Improved lattice operators for non-relativistic fermions

Joaquín E. Drut University of North Carolina at Chapel Hill

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL INT workshop "Structure of light nuclei" Seattle, WA, October 2012

Improved lattice operators for non-relativistic fermions

Outline

Improved lattice operators for non-relativistic fermions

Why

How

Illustrative results

Outline

Improved lattice operators for non-relativistic fermions

- Why
- How
- Illustrative results
- Towards asymmetric systems on the lattice via imaginary polarization (if time permits)
 - Why
 "A glance at the imaginary world of ultracold atoms."
 J. Braun, J.-W. Chen, J. Deng, J. E. Drut, B. Friman, C.-T. Ma, Y.-D. Tsai
 How
 - Mean-field results

Outline

Improved lattice operators for non-relativistic fermions

- Why
- How
- Illustrative results

Improved lattice operators

Ultracold Gases

Condensed Matter Physics

Materials Science

High-Energy Physics, QCD, Low-Energy NP

Astrophysics

Ultracold Gases Condensed Matter Physics Materials Science JETLab (Duke) **Strongly correlated** quantum many-body strophysics **High-Energy Pl** systems ly neutron stars) QCD, Low-Ene

In all of these cases...

The lattice gives us a finite number of degrees of freedom.

Signal-to-noise issues aside, we can treat **any** problem *fully non-perturbatively*, taking complete account of fluctuations, quantum and thermal.

We pay the price in terms of systematic effects:

 $L = b N_x$

- Lattice spacing
- Lattice volume

(These are of course related!)

Only systematic uncertainties left!

In particular...

As many scales as a free gas!

$$k_F = \hbar (3\pi^2 n)^{1/3}$$

$$\varepsilon_F = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$$

Qualitatively

Every dimensionful quantity should come as a power of ε_F times a **universal** constant/function.

As many scales as a free gas!

$$k_F = \hbar (3\pi^2 n)^{1/3}$$

$$\varepsilon_F = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$$

Qualitatively

Every dimensionful quantity should come as a power of ε_F times a **universal** constant/function.

Quantitatively

The BCS-BEC Crossover

In the last few years...

Advances in theory and experiment

Analytic & numerical

Energy & chemical potential (zero and finite T)

- Momentum distribution & contact
- Critical temperature
- Quasiparticle spectral properties
- Structure factor (static & dynamic)
- Virial coefficients
- Various susceptibilities

Energy (ground state)

Ground state energy per particle

Energy (finite temperature)

Finite T equation of state (theory & experiment)

$$N_x = 8, 10, 12, 14, 16$$

 $k_F r_{\text{eff}} \simeq 0.3 - 0.5$

Experiment: Zwierlein et al. (MIT)

Drut, Lähde, Wlazlowski, Magierski, PRA **85**, 051601(R) (2012)

Energy (finite temperature)

Finite T equation of state (theory & experiment)

$$N_x = 8, 10, 12, 14, 16$$

 $k_F r_{\text{eff}} \simeq 0.3 - 0.5$

Experiment: Zwierlein et al. (MIT)

Drut, Lähde, Wlazlowski, Magierski, PRA **85**, 051601(R) (2012)

The Tan relations and the "contact"

Momentum distribution tail

Energy relation

$$\begin{array}{c} n_k \to C/k^4 \\ k \to \infty \end{array}$$

S. Tan, Annals of Physics **323**, 2952 (2008).

E. Braaten and L. Platter, Phys. Rev. Lett. **100**, 205301 (2008).

$$T + U = \sum_{\sigma} \int \frac{\mathrm{d}^{3} k}{(2\pi)^{3}} \frac{\hbar^{2} k^{2}}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{C}{k^{4}} \right) + \frac{\hbar^{2}}{4\pi m a} C$$

Short distance density-density correlator

$$\left\langle n_1(\boldsymbol{R}+\frac{1}{2}\boldsymbol{r}) \; n_2(\boldsymbol{R}-\frac{1}{2}\boldsymbol{r}) \right\rangle \longrightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) \mathcal{C}(\boldsymbol{R})$$

• Adiabatic relation • Pressure relation $\mathcal{C} = \frac{4\pi ma^2}{\hbar^2} \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}a}$ $P = \frac{2\varepsilon}{3} + \frac{\mathcal{C}}{12\pi ma}$

Momentum distribution & Contact

Contact (ground state, in a trap)

S. Hoinka, M. Lingham, K. Fenech, H. Hu, C. J. Vale, **JED**, S. Gandolfi [arXiv:1209.3830]

How... (...to deal with finite-range effects)

Finite volume Finite lattice spacing

Related to each other Induce finite-range effects

In general we have...

$$p \cot \delta(p) = -\frac{1}{a} + \frac{1}{2}r_{\text{eff}}p^2 + O(p^4),$$

But we want...

$$p \cot \delta(p) \equiv 0$$
 ... at unitarity

We need a "richer" HS transformation

Endres et al. multiple papers.

Typically...

$$\begin{split} \mathcal{T} &= \int \mathcal{D}\sigma \ \mathcal{T}_{\uparrow}[\sigma] \mathcal{T}_{\downarrow}[\sigma] \\ \mathcal{T}_{s}[\sigma] &= e^{-\frac{\tau \hat{T}_{s}}{2}} \prod_{i} \left(1 + \sqrt{A} \ \hat{n}_{s,i} \sin \sigma_{i} \right) e^{-\frac{\tau \hat{T}_{s}}{2}} \end{split}$$

Now...

$$A(\mathbf{p}) = \sum_{n=0}^{N_{\mathcal{O}}-1} C_n \mathcal{O}_n(\mathbf{p})$$

How do we tune these coefficients?

 $\mathcal{O}_n(\mathbf{p}) = \left(1 - e^{-\mathbf{p}^2}\right)^n$

 $\mathcal{O}_n(\mathbf{p}) = \left[2\sin(p/2)\right]^{2n}$

$$\eta = \frac{pL}{2\pi}$$
$$E = p^2/m$$

Decide what scattering parameters you need

 $\eta = \frac{pL}{2\pi}$ $E = p^2/m$

Decide what scattering parameters you need

Tune your Hamiltonian accordingly

 $\eta = \frac{pL}{2\pi}$ $E = p^2/m$

Decide what scattering parameters you need

Tune your Hamiltonian accordingly

 $\eta = \frac{pL}{2\pi}$ $E = p^2/m$

Tuning for unitarity

$N_{\mathcal{O}}$	C_0	C_1	C_2	C_3	C_4
1	0.68419				
2	0.53153	0.07896	_	—	—
3	0.49278	0.04366	0.01807	1	
4	0.47217	0.03711	0.00784	0.00467	
5	0.45853	0.03331	0.00718	0.00132	0.00129

Highly improved actions

Adding more parameters to the transfer matrix and tuning via Lüscher's formula...

How about operators?

Dealing with systematic effects: energy

Highly improved actions & operators

$$-\frac{\partial \log \mathcal{Z}}{\partial \beta} = E - \mu N.$$

$$-\frac{\partial \langle E | \mathcal{T}_2 | E \rangle}{\partial \tau} = \langle E | e^{-\frac{\tau p_r^2}{2m}} [K_2 + U_2] e^{-\frac{\tau q_r^2}{2m}} | E \rangle = E_2 \exp\left(-\tau E_2\right)$$

$$K_2 \equiv \left[\frac{p_r^2}{2m} + \frac{q_r^2}{2m}\right] \left[\delta_{\mathbf{p}_r \mathbf{q}_r} + \frac{A(\mathbf{p}_r)}{2V}\right]$$

$$U_2 \equiv -\frac{1}{2V} \frac{\partial A(\mathbf{p}_r)}{\partial \tau} = \frac{1}{2V} \sum_{n=0}^{N_{\text{max}} - 1} D_n \mathcal{O}_n(\mathbf{p}_r)$$

We need these for an improved Hamiltonian operator!

Dealing with systematic effects: energy

Highly improved actions & operators

$$-\frac{\partial \log \mathcal{Z}}{\partial \beta} = E - \mu N.$$

$$-\frac{\partial \langle E | \mathcal{T}_2 | E \rangle}{\partial \tau} = \langle E | e^{-\frac{\tau p_r^2}{2m}} \left[K_2 + U_2 \right] e^{-\frac{\tau q_r^2}{2m}} | E \rangle = E_2 \exp\left(-\tau E_2\right)$$

Tuning for unitarity

$N_{\mathcal{O}}$	D_0	D_1	D_2	D_3	D_4
1	-14.76869	_			
2	-11.54894	-1.74519	_	_	
3	-10.74506	-0.96946	-0.40164	10000	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -
4	-10.31974	-0.82605	-0.17494	-0.10404	_
5	-10.03874	-0.74266	-0.16064	0.02948	-0.02878

Dealing with systematic effects: energy

Highly improved actions & operators

Adding more parameters to the transfer matrix and tuning via Lüscher's formula...

A more direct way to the contact...

At T=0...

$$\frac{\partial E}{\partial a^{-1}} = -\frac{\hbar^2}{4\pi m}C$$

At finite T...

$$\left(\frac{\partial\Omega}{\partial a^{-1}}\right)_{T,\mu} = -\frac{1}{\beta} \left(\frac{\partial\log\mathcal{Z}}{\partial a^{-1}}\right)_{T,\mu} = -\frac{\hbar^2}{4\pi m} C_{\mu}$$

In both cases we need

$$\begin{split} \frac{\partial T_2^{\text{exact}}}{\partial a^{-1}} &= -\tau \frac{\partial E_2}{\partial a^{-1}} \exp\left(-\tau E_2\right) \\ &\qquad \frac{\partial E_2}{\partial a^{-1}} = -\frac{4\pi^3}{L} \left(\frac{d\mathcal{S}}{d\eta^2}\right)^{-1} \end{split}$$

Roots, etc...

TABLE IV. First 30 roots of $S(\eta)$, and $dS/d\eta^2$ evaluated at those roots.

k	η_k^2	$dS/d\eta_k^2$
1	-0.0959007	123.82387
2	0.4728943	39.75514
3	1.4415913	82.36519
4	2.6270076	106.24712
5	3.5366199	84.23133
6	4.2517060	161.88763
7	5.5377008	212.49220
8	7.1962632	62.95336
9	8.2879537	231.79580
10	9.5345314	247.82611
11	10.5505341	233.82976
12	11.7014957	185.61411
13	12.3102392	183.65019
14	13.3831152	316.68684
15	15.3537375	82.86757
16	16.1218253	506.59914
17	17.5325415	371.40245
18	18.6053932	308.00372
19	19.5186394	255.97969
20	20.4033187	329.98905
21	21.6944179	394.81924
22	23.0194727	94.98929
23	24.3306210	342.25749
24	25.3016129	526.27127
25	26.6803600	514.90705
26	27.8780019	150.20773
27	29.6156511	548.38017
28	31.3536974	114.02114

A more direct way to the contact...

At T=0....

$$\frac{\partial E}{\partial a^{-1}} = -\frac{\hbar^2}{4\pi m}C$$

At finite T...

$$\left(\frac{\partial\Omega}{\partial a^{-1}}\right)_{T,\mu} = -\frac{1}{\beta} \left(\frac{\partial\log\mathcal{Z}}{\partial a^{-1}}\right)_{T,\mu} = -\frac{\hbar^2}{4\pi m} C_{\mu}$$

Tuning for unitarity

$N_{\mathcal{O}}$	F_0	F_1	F_2	F_3	F_4
1	0.36773				
2	0.14532	0.07568			_
3	0.11370	0.02220	0.01957	(5-3)	1000
4	0.09659	0.01695	0.00415	0.00538	
5	0.08205	0.01278	0.00406	-0.00023	0.00180

Dealing with systematic effects: contact

Highly improved actions & operators

Adding more parameters to the transfer matrix and tuning via Lüscher's formula...

Illustrative results

- Lattice transfer-matrix approach for ground-state calculations
- Only use one lattice size: $N_x = 10$
- Starting wavefunction: single free-particle Slater determinant.
- Sampling via Hybrid Monte Carlo (about 500 field configurations)

Illustrative results: Energy (ground state)

E/E_{FG}

Illustrative results: Contact (ground state)

Extrapolations

$$\mathcal{Z}_0(\beta) = \sum_k A_k e^{-\beta E_k} \qquad A_k \equiv |\langle \psi_0 | E_k \rangle|^2$$

$$E(\beta) \equiv -\frac{\partial \log \mathcal{Z}_0(\beta)}{\partial \beta} \to E_0 + b_E e^{-\beta \delta}$$

$$b_E = \frac{A_1}{A_0} (E_1 - E_0) \qquad \qquad \delta = E_1 - E_0$$

$$C(\beta) \equiv \frac{4\pi m}{\hbar^2 \beta} \frac{\partial \log \mathcal{Z}_0(\beta)}{\partial a^{-1}} \to C_0 + b_{C1} \beta^{-1} + b_{C2} e^{-\beta \delta}$$

$$\begin{split} b_{C1} &= \frac{4\pi m}{\hbar^2} \frac{\partial \log A_0}{\partial a^{-1}}, \\ b_{C2} &= -\frac{4\pi m}{\hbar^2} \frac{A_1}{A_0} \left(\frac{\partial E_1}{\partial a^{-1}} - \frac{\partial E_0}{\partial a^{-1}} \right) \end{split}$$

Summary & Conclusions

- There is a natural way to extend the improvement of actions to improve also operators.
- It seems clear that using improved actions and operators does help in bringing lattice calculations closer to the continuum limit.
- Not unexpected: the impact of improvement is observable-dependent.
- The next step is to use all this at finite temperature. However, some testing remains to be done:
 - Does it help to tune every other Lüscher eigenvalue?
 - How about tuning using virial coefficients? (à la Lee-Schäfer)
- We are reassessing our previous calculations in the light of new ones done with these new tools.
- We are simultaneously pursuing the calculation of response functions (specific heat, compressibility, susceptibility, viscosities).

Thank you!

What do we know so far?

- Growth at low T
- Decrease at high T
- Maximum around $T \cong 0.4T_F$
- Finite density effects?
- What happens in the crossover?

Virial expansion:

Yu, Bruun & Baym PRA **80**, 023615 (2009) Hu, Liu, & Drummond, arXiv:1011.3845

T-matrix: Palestini et al. PRA **82**, 021605 (2010)

Improved T-matrix: Enss et al. doi 10.1016/j.aop.2010.10.002

J. E. Drut, T. A. Lähde, T. Ten Phys. Rev. Lett. **106**, 205302 (2011)