization is preferred 1 st user experiment: March, 2011 190 nm, 1 st user experiment in 2013

^(a) With present configuration of OK-5 wigglers separated by 21 m, the circular polarization is about ½ the values here. ^(b) The flux in loss mode is mainly limited by injection rate.

(c) Thermal stability of FEL mirror may limit the maximum amount of current can be used in producing FEL lasing, thus flux.

Highest Total Flux (2010): >2x 10¹⁰ γ/s @ 9 – 11 MeV
 Projected energy upgrades above 100 MeV (circular pol)
 2014: 110 – 120 MeV, ~1x 10⁸ g/s (total)
 After 2015: 150+ MeV, ~1x 10⁸ g/s (total)
 HIGS Performance Update, August 2012

Summary

Early measurements of Compton scattering at HIGS

- unpolarized expt. on ⁶Li
- polarized expts. on A = 89-238 for IVGQR studies
- > new proposal: low-energy (3-15 MeV) for ⁶Li nuclear pol.

Next generation of expts. on proton and deuteron

- electric and magnetic polarizability
 - ✓ unpolarized expt. on deuterium
 - polarized expt. on proton
- spin polarizability
 - double-polarized expt. on proton
 - ✓ **double-polarized** expt. on ³He

□ HIGS can contribute high-quality polarized data!

stay tuned for further developments in the future...